# Problem Set 3 Solutions CH332 (SP 06) 1. Skoog problem 15-1 (omit terms (j), (k) and (m)). Draw diagrams as necessary.

Save this PDF as:

Size: px
Start display at page:

Download "Problem Set 3 Solutions CH332 (SP 06) 1. Skoog problem 15-1 (omit terms (j), (k) and (m)). Draw diagrams as necessary."

## Transcription

1 Problem Set 3 Solutions CH332 (SP 06) 1. Skoog problem 15-1 (omit terms (j), (k) and (m)). Draw diagrams as necessary. a) fluorescence Relaxation of an excited state by emission of a photon without a change in electron spin. This satisfies the selection rule S=0, and so is allowed, rapid and fairly probable, depending on the relative rates of competing relaxation pathways. Note that this often involves singlet->singlet transitions in neutral molecules, since typically all electrons are paired in the ground state. Strictly speaking, though, this could involve any multiplicity (as long as it is conserved in the process) for free atoms, ions, molecular ions, molecular radicals, etc. b) phosphorescence Relaxation of an excited state by emission of a photon with a concurrent change in electron spin. This breaks the selection rule S=0, and so is forbidden, slow and improbable. Often for neutral molecules this is a triplet->singlet transition, but it need not be, generally speaking. c) resonance fluorescence Relaxation of an excited state by emission of a photon of the same frequency as the excitation frequency. This is more common in atoms than in molecules, which have vibrational relaxation pathways that may dissipate a portion of the excitation energy before fluorescence occurs. d) singlet state A many-electron state in which all electron spins are paired. Total spin angular momentum S=0. This is commonly the multiplicity of neutral molecules, both in the ground state and in excited electronic states reached by spin-allowed optical transitions. e) triplet state A many-electron state in which two electron spins are parallel. Total spin angular momentum S=1. Typically not accessible by *allowed* optical transitions from the ground state for neutral molecules. f) vibrational relaxation Dissipation of excess energy in a molecular excited state among the vibrational degrees of freedom. This is the means of the Stokes shift in molecular fluorescence (emitted light appears at longer wavelength than the excitation wavelength). g) internal conversion Intramolecular processes which allow an excited state to relax to another electronic state or the ground state without emission of a photon and without a change in multiplicity. This is a consequence of overlap of the vibrational manifolds of the electronic states. h) external conversion Relaxation of an excited electronic state without emission of a photon due to intermolecular processes (collisions with other

2 molecules). This competes with fluorescence, reducing fluorescent quantum yield, and is often referred to as quenching. i) intersystem crossing Processes in which the spin of an excited electron flips. For neutral molecules this is typically a singlet->triplet conversion. l) quantum yield The ratio of the number of molecules that luminesce to the number of excited molecules. A quantification of the efficiency of luminescence. 2. How do you collect a fluorescence emission spectrum? A fluorescence excitation spectrum? An absorption spectrum? Which two most closely resemble each other? A fluorescence emission spectrum is collected by illuminating the sample with a single wavelength and collecting a scan of the intensities of the different wavelengths emitted by the sample. A laser would be an excellent excitation source, and the emitted light should be collected at 90 o from the excitation and directed into a monochromator for scanning the emission. A fluorescence excitation spectrum is collected by measuring the intensity of a single emitted wavelength over a scan of excitation wavelengths. Typically the source would be a continuous source with a monochrometer (or the harmonics of a tunable dye laser, if it covers the required wavelength range) and the emitted light should be collected at 90 o from the excitation and directed into a monochrometer fixed at a specific detection wavelength. An absorption spectrum is collected by measuring the difference in intensity between the light incident on the sample and the light passed by the sample, and measuring this difference (absorption) as a function of wavelength. Typically the source would be a continuous source with a monochrometer (or the harmonics of a tunable dye laser, if it covers the required wavelength range). The fluorescence excitation and absorption spectra would closely resemble each other, as both are based on scanning the excitation wavelength to detect those that lead to excited electronic states. 3. Skoog problem Why is spectrofluorometry potentially more sensitive than spectrophotometry? The key difference is that spectrofluorometry measures the intensity of fluorescence, while spectrophotometry (absorption spectroscopy) measures the ratio of the intensities of two beams (incident and passed beams). The fluorescence signal is directly proportional to the intensity of the excitation source.

