Overview of the Recombinant DNA technology- the process of subcloning a foreign gene into the plasmid vector puc19

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Overview of the Recombinant DNA technology- the process of subcloning a foreign gene into the plasmid vector puc19"

Transcription

1 Health and Life Sciences Faculty Course Title: Biological and Forensic Science Module code: 216 BMS Module Title: Molecular Genetics Overview of the Recombinant DNA technology- the process of subcloning a foreign gene into the plasmid vector puc19 Ciobanu Maria Alice SID: Word count: 1617

2 Overview of the Recombinant DNA technology- the process of subcloning a foreign gene into the plasmid vector puc19 Introduction The term gene cloning refers to a wide variety of techniques that makes it possible to manipulate DNA in order to return it to living organisms where it can function normally. Essentially, it involves isolating a piece of DNA from an organism and introducing it into a cloning host, for example bacterium Escherichia Coli which grows and divides rapidly. It is therefore possible to study the cloned DNA or produce the protein encoded by the gene.the cdna may be inserted into vectors and then cloned. The choice of vector represents the most important consideration in molecular cloning experiments. (Krebs et all, 2010) Many bacteria contain an extra chromosomal element of DNA known as a plasmid. This is a relatively small, covalently closed circular molecule, which carries genes for antibiotic resistance, conjugation or the metabolism of unusual substrates. One of the most notable plasmids, termed puc19 was widely adopted for cloning of small DNA fragments in E.coli. It is an antibiotic resistance gene for ampicillin and contains an origin of replication enabling the vector to replicate in E.coli. (Lodge et all; 2007) Plasmid vectors permit the identification of recombinant clones by looking for insertional inactivation of either antibiotic resistance genes or lacz. However, potential recombinant clones still need to be analyzed. This involves purifying the plasmid DNA from individual clones, cutting it with restriction enzymes in order to analyze the size of the fragments produced. (Krebs et all, 2010) Restriction endonucleases recognize certain DNA sequences and cleave them in a defined pattern. Covalent joining of ends on each of the two strands may be brought about by the enzyme DNA ligase, which enables the construction of recombinant DNA fragments. However, it is often convenient to cut a vector with two restriction endonucleases which do not produce complementary overhanging ends (described as sticky ends and are generated by cleavage). EcoRI is one of the most commonly

3 used restriction enzyme and it is produced by the bacterium E. coli strain RY13. (Walker, J.M., Rapley, R. ;2000) The next step in cloning a gene is to find a way of joining the DNA molecules together in a new combination (termed as recombinant). The most common used DNA ligase is a protein produced by a bacteriophage known as T4. In the energy consuming process of ligation, DNA ligase catalyzes the formation of a covalent phosphodiester bond between the 5 phosphate on one DNA strand and a 3 hydroxyl on another. (Krebs et all, 2010) The final step is described as the transformation which involves the introduction of the new recombinant plasmid into E. coli. For the DNA to get into the bacterial cell, a selection of the cells containing the plasmid is necessary. Considering that E.coli is not naturally capable for transformation, its cells need to be treated by chemical treatment and electroporation in order to enable them to take up DNA. (Lodge et all; 2007) This laboratory report is based on three practical sessions and its aim is to transfer a fungal gene (termed CIH-1)from a plasmid vector (called pbk-cmv) into a different plasmid vector (known as puc19) through the use of a number of techniques and procedures as restriction endonuclease digestion of DNA, analysis of DNA fragments by agarose gel electrophoresis, ligation of DNA fragments into a vector, introduction of the ligated DNA into host bacteria by transformation, selection of colonies containing recombinant vector molecules and isolation and analysis of recombinant plasmids. (Coventry University; 2011) Methods: The experiments were carried out as described in the schedule. (Laboratory Schedule, Coventry, 2011)

4 Results In order to clone DNA, it needs to be cut up in a precise and repeatable way by using enzymes. Therefore, the foreign gene (CIH-1) needs to be cut out of the pbk-cmv with the restriction endonucleases EcoR1 and Xbal, same as the puc19. (Coventry University; 2011) To check if the restriction digestion has been successful, gel electrophoresis is used to measure the size of the fragments generated as it can been seen in Figure 1 below: Figure 1. Agarose gel electrophoresis of the restriction digest plasmids pbk- CMV and puc19 It can be observed that the nucleic acids migrated in gel describing a linear movement of the DNA fragments. The DNA is visualised by staining with ethidium bromide, which fluoresces under ultraviolet light. From this image, the measurement of the distance moved by each DNA size markers from the well can be determined using a ruler. The results concluded have been recorded in Table 1 below. Table 1. Distance moved by DNA fragments from the well DNA fragments size (base pairs) Distance moved from well (mm)

5 It can be observed that the distance that DNA fragments have migrated from the well is proportional to the size of the DNA fragment, with small fragments moving faster than large ones, describing a variation from 10 to 23 mm distance travelled from well. Furthermore, the size of fragments needs to be determined. A very useful tool is to plot a graph of log marker size against distance travelled in the gell. A calibration curve will be produced and used afterwards to calculate the size of puc19 and pbk- CMV DNA fragments. A representation of it can be observed in Figure 2 Figure 2. Representation of the measurement of the distance moved by DNA size markers The results established from the plotted graph have been recorded in the table below. Taking into consideration that the recombinant plasmids have been cut with EcoR1, two fragments have been generated: puc19 which varies in size between 600 bp and On the other hand, when Xbal is used to cut the plasmid, only one band occurs: pbk-cmv which has a length of 3100 bp. (Table 2) Table 2. Distance moved by restriction plasmids from the well Distance moved Size (bp) (mm) puc pbk-cmv

6 Following the ligation process, DNA needs to be introduced into the host cell. Therefore, the antibiotic ampicillin is added to the L-agar plates in the experiment in order to select for bacteria which have taken up the plasmid puc19. Also, a mixture of X-gal and IPTG are added. As it is an artificial substrate for β-galactosidase, X-gal produce a blue product. On the other hand, IPTG is an artificial inducer of the lac operon, stimulating its transcription (Coventry University; 2011). As a result, bacterial colonies which express β-galactosidase will appear blue, while the non-producing ones will be white. After counting the colonies, the results were recorded in Table 3 below. Table 3. Results determined from the transformation plates Sample Dilution No. blue colonies No. white colonies Plate 1 Plate 2 Mean Plate 1 Plate 2 Mean Compotent cells Tranformation negative control (tube 3) Tranformation positive control (tube 2) Tranformation Ligation (tube 1) None None None The Figure 3 represents the agarose gel electrophoresis of B1, W1 and W2 restricted plasmids. As it can be observed, W1 and W2 contain recombinant DNA, therefore they form 2 DNA fragments in the gel. Conversely, puc19 is nonrecombinant DNA, so just a single line is shown.

7 Figure 3. Agarose gel electrophoresis of B1, W1 and W2 restricted plasmids Measurements of distance travelled by the DNA fragments in the marker track are documented below. (Table 4) Table 4. Distance travelled by DNA fragments in the marker track DNA fragment size (base pairs) Distance moved from well (mm) In order to determine the DNA fragments size, a calibration curve was plotted. It can be visualised in Figure 4 below.

8 Figure 4. Representation of the measurement of the distance travelled by the DNA fragments The estimation of the size of bands in the restriction digest is recorded in Table 5 and its based on measurements made on the calibration curve above. Table 5. Distance travelled by B1, W1 and W2 in the marker track Sample Distance moved Size (base pairs) B W W It can be observed that the plasmids moved proportional to their length, resulting in the same number of base pairs. Due to the fact that W1 and W2 contain cdna, they produced 2 DNA fragments with a size of approximately 500 bp.

9 Discussion In the first experiment the fungal gene, CIH-1 which is isolated from the fungus Colletrotrichum lindemuthianum needs to be inserted into pcu19.the CIH-1 cdna have been cloned in a plasmid vector called pbk-cmv. In order to clone DNA, it needs to be cut up in a precise and repeatable way by using enzymes. Therefore, the foreign gene needs to be cut out of the pbk-cmv with the restriction endonucleases EcoR1 and Xbal, same as the puc19. Restriction endonucleases recognize certain DNA sequences which are polindromic, usually 4-6 base-pairs (bp) in length, and cleave them in a defined pattern. This means that the nucleotide sequence reading is the same in both directions on each strand. Usually they leave a flush (blunt ended) or staggered fragment when cleaved, depending on the enzyme. (Krebs et all, 2010) After inactivating the restriction enzymes, the plasmid and restriction enzyme fragments are mixed in the presence of T4 DNA ligase. In this experiment, throughout the ligation reaction the digested pbk-cmv and puc19 were mixed together. As a result, the foreign gene (CIH-1) from pbk-cmv is ligated into the MCS of pcu19. However, the desired outcome from the cloning experiment is that one vector molecule to be joined to one of the genomic DNA fragments in order to circularize and form a new recombinant molecule. The last step in gene cloning is the introduction of the recombinant plasmid into E. coli. During transformation, the DNA associated with the lipopolysaccharide on the outer surface of the competent cells in order to uptake the DNA. (Lodge et all; 2007) The most popular restriction sites are concentrated into a region called the multiple cloning site (MCS) which is located within the gene lac Z. Nevertheless, the MCS is part of a gene in its own right and codes for a portion of polypeptide called β- galactosidase which is caused by adding an inducer known as IPTG (isopropyl-β-dthiogalactopyranoside). The functional enzyme is able to hydrolyse a colourless substance named X-gal (5-bromo-4-chloroindol-3-γl-β-galactopyranoside) into a blue insoluble material. When a disruption in the gene occurs through the insertion of a foreign fragment of DNA, a non-functional enzyme results which is incapable to perform hydrolysis of X-gal (Krebs et all, 2010). Moreover, X-gal is the artificial substrate used in this experiment and IPTG is the artificial inducer which takes care of the repressor gene and stops it from working. Hence, it is easy to detect the recombinant puc19 plasmid since it is white in the presence of X-gal, whereas a non-recombinant puc19 plasmid will be blue as the gene is not disrupted, therefore

10 fully functional and expressing β-galactosidase activity. This impressing system, termed blue/white selection permits the initial identification of recombinants to be undertaken very rapidly. It is based on the lac Z gene and requires the use of special E.coli host strains which are naturally lac +. In fact, this represents one of the biochemical characteristics routinely used in the identification if E.coli. From Table 3 it can be observed that the number of white colonies overcomes the number of the blue ones. The white colonies are formed as a result of the insertion of DNA fragments into the multiple cloning sites of puc19 which interferes with lac Z. If the bacterial colonies have taken up the plasmid puc19 they are coloured in blue. (Walker, J.M., Rapley, R.; 2000) The final step is to prove that the inserted DNA fragment in puc19 generated in this experiment is in fact the fungal cdna molecule, CIH-1. To start with, parts of DNA molecules from two chromosomes differ from each other by a single base pair, which results in the absence of an EcoR1 site in one of the chromosomes. Upon digestion with EcoR1, the chromosome without the extra EcoR1 site produces a larger fragment than the other one. This difference is recognised using a probe that hybridises within the region encompassed by two flanking EcoR1 sites present in both molecules. A probe represents a molecule able to bind very specifically to other molecules, therefore it is used to identify the relevant clone among the undesired ones. Two different kinds of probes are recognized: antibodies and polynucleotides. (Sudbery, P. & Sudbery, I.; 2009) To conclude, significant improvements have been made at the molecular level. Many new and powerful ways for isolation, analysis and manipulation of nucleic acids have been discovered. The recently developed cloning strategies heralded a new and exciting era in the exploitation of DNA molecules. Gene cloning especially enabled numerous discoveries to be made and provided precious insights into gene structure, function and regulation, becoming not only an extremely useful tool but also an absolute requirement in the area of bioscience. (Strachan, T., Read, A.; 1999) List of references