3 F P 0 We can increase the intensity of the excitation source (use a laser!) and gain a subsequent increase in the fluorescence signal potentially leading to greater sensitivity. Spectrophotometry, on the other hand, is an absorption technique. Absorption depends on the ratio of incident to passed light: P ( ) 0 A = log P so simply increasing P 0 also increases P. 4. Skoog problem The name gives it away fluorescein should be expected to have a greater quantum fluorescence yield than phenolphthalein. Both have similar structures with aromatic and conjugated double bond chromophores; thus, both absorb strongly in the visible/uv. Fluorescein, however, has a more rigid fused-ring structure which hampers vibrational dissipation of excited state excess energy, making it more likely that the molecule remains in the excited state long enough to fluoresce. This should result in a greater fluorescent quantum yield for fluorescein than phenolphthalein. 5. Skoog problem Predict the part of the quinine molecule that is most likely to behave as the chromophore and fluorescent center. The fused aromatic ring portion is most likely to act as a chromophore (large conjugated pi-electron systems tend to show absorption in the UV/vis) and fluorophore (rigid ring structures hinder vibrational relaxation pathways for internal conversion, which competes with fluorescence). 6. Should water absorb strongly in the infrared? How many vibrational modes are expected? Draw the normal vibrational modes of water and comment on whether they are expected to be IR or Raman active. Comment on the impact that this may have for the use of water as a solvent for IR vs. Raman studies of analytes in solution. Water has three atoms, so there are 3N-6=3 vibrational modes. The normal modes look like:

4 All modes result in a change in dipole moment, so they are all expected to be IR active. Raman intensity depends on change in induced dipole moment during a vibration, which can roughly be correlated to change in bond lengths. The antisymmetric stretch involves lengthening one bond while shortening another; as a result, the effects cancel each other out and this mode is expected to be Raman inactive. The other two modes do involve net bond lengthening, so they are likely Raman active. Even though two out of three modes are Raman active, we may expect the Raman intensities to be fairly low, since H is not very polarizable (recall from General Chemistry that large atoms with orbitals lying far from the nucleus are more polarizable than more compact atoms). The strong IR absorption makes water a poor solvent for IR studies of analytes in solution. The relatively weak Raman activity of water, however, means that Raman techniques are compatible with aqueous samples, which include biological samples. 7. How many vibrational modes are expected for HCN? Draw the normal vibrational modes. How many unique bands are expected in the IR spectrum? HCN has three atoms and is linear, so there are 3N-5=4 vibrational modes. The normal modes look like: The two stretching look more nearly like pure localized C-N and H-C stretches because of the mass differential between H and N. Try this on the ComSpec3D simulator. This is in contrast to the collective symmetric and antisymmetric modes of water. The two bending modes (remember, the + and - signs mean that the atoms are coming out of or going into the page) are degenerate and all modes are expected to be IR active (result in a change in the dipole moment), so only three unique bands would be expected in the IR spectrum. 8. Skoog problem What are the advantages of a Fourier transform infrared spectrometer compared with a dispersive instrument? The main advantage a FT spectrometer is the speed of acquisition since all spectral components are sampled simultaneously. This is in direct opposition to the basis of a dispersive instrument, which selectively isolates one narrow spectral band at a time. A consequence of the speed of FT acquisition is the

### Instrumental Analysis CHEM 3420 / 7420G Problem Set 5

Instrumental Analysis CHEM 3420 / 7420G Problem Set 5 Problems 13-1(a-c), 13-2(a-c), 13-3, 13-4, 13-6, 13-7, 13-11, 13-20 13-1 T = 10 -Abs a. 0.038 Abs is 91.6% transmittance b. 0.958 Abs is 11.0% transmittance

### Chapter 8. The vibrational and rotational spectroscopy of diatomic molecules

Chapter 8. The vibrational and rotational spectroscopy of diatomic molecules General features nteraction of electromagnetic field with atoms/molecules Spectral range: Wave number ~ (frequency ) Wavelength