11 Coventry University. (2011) Laboratory schedule for 216BMS Molecular Genetics DNA cloning Labs 1-3. Coventry: Coventry University Krebs, J.E., Goldstein, E.S., Kilpatrick, S.T. (2010) Lewin`s essential genes. 2 nd edition. London: Jones and Bartlett Publishers Lodge, J., Lund, P., Minchin, S. (2007) Gene cloning Principles and Applications. 1 st edition. Abingdon: Taylor & Francis Strachan, T., Read, A. (1999) Human molecular genetics. 2 nd Garland Science Sudbery, P., Sudbery, I. (2009) Human molecular genetics. 3 rd Benjamin Cummings edition. Oxford: edition. Essex: Walker, J.M., Rapley, R. (2000) Molecular biology and biotechnology. 4 th edition. Cambridge: The Royal Society of Chemistry

HCS604.03 Exercise 1 Dr. Jones Spring 2005. Recombinant DNA (Molecular Cloning) exercise:

HCS604.03 Exercise 1 Dr. Jones Spring 2005. Recombinant DNA (Molecular Cloning) exercise: HCS604.03 Exercise 1 Dr. Jones Spring 2005 Recombinant DNA (Molecular Cloning) exercise: The purpose of this exercise is to learn techniques used to create recombinant DNA or clone genes. You will clone

More information

Lecture 36: Basics of DNA Cloning-II

Lecture 36: Basics of DNA Cloning-II Lecture 36: Basics of DNA Cloning-II Note: Before starting this lecture students should have completed Lecture 35 Sequential steps involved in DNA cloning using plasmid DNA as vector: Molecular cloning

More information

Genetics Faculty of Agriculture and Veterinary Medicine

Genetics Faculty of Agriculture and Veterinary Medicine Genetics 10201232 Faculty of Agriculture and Veterinary Medicine Instructor: Dr. Jihad Abdallah Topic 15:Recombinant DNA Technology 1 Recombinant DNA Technology Recombinant DNA Technology is the use of

More information

Isolation and Electrophoresis of Plasmid DNA

Isolation and Electrophoresis of Plasmid DNA Name Date Isolation and Electrophoresis of Plasmid DNA Prior to lab you should be able to: o Explain what cloning a gene accomplishes for a geneticist. o Describe what a plasmid is. o Describe the function

More information

Chapter 20: Biotechnology: DNA Technology & Genomics

Chapter 20: Biotechnology: DNA Technology & Genomics Biotechnology Chapter 20: Biotechnology: DNA Technology & Genomics The BIG Questions How can we use our knowledge of DNA to: o Diagnose disease or defect? o Cure disease or defect? o Change/improve organisms?

More information

Chapter 10 Manipulating Genes

Chapter 10 Manipulating Genes How DNA Molecules Are Analyzed Chapter 10 Manipulating Genes Until the development of recombinant DNA techniques, crucial clues for understanding how cell works remained lock in the genome. Important advances

More information

BIOTECHNOLOGY. What can we do with DNA?

BIOTECHNOLOGY. What can we do with DNA? BIOTECHNOLOGY What can we do with DNA? Biotechnology Manipulation of biological organisms or their components for research and industrial purpose Usually manipulate DNA itself How to study individual gene?

More information

DNA TECHNOLOGY- methods for studying and manipulating genetic material.

DNA TECHNOLOGY- methods for studying and manipulating genetic material. 1 DNA TECHNOLOGY- methods for studying and manipulating genetic material. BIOTECHNOLOGY, the manipulation of organisms or their components to make useful products. Biotechnology today usually refers to

More information

Recombinant DNA & Genetic Engineering. Tools for Genetic Manipulation

Recombinant DNA & Genetic Engineering. Tools for Genetic Manipulation Recombinant DNA & Genetic Engineering g Genetic Manipulation: Tools Kathleen Hill Associate Professor Department of Biology The University of Western Ontario Tools for Genetic Manipulation DNA, RNA, cdna

More information

restriction enzymes 350 Home R. Ward: Spring 2001

restriction enzymes 350 Home R. Ward: Spring 2001 restriction enzymes 350 Home Restriction Enzymes (endonucleases): molecular scissors that cut DNA Properties of widely used Type II restriction enzymes: recognize a single sequence of bases in dsdna, usually

More information

Lecture 13. Molecular Cloning

Lecture 13. Molecular Cloning Lecture 13 Molecular Cloning Recombinant DNA technology depends on the ability to produce large numbers of identical DNA molecules (clones). Clones are typically generated by placing a DNA fragment of

More information

Biochem 717 Gene Cloning. Prof Amer Jamil Dept of Biochemistry University of Agriculture Faisalabad

Biochem 717 Gene Cloning. Prof Amer Jamil Dept of Biochemistry University of Agriculture Faisalabad Biochem 717 Gene Cloning Prof Amer Jamil Dept of Biochemistry University of Agriculture Faisalabad How to construct a recombinant DNA molecule? DNA isolation Cutting of DNA molecule with the help of restriction

More information

CHAPTER 14 LECTURE NOTES: RECOMBINANT DNA TECHNOLOGY

CHAPTER 14 LECTURE NOTES: RECOMBINANT DNA TECHNOLOGY CHAPTER 14 LECTURE NOTES: RECOMBINANT DNA TECHNOLOGY I. General Info A. Landmarks in modern genetics 1. Rediscovery of Mendel s work 2. Chromosomal theory of inheritance 3. DNA as the genetic material

More information

AP BIOLOGY 2009 SCORING GUIDELINES (Form B)

AP BIOLOGY 2009 SCORING GUIDELINES (Form B) AP BIOLOGY 2009 SCORING GUIDELINES (Form B) Question 1 Describe how a plasmid can be genetically modified to include a piece of foreign DNA that alters the phenotype of bacterial cells transformed with

More information

MOLECULAR GENETICS GENETIC ENGINEERING RECOMBINANT DNA. Molecular Genetics Activity #6 page 1

MOLECULAR GENETICS GENETIC ENGINEERING RECOMBINANT DNA. Molecular Genetics Activity #6 page 1 AP BIOLOGY MOLECULAR GENETICS ACTIVITY #6 NAME DATE HOUR RECOMBINANT DNA GENETIC ENGINEERING Molecular Genetics Activity #6 page 1 GENETIC ENGINEERING Molecular Genetics Activity #6 page 2 PART I: PRODUCING

More information

SESSION 2. Possible answer:

SESSION 2. Possible answer: UPDATED CLONE THAT GENE ACTIVITY 2014 TEACHER GUIDE SESSION 2 Key ideas: When creating a recombinant plasmid, it is important to examine the sequences of the plasmid DNA and of the human DNA that contains

More information

Chapter 12 - DNA Technology

Chapter 12 - DNA Technology Bio 100 DNA Technology 1 Chapter 12 - DNA Technology Among bacteria, there are 3 mechanisms for transferring genes from one cell to another cell: transformation, transduction, and conjugation 1. Transformation

More information

DNA Scissors: Introduction to Restriction Enzymes

DNA Scissors: Introduction to Restriction Enzymes DNA Scissors: Introduction to Restriction Enzymes Objectives At the end of this activity, students should be able to 1. Describe a typical restriction site as a 4- or 6-base- pair palindrome; 2. Describe

More information

Biotechnology and Recombinant DNA (Chapter 9) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College

Biotechnology and Recombinant DNA (Chapter 9) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Biotechnology and Recombinant DNA (Chapter 9) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Primary Source for figures and content: Eastern Campus Tortora, G.J. Microbiology

More information

Chapter 8: Recombinant DNA 2002 by W. H. Freeman and Company Chapter 8: Recombinant DNA 2002 by W. H. Freeman and Company

Chapter 8: Recombinant DNA 2002 by W. H. Freeman and Company Chapter 8: Recombinant DNA 2002 by W. H. Freeman and Company Biotechnology and reporter genes Here, a lentivirus is used to carry foreign DNA into chickens. A reporter gene (GFP)indicates that foreign DNA has been successfully transferred. Recombinant DNA continued

More information

Recombinant DNA Technology

Recombinant DNA Technology PowerPoint Lecture Presentations prepared by Mindy Miller-Kittrell, North Carolina State University C H A P T E R 8 Recombinant DNA Technology The Role of Recombinant DNA Technology in Biotechnology Biotechnology

More information

Bacterial Transformation

Bacterial Transformation laroslav Neliubov/ShutterStock, Inc. 1 Bacterial Transformation Introduction Microorganisms or microbes are divided into three groups: prokaryotes, eukaryotes, and viruses. Prokaryotes include bacteria,

More information

Gene Cloning Technology

Gene Cloning Technology Gene Cloning Technology Also known as: Genetic engineering or Genetic manipulation (GM) technology implies precision engineering being applied to DNA molecules Recombinant DNA technology - implies that

More information

CHAPTER 6: RECOMBINANT DNA TECHNOLOGY YEAR III PHARM.D DR. V. CHITRA

CHAPTER 6: RECOMBINANT DNA TECHNOLOGY YEAR III PHARM.D DR. V. CHITRA CHAPTER 6: RECOMBINANT DNA TECHNOLOGY YEAR III PHARM.D DR. V. CHITRA INTRODUCTION DNA : DNA is deoxyribose nucleic acid. It is made up of a base consisting of sugar, phosphate and one nitrogen base.the

More information

Biotechnology: DNA Technology & Genomics

Biotechnology: DNA Technology & Genomics Chapter 20. Biotechnology: DNA Technology & Genomics 2003-2004 The BIG Questions How can we use our knowledge of DNA to: diagnose disease or defect? cure disease or defect? change/improve organisms? What

More information

Biotechnology and Recombinant DNA

Biotechnology and Recombinant DNA Biotechnology and Recombinant DNA Recombinant DNA procedures - an overview Biotechnology: The use of microorganisms, cells, or cell components to make a product. Foods, antibiotics, vitamins, enzymes Recombinant

More information

Many cells will not take up plasmid during transformation Cells with plasmid can be identified because original plasmid contained gene for antibiotic

Many cells will not take up plasmid during transformation Cells with plasmid can be identified because original plasmid contained gene for antibiotic Many cells will not take up plasmid during transformation Cells with plasmid can be identified because original plasmid contained gene for antibiotic resistance (ampicillin) Use medium with ampicillin

More information

Lab Exercise: Transformation

Lab Exercise: Transformation Lab Exercise: Transformation Background Genetic transformation is used in many areas of biotechnology, and, at its heart, requires two things: Donor DNA and recipient cells. Cells which receive the donor

More information

CHAPTER 8 RECOMBINANT DNA and GENETIC ENGINEERING

CHAPTER 8 RECOMBINANT DNA and GENETIC ENGINEERING CHAPTER 8 RECOMBINANT DNA and GENETIC ENGINEERING Questions to be addressed: How are recombinant DNA molecules generated in vitro? How is recombinant DNA amplified? What analytical techniques are used

More information

Recombinant DNA technology (genetic engineering) involves combining genes from different sources into new cells that can express the genes.

Recombinant DNA technology (genetic engineering) involves combining genes from different sources into new cells that can express the genes. Recombinant DNA technology (genetic engineering) involves combining genes from different sources into new cells that can express the genes. Recombinant DNA technology has had-and will havemany important

More information

Recipient Cell. DNA Foreign DNA. Recombinant DNA

Recipient Cell. DNA Foreign DNA. Recombinant DNA Module 4B Biotechnology In this module, we will examine some of the techniques scientists have developed to study and manipulate the DNA of living organisms. Objective # 7 Explain what genetic recombination

More information

MMG 301 Lec. 28 Genetic Engineering Basics

MMG 301 Lec. 28 Genetic Engineering Basics MMG 301 Lec. 28 Genetic Engineering Basics Questions for Today: 1. How does one obtain a DNA fragment containing the desired gene using restriction enzymes? using the Polymerase Chain Reaction (PCR)? 2.