### Fundamentals of molecular absorption spectroscopy (UV/VIS)

10.2.1.3 Molecular spectroscopy 10.2.1.3.1 Introduction Molecular radiation results from the rotational, vibrational and electronic energy transitions of molecules. Band spectra are the combination of

### Lecture 29. Introduction to Fluorescence Spectroscopy

Lecture 29 Introduction to Fluorescence Spectroscopy Introduction When a molecule absorbs light, an electron is promoted to a higher excited state (generally a singlet state, but may also be a triplet

### CHAPTER 12 INFRARED SPECTROSCOPY. and MASS SPECTROSCOPY

KOT 222 ORGANIC CHEMISTRY II CHAPTER 12 INFRARED SPECTROSCOPY and MASS SPECTROSCOPY Part I Infrared Spectroscopy What is Spectroscopy? Spectroscopy is the study of the interaction of matter and electromagnetic

### Interactions of Light and Matter: Spectroscopy

Interactions of Light and Matter: Spectroscopy 1 Spectroscopy: Interaction of nuclei, atoms, ions, or molecules with electromagnetic radiation Based on quantum theory: quantized energy states Several possible

### Spectroscopy. Ron Robertson

Spectroscopy Ron Robertson Molecular Energy The energy of a molecule is divided into several parts: Type D E (ev) Type of Radiation Translation 10-18 Rotation 5 x 10-4 Microwaves Vibration 0.3 Infrared

### Molecular Spectroscopy

Molecular Spectroscopy UV-Vis Spectroscopy Absorption Characteristics of Some Common Chromophores UV-Vis Spectroscopy Absorption Characteristics of Aromatic Compounds UV-Vis Spectroscopy Effect of extended

### Time out states and transitions

Time out states and transitions Spectroscopy transitions between energy states of a molecule excited by absorption or emission of a photon hn = DE = E i - E f Energy levels due to interactions between

### Raman spectroscoopy. Matti Hotokka Department of Physical Chemistry Åbo Akademi University

Raman spectroscoopy Matti Hotokka Department of Physical Chemistry Åbo Akademi University The phenomenon Electronically excited state Virtual level, light is not absorbed Resonance Raman Vibrational levels

### Raman spectroscopy Lecture

Raman spectroscopy Lecture Licentiate course in measurement science and technology Spring 2008 10.04.2008 Antti Kivioja Contents - Introduction - What is Raman spectroscopy? - The theory of Raman spectroscopy

### SPECTROPHOTOMETRY. PRINCIPLE AND APPLICATIONS

EUROPEAN UNION GOVERNMENT OF ROMANIA GOVERNMENT OF THE REPUBLIC OF SERBIA Structural Funds 2007-2013 SPECTROPHOTOMETRY. PRINCIPLE AND APPLICATIONS As.dr.ing. ADRIAN EUGEN CIOABLA WORKSHOP 05 06 September

### The Fundamentals of Infrared Spectroscopy. Joe Van Gompel, PhD

TN-100 The Fundamentals of Infrared Spectroscopy The Principles of Infrared Spectroscopy Joe Van Gompel, PhD Spectroscopy is the study of the interaction of electromagnetic radiation with matter. The electromagnetic

### Introduction. Chapter 12 Mass Spectrometry and Infrared Spectroscopy. Electromagnetic Spectrum. Types of Spectroscopy 8/29/2011

Organic Chemistry, 6 th Edition L. G. Wade, Jr. Chapter 12 Mass Spectrometry and Infrared Spectroscopy Introduction Spectroscopy is an analytical technique which helps determine structure. It destroys

### 13C NMR Spectroscopy

13 C NMR Spectroscopy Introduction Nuclear magnetic resonance spectroscopy (NMR) is the most powerful tool available for structural determination. A nucleus with an odd number of protons, an odd number

### Fluorescence spectroscopy

Spectral characteristics A Jablonski diagram represents absorption and emission in a fluorescent molecule A typical molecule absorbs from the ground state (S 0 ) into the vibrational manifold above the

### Infrared Spectroscopy

Infrared Spectroscopy IR Spectroscopy Used to identify organic compounds IR spectroscopy provides a 100% identification if the spectrum is matched. If not, IR at least provides information about the types