More information

Plasmid-based cloning vectors

Plasmid-based cloning vectors Page: 1 Molecular Cloning A glaring problem in most areas of biochemical research is obtaining sufficient amounts of the substance of interest. For example, a 10 L culture of E. coli grown to its maximum

More information

Chapter 9. Biotechnology and Recombinant DNA Biotechnology and Recombinant DNA

Chapter 9. Biotechnology and Recombinant DNA Biotechnology and Recombinant DNA Chapter 9 Biotechnology and Recombinant DNA Biotechnology and Recombinant DNA Q&A Interferons are species specific, so that interferons to be used in humans must be produced in human cells. Can you think

More information

Tools and Techniques. Chapter 10. Genetic Engineering. Restriction endonuclease. 1. Enzymes

Tools and Techniques. Chapter 10. Genetic Engineering. Restriction endonuclease. 1. Enzymes Chapter 10. Genetic Engineering Tools and Techniques 1. Enzymes 2. 3. Nucleic acid hybridization 4. Synthesizing DNA 5. Polymerase Chain Reaction 1 2 1. Enzymes Restriction endonuclease Ligase Reverse

More information

Solutions for Recombinant DNA Unit Exam

Solutions for Recombinant DNA Unit Exam Solutions for Recombinant DNA Unit Exam Question 1 Restriction enzymes are extensively used in molecular biology. Below are the recognition sites of two of these enzymes, BamHI and BclI. a) BamHI, cleaves

More information

Vectors cont.. Pattern of Infection. Lytic cycle. Pattern of Infection. Question. Dr. Dinithi Peiris Dept. of Zoology

Vectors cont.. Pattern of Infection. Lytic cycle. Pattern of Infection. Question. Dr. Dinithi Peiris Dept. of Zoology Vectors cont.. Dr. Dinithi Peiris Dept. of Zoology 1 2 Pattern of Infection Lytic cycle 3 Pattern of Infection 4 Question What is the unique feature in this life cycle Phages causes lysis & cell death

More information

Plasmid Isolation. Prepared by Latifa Aljebali Office: Building 5, 3 rd floor, 5T250

Plasmid Isolation. Prepared by Latifa Aljebali Office: Building 5, 3 rd floor, 5T250 Plasmid Isolation Prepared by Latifa Aljebali Office: Building 5, 3 rd floor, 5T250 Plasmid Plasmids are small, double strand, closed circular DNA molecules. Isolated from bacterial cells. Replicate independently

More information

Recombinant DNA Unit Exam

Recombinant DNA Unit Exam Recombinant DNA Unit Exam Question 1 Restriction enzymes are extensively used in molecular biology. Below are the recognition sites of two of these enzymes, BamHI and BclI. a) BamHI, cleaves after the

More information

11/19/2008. Gene analysis. Sequencing PCR. Northern-blot RT PCR. Western-blot Sequencing. in situ hybridization. Southern-blot

11/19/2008. Gene analysis. Sequencing PCR. Northern-blot RT PCR. Western-blot Sequencing. in situ hybridization. Southern-blot Recombinant technology Gene analysis Sequencing PCR RNA Northern-blot RT PCR Protein Western-blot Sequencing Southern-blot in situ hybridization in situ hybridization Function analysis Histochemical analysis

More information

Cloning vectors. E. coli Yeast Plants Insects

Cloning vectors. E. coli Yeast Plants Insects Cloning vectors E. coli Yeast Plants Insects Cloning vectors for E. coli The simplest cloning vectors are based on small bacterial plasmids Desirable properties: -Easy purification -High transformation

More information

Today-applications: Medicine-better health Pharmaceutical-production of antibiotics Foods-wine, cheese, beer Agriculture-selective breeding

Today-applications: Medicine-better health Pharmaceutical-production of antibiotics Foods-wine, cheese, beer Agriculture-selective breeding I. Genetic Engineering modification of DNA of organisms to produce new genes with new characteristics -genes are small compared to chromosomes -need methods to get gene-sized pieces of DNA -direct manipulation

More information

GFP Transformation Genetic Manipulations

GFP Transformation Genetic Manipulations MODULE 2 Objective 2.1 Lesson E GFP Transformation Genetic Manipulations Course Advanced Biotechnology Unit DNA Technology Essential Question How is foreign DNA genes taken up by organisms and expressed?

More information

CLONING IN ESCHERICHIA COLI

CLONING IN ESCHERICHIA COLI CLONING IN ESCHERICHIA COLI Introduction: In this laboratory, you will carry out a simple cloning experiment in E. coli. Specifically, you will first create a recombinant DNA molecule by carrying out a

More information

Biotechnology. Selective breeding Use of microbes (bacteria & yeast)

Biotechnology. Selective breeding Use of microbes (bacteria & yeast) Biotechnology bio and technology The use of living organisms to solve problems or make useful products. Biotechnology has been practiced for the last 10,000 years. Selective breeding Use of microbes (bacteria

More information

The Effects of Plasmid on Genotype and Phenotype (Revised 1/31/96) Introduction

The Effects of Plasmid on Genotype and Phenotype (Revised 1/31/96) Introduction The Effects of Plasmid on Genotype and Phenotype (Revised 1/31/96) Introduction Plasmids are small circular DNA molecules that often found in bacteria in addition to the large circular DNA molecule of

More information

Citation for published version (APA): Poelwijk, F. J. (2008). Fitness landscapes of gene regulation in variable environments

Citation for published version (APA): Poelwijk, F. J. (2008). Fitness landscapes of gene regulation in variable environments UvA-DARE (Digital Academic Repository) Fitness landscapes of gene regulation in variable environments Poelwijk, F.J. Link to publication Citation for published version (APA): Poelwijk, F. J. (2008). Fitness

More information

LAB 9 RECOMBINANT DNA LIGATION

LAB 9 RECOMBINANT DNA LIGATION BIOECHNOLOGY I RECOMBINN DN LIGION LB 9 RECOMBINN DN LIGION SUDEN GUIDE GOL he objective of this lab is to perform DN ligation to construct a recombinant plasmid. OBJECIVES fter completion, the student

More information

Gene Cloning and DNA Analysis: An Introduction

Gene Cloning and DNA Analysis: An Introduction Gene Cloning and DNA Analysis: An Introduction Brown, Terry A. ISBN-13: 9781405111218 Table of Contents PART 1 THE BASIC PRINCIPLES OF GENE CLONING AND DNA ANALYSIS. Chapter 1 Why Gene Cloning and DNA

More information

Genetic engineering or Genetic manipulation (GM) technology. implies precision engineering being applied to DNA molecules

Genetic engineering or Genetic manipulation (GM) technology. implies precision engineering being applied to DNA molecules Gene Cloning Technology Also known as: Genetic engineering or Genetic manipulation (GM) technology implies precision engineering being applied to DNA molecules Recombinant DNA technology - implies that

More information

MBLG1001 Lecture 8 page 1. University of Sydney Library Electronic Item COURSE: MBLG1001. Lecturer: Dale Hancock Lecture 8

MBLG1001 Lecture 8 page 1. University of Sydney Library Electronic Item COURSE: MBLG1001. Lecturer: Dale Hancock Lecture 8 MBLG1001 Lecture 8 page 1 University of Sydney Library Electronic Item CURSE: MBLG1001 Lecturer: Dale ancock Lecture 8 CMMNWEALT F AUSTRALIA Copyright Regulation WARNING This material has been reproduced

More information

AP BIOLOGY 2007 SCORING GUIDELINES

AP BIOLOGY 2007 SCORING GUIDELINES AP BIOLOGY 2007 SCORING GUIDELINES Question 4 A bacterial plasmid is 100 kb in length. The plasmid DNA was digested to completion with two restriction enzymes in three separate treatments: EcoRI, HaeIII,

More information

Recombinant DNA and Biotechnology

Recombinant DNA and Biotechnology Recombinant DNA and Biotechnology Chapter 18 Lecture Objectives What Is Recombinant DNA? How Are New Genes Inserted into Cells? What Sources of DNA Are Used in Cloning? What Other Tools Are Used to Study

More information

Recombinant Paper Plasmids Cut-and-Paste Biotechnology

Recombinant Paper Plasmids Cut-and-Paste Biotechnology Recombinant Paper Plasmids Cut-and-Paste Biotechnology OBJECTIVE / RIONALE Bioengineers make news using recombinant DNA techniques in hopes of curing genetic diseases, better understanding cancer, and

More information

DNA Technology Mapping a plasmid digesting How do restriction enzymes work?

DNA Technology Mapping a plasmid digesting How do restriction enzymes work? DNA Technology Mapping a plasmid A first step in working with DNA is mapping the DNA molecule. One way to do this is to use restriction enzymes (restriction endonucleases) that are naturally found in bacteria

More information

GEL ELECTROPHORESIS OF PLASMID DNA

GEL ELECTROPHORESIS OF PLASMID DNA Purpose: In this lab you will determine the size of a circular piece of bacterial DNA (a plasmid) by cutting it into smaller pieces with enzymes and finding the size of the pieces using agarose gel electrophoresis.

More information

The correct answer is c B. Answer b is incorrect. Type II enzymes recognize and cut a specific site, not at random sites.

The correct answer is c B. Answer b is incorrect. Type II enzymes recognize and cut a specific site, not at random sites. 1. A recombinant DNA molecules is one that is a. produced through the process of crossing over that occurs in meiosis b. constructed from DNA from different sources c. constructed from novel combinations

More information

PART 1 THE BASIC PRINCIPLES OF GENE CLONING AND DNA ANALYSIS. Chapter 1 Why Gene Cloning and DNA Analysis are Important

PART 1 THE BASIC PRINCIPLES OF GENE CLONING AND DNA ANALYSIS. Chapter 1 Why Gene Cloning and DNA Analysis are Important TABLE OF CONTENTS PART 1 THE BASIC PRINCIPLES OF GENE CLONING AND DNA ANALYSIS Chapter 1 Why Gene Cloning and DNA Analysis are Important 1.1 The early development of genetics 1.2 The advent of gene cloning

More information

Chapter 20: Biotechnology

Chapter 20: Biotechnology Name Period The AP Biology exam has reached into this chapter for essay questions on a regular basis over the past 15 years. Student responses show that biotechnology is a difficult topic. This chapter

More information

Advantages of pspark over other popular DNA Cloning systems on the market: pgem -T and TOPO TA cloning

Advantages of pspark over other popular DNA Cloning systems on the market: pgem -T and TOPO TA cloning Advantages of pspark over other popular DNA Cloning systems on the market: pgem -T and TOPO TA cloning This study compares the efficiency of the pspark I DNA Cloning system with other popular cloning systems,

More information

RECOMBINANT DNA TECHNOLOGY

RECOMBINANT DNA TECHNOLOGY RECOMBINANT DNA TECHNOLOGY By; Dr. Adeel Chaudhary 2 nd yr Molecular Genetics Medical Technology College of Applied Medical Sciences Recombinant DNA is a form of artificial DNA that is made through the

More information

PRELAB DISCUSSION #12

PRELAB DISCUSSION #12 PRELAB DISCUSSION #12 ANNOUNCEMENTS KEY DATES: CH6C Labs: Dec2-8 th CH6 Write-up: pdf due 9 pm the evening before your CH6C Lab and hardcopy due at the beginning of CH6C lab. (The write up template outlining

More information

Ch.11 BIOTECHNOLOGY-PRINCIPLES & PROCESSES

Ch.11 BIOTECHNOLOGY-PRINCIPLES & PROCESSES Ch.11 BIOTECHNOLOGY-PRINCIPLES & PROCESSES IMPORTANT CONCEPTS AND DEFINNITIONS- 1. Biotechnology deals with techniques of using live organisms or enzymes from organisms to 2. produce products and processes

More information

LAB 6 POP BEAD CLONING

LAB 6 POP BEAD CLONING LAB 6 Modeling Recombinant DNA Construction This lab was modified from a lab written by Elmer Kelmer, a biology teacher at Parkway South High School. No lab outline is necessary. OBJECTIVES After working

More information

Biotechnology Test Test

Biotechnology Test Test Log In Sign Up Biotechnology Test Test 15 Matching Questions Regenerate Test 1. Plasmid 2. PCR Process 3. humulin 4. pluripotent 5. polymerase chain reaction (PCR) a b Is much smaller than the human genome,

More information

3. comparison with proteins of known function

3. comparison with proteins of known function Lectures 26 and 27 recombinant DNA technology I. oal of genetics A. historically - easy to isolate total DNA - difficult to isolate individual gene B. recombinant DNA technology C. why get the gene? 1.

More information

Bacterial Transformation and Plasmid Purification. Chapter 5: Background

Bacterial Transformation and Plasmid Purification. Chapter 5: Background Bacterial Transformation and Plasmid Purification Chapter 5: Background History of Transformation and Plasmids Bacterial methods of DNA transfer Transformation: when bacteria take up DNA from their environment

More information

LAB 7 DNA RESTRICTION for CLONING

LAB 7 DNA RESTRICTION for CLONING BIOTECHNOLOGY I DNA RESTRICTION FOR CLONING LAB 7 DNA RESTRICTION for CLONING STUDENT GUIDE GOALS The goals of this lab are to provide the biotech student with experience in DNA digestion with restriction

More information

2. True or False? The sequence of nucleotides in the human genome is 90.9% identical from one person to the next. False (it s 99.

2. True or False? The sequence of nucleotides in the human genome is 90.9% identical from one person to the next. False (it s 99. 1. True or False? A typical chromosome can contain several hundred to several thousand genes, arranged in linear order along the DNA molecule present in the chromosome. True 2. True or False? The sequence

More information

The E. coli Insulin Factory

The E. coli Insulin Factory The E. coli Insulin Factory BACKGROUND Bacteria have not only their normal DNA, they also have pieces of circular DNA called plasmids. Plasmids are a wonderfully ally for biologists who desire to get bacteria

More information

DNA CLONING: amplification of unique DNA molecules. In vivo-in different host cells

DNA CLONING: amplification of unique DNA molecules. In vivo-in different host cells DNA CLONING DNA CLONING: amplification of unique DNA molecules In vitro-pcr In vivo-in different host cells POLYMERASE CHAIN REACTION (PCR) PCR THE POLYMERASE CHAIN REACTION (PCR) PROVIDES AN EXTREMELY

More information

Blue-white screening liquid can eliminate false positives in blue-white colony screening

Blue-white screening liquid can eliminate false positives in blue-white colony screening Blue-white screening liquid can eliminate false positives in blue-white colony screening Y.S. Zhang 1,2 1 Department of Biotechnology, College of Chemistry and Biology Engineering, University of Electronic

More information

Solutions to Problem Set 5

Solutions to Problem Set 5 MIT Biology Department 7.012: Introductory Biology - Fall 2004 Instructors: Professor Eric Lander, Professor Robert A. Weinberg, Dr. Claudette Gardel Question 1 Solutions to 7.012 Problem Set 5 Restriction

More information

Creation of a Bacterial Cell Controlled by a Chemically Synthesized Genome Gibson et al. (2010)

Creation of a Bacterial Cell Controlled by a Chemically Synthesized Genome Gibson et al. (2010) Creation of a Bacterial Cell Controlled by a Chemically Synthesized Genome Gibson et al. (2010) In 1977 Sanger and his colleagues were the first who sequenced the complete DNA genome of a phage. From 1977

More information

DNA Fingerprinting. Unless they are identical twins, individuals have unique DNA

DNA Fingerprinting. Unless they are identical twins, individuals have unique DNA DNA Fingerprinting Unless they are identical twins, individuals have unique DNA DNA fingerprinting The name used for the unambiguous identifying technique that takes advantage of differences in DNA sequence

More information

Lecture 13: DNA Technology. DNA Sequencing. DNA Sequencing Genetic Markers - RFLPs polymerase chain reaction (PCR) products of biotechnology

Lecture 13: DNA Technology. DNA Sequencing. DNA Sequencing Genetic Markers - RFLPs polymerase chain reaction (PCR) products of biotechnology Lecture 13: DNA Technology DNA Sequencing Genetic Markers - RFLPs polymerase chain reaction (PCR) products of biotechnology DNA Sequencing determine order of nucleotides in a strand of DNA > bases = A,

More information

Transformation. Making Change Happen

Transformation. Making Change Happen Transformation Making Change Happen Genetic Engineering Definition: The alteration of an organism s genetic, or hereditary, material to eliminate undesirable characteristics or to produce desirable new

More information

Name Class Date WHAT I KNOW. organisms with specific traits for certain functions. For example, some plants provide food.

Name Class Date WHAT I KNOW. organisms with specific traits for certain functions. For example, some plants provide food. Genetic Engineering Science as a Way of Knowing Q: How and why do scientists manipulate DNA in living cells? 15.1 How do humans take advantage of naturally occurring variation among organisms? WHAT I KNOW

More information

Recombinant DNA Technology

Recombinant DNA Technology Recombinant DNA Technology Dates in the Development of Gene Cloning: 1965 - plasmids 1967 - ligase 1970 - restriction endonucleases 1972 - first experiments in gene splicing 1974 - worldwide moratorium

More information

Chapter 11 Biotechnology : Principles and Processes. Chapter 12 Biotechnology and Its Applications

Chapter 11 Biotechnology : Principles and Processes. Chapter 12 Biotechnology and Its Applications Chapter 11 Biotechnology : Principles and Processes Chapter 12 Biotechnology and Its Applications Ever since the days of Rene Descartes, the French philosopher, mathematician and biologist of seventeenth

More information

AP Biology Review Packet 4: Viruses, Bacteria and Expression & DNA Technology

AP Biology Review Packet 4: Viruses, Bacteria and Expression & DNA Technology AP Biology Review Packet 4: Viruses, Bacteria and Expression & DNA Technology 3A1- DNA, and in some cases RNA, is the primary source of heritable information. 3B1- Gene Regulation results in differential

More information

NAME: Microbiology BI234 MUST be written and will not be accepted as a typed document.

NAME: Microbiology BI234 MUST be written and will not be accepted as a typed document. Chapter 8 Study Guide What is the study of genetics, and what topics does it focus on? What is a genome? NAME: Microbiology BI234 MUST be written and will not be accepted as a typed document. Describe

More information

DNA CLONING. DNA segment has been developed: polymerase chain reaction PCR. Viral DNA-s bacteriophage λ, filamentous bacteriophages

DNA CLONING. DNA segment has been developed: polymerase chain reaction PCR. Viral DNA-s bacteriophage λ, filamentous bacteriophages DNA CLONING - What is cloning? The isolation of discrete pieces of DNA from their host organism and their amplification through propagation in the same or a different host More recently an alternitive,

More information

Zback Faster Ligation Kit

Zback Faster Ligation Kit Zback Faster Ligation Kit For the highest efficiency cloning of PCR products either blunt or sticky-end Kit Contents Contents TGVTB04 TGVTB04-2 pzback/blunt vector 10 µl 20 µl T4 DNA Ligase 5 µl 10 µl

More information

Transformation of Competent Cells with a Recombinant Plasmid Carl Estrella, Merced College, Merced, CA

Transformation of Competent Cells with a Recombinant Plasmid Carl Estrella, Merced College, Merced, CA INTRODUCTION To close the yellow note, click once to select it and then click the box in the upper left corner. To open the note, double click (Mac OS) or right click (Windows) on the note icon. Transformation

More information

Genetic transformation literally means change caused by genes.

Genetic transformation literally means change caused by genes. pglo Bacterial Transformation Practical What is transformation? Genetic transformation literally means change caused by genes. It occurs when a cell takes up (takes inside) and expresses a new piece of

More information

Chapter 9 Homework Assignment

Chapter 9 Homework Assignment Chapter 9 Homework Assignment We will not cover the entire chapter. Please use the lecture notes and the Review Sheet for testable material I have decided to alter the homework assignment for Chapter 9.

More information

The Techniques of Molecular Biology: Forensic DNA Fingerprinting

The Techniques of Molecular Biology: Forensic DNA Fingerprinting Revised Fall 2011 The Techniques of Molecular Biology: Forensic DNA Fingerprinting The techniques of molecular biology are used to manipulate the structure and function of molecules such as DNA and proteins

More information

Transfection-Transfer of non-viral genetic material into eukaryotic cells. Infection/ Transduction- Transfer of viral genetic material into cells.

Transfection-Transfer of non-viral genetic material into eukaryotic cells. Infection/ Transduction- Transfer of viral genetic material into cells. Transfection Key words: Transient transfection, Stable transfection, transfection methods, vector, plasmid, origin of replication, reporter gene/ protein, cloning site, promoter and enhancer, signal peptide,

More information

GENE CLONING AND RECOMBINANT DNA TECHNOLOGY

GENE CLONING AND RECOMBINANT DNA TECHNOLOGY GENE CLONING AND RECOMBINANT DNA TECHNOLOGY What is recombinant DNA? DNA from 2 different sources (often from 2 different species) are combined together in vitro. Recombinant DNA forms the basis of cloning.

More information

MOLECULAR BIOLOGY OVERVIEW NUCLEIC ACIDS: THE BASICS

MOLECULAR BIOLOGY OVERVIEW NUCLEIC ACIDS: THE BASICS MOLECULAR BIOLOGY OVERVIEW NUCLEIC ACIDS: THE BASICS Richard L. Hodinka, Ph.D. University of South Carolina School of Medicine Greenville Greenville Health System, Greenville, SC hodinka@greenvillemed.sc.edu

More information

DNA ligase. ATP (or NAD+)

DNA ligase. ATP (or NAD+) DNA Ligase enzyme catalysing formation of phosphodiesteric bound between group 3 -OH of one end of DNA molecule and group 5 -phosphate of the second end of DNA DNA ligase ATP (or NAD+) Ligase cofactors

More information

Name Class Date. KEY CONCEPT Mutations are changes in DNA that may or may not affect phenotype. frameshift mutation

Name Class Date. KEY CONCEPT Mutations are changes in DNA that may or may not affect phenotype. frameshift mutation Unit 7 Study Guide Section 8.7: Mutations KEY CONCEPT Mutations are changes in DNA that may or may not affect phenotype. VOCABULARY mutation point mutation frameshift mutation mutagen MAIN IDEA: Some mutations

More information

Activity #5. Mr. Green Genes

Activity #5. Mr. Green Genes Activity #5. Mr. Green Genes a. Hypothesis Development Using Bioinformatics b. Plasmid DNA Isolation & Restriction Enzyme Digestion & Phenotype Confirmation, c. Gel Electrophoresis In this experiment,

More information

Gene regulation in prokaryotes

Gene regulation in prokaryotes GENE REGULATION 1 GENE REGULATION Gene regulation refers to the ability of cells to control their level of gene expression Structural genes are regulated so proteins are only produced at certain times

More information

Molecular Biology Techniques: A Classroom Laboratory Manual THIRD EDITION

Molecular Biology Techniques: A Classroom Laboratory Manual THIRD EDITION Molecular Biology Techniques: A Classroom Laboratory Manual THIRD EDITION Susan Carson Heather B. Miller D.Scott Witherow ELSEVIER AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN

More information

Vectors. Plasmids as Vectors. Vectors : the DNA carriers. Plasmids as Vectors. Plasmids as Vectors

Vectors. Plasmids as Vectors. Vectors : the DNA carriers. Plasmids as Vectors. Plasmids as Vectors Vectors Vectors DNA carriers to allow replication of recombinant DNAs ( 재조합 DNA 의복제를위한 DNA 운반자, 매개체 ) Typical experiment uses 1 vector plus a piece of foreign DNA Foreign DNA depends on the vector for

More information

Gene Cloning. Reference. T.A. Brown, Gene Cloning, Chapman and Hall. S.B. Primrose, Molecular Biotechnology, Blackwell

Gene Cloning. Reference. T.A. Brown, Gene Cloning, Chapman and Hall. S.B. Primrose, Molecular Biotechnology, Blackwell Gene Cloning 2004 Seungwook Kim Chem. & Bio. Eng. Reference T.A. Brown, Gene Cloning, Chapman and Hall S.B. Primrose, Molecular Biotechnology, Blackwell Why Gene Cloning is Important? A century ago, Gregor

More information

LAB 10 DNA TRANSFORMATION

LAB 10 DNA TRANSFORMATION LAB 10 DNA TRANSFORMATION STUDENT GUIDE GOAL The objective of this lab is to successfully perform DNA transformation of a recombinant plasmid and use blue-white selection to select recombinant clones.

More information

Lecture 27: Agarose Gel Electrophoresis for DNA analysis

Lecture 27: Agarose Gel Electrophoresis for DNA analysis Lecture 27: Agarose Gel Electrophoresis for DNA analysis During Lecture 9 and 10 we have studied basics of protein electrophoresis. Recalling our discussion during lecture, protein needs to be boiled with

More information