### Time out states and transitions

Time out states and transitions Spectroscopy transitions between energy states of a molecule excited by absorption or emission of a photon hν = E = E i -E f Energy levels due to interactions between parts

### Infrared Spectroscopy: Theory

u Chapter 15 Infrared Spectroscopy: Theory An important tool of the organic chemist is Infrared Spectroscopy, or IR. IR spectra are acquired on a special instrument, called an IR spectrometer. IR is used

### Raman Spectroscopy. 1. Introduction. 2. More on Raman Scattering. " scattered. " incident

February 15, 2006 Advanced Physics Laboratory Raman Spectroscopy 1. Introduction When light is scattered from a molecule or crystal, most photons are elastically scattered. The scattered photons have the

### Lecture 1: Basic Concepts on Absorption and Fluorescence

Lecture 1: Basic Concepts on Absorption and Fluorescence Nicholas G. James Cell and Molecular Biology University of Hawaii at Manoa, Honolulu The Goal The emission of light after absorption of an outside

### INFRARED SPECTROSCOPY (IR)

INFRARED SPECTROSCOPY (IR) Theory and Interpretation of IR spectra ASSIGNED READINGS Introduction to technique 25 (p. 833-834 in lab textbook) Uses of the Infrared Spectrum (p. 847-853) Look over pages

### Raman Spectroscopy Basics

Raman Spectroscopy Basics Introduction Raman spectroscopy is a spectroscopic technique based on inelastic scattering of monochromatic light, usually from a laser source. Inelastic scattering means that

### Application Note AN4

TAKING INVENTIVE STEPS IN INFRARED. MINIATURE INFRARED GAS SENSORS GOLD SERIES UK Patent App. No. 2372099A USA Patent App. No. 09/783,711 World Patents Pending INFRARED SPECTROSCOPY Application Note AN4

### Symmetric Stretch: allows molecule to move through space

BACKGROUND INFORMATION Infrared Spectroscopy Before introducing the subject of IR spectroscopy, we must first review some aspects of the electromagnetic spectrum. The electromagnetic spectrum is composed

### CHAPTER 2 DRUG SUBSTANCES AND INSTRUMENTS EMPLOYED

CHAPTER 2 DRUG SUBSTANCES AND INSTRUMENTS EMPLOYED 2.1 Preparation of Pure polymorphic forms Lamivudine polymorphic Form I and Form II drug substances were prepared in Aurobindo Pharma Limited Research

### Infrared Spectroscopy 紅 外 線 光 譜 儀

Infrared Spectroscopy 紅 外 線 光 譜 儀 Introduction Spectroscopy is an analytical technique which helps determine structure. It destroys little or no sample (nondestructive method). The amount of light absorbed

### Organic Chemistry Tenth Edition

Organic Chemistry Tenth Edition T. W. Graham Solomons Craig B. Fryhle Welcome to CHM 22 Organic Chemisty II Chapters 2 (IR), 9, 3-20. Chapter 2 and Chapter 9 Spectroscopy (interaction of molecule with

### Group Theory and Chemistry

Group Theory and Chemistry Outline: Raman and infra-red spectroscopy Symmetry operations Point Groups and Schoenflies symbols Function space and matrix representation Reducible and irreducible representation

### Symmetry. Using Symmetry in 323

Symmetry Powerful mathematical tool for understanding structures and properties Use symmetry to help us with: Detecting optical activity and dipole moments Forming MO s Predicting and understanding spectroscopy

### Rationalize the working of gas lasers, solid state lasers, dye lasers and semiconductors lasers.

Module 6 : Reaction Kinetics and Dynamics Lecture 31 : Lasers in Chemistry Objectives After studying this lecture you will be able to do the following Outline the principles of laser action. Rationalize

### Infrared Spectroscopy and Mass Spectrometry

Infrared Spectroscopy and Mass Spectrometry Introduction It is fundamental for an organic chemist to be able to identify, or characterize, the new compound that he/she has just made. Sometimes this can

### Spectroscopy. energy Low λ High ν. UV-visible

Spectroscopy frequency 10 20 10 18 10 16 10 14 10 12 10 8 Gamma rays X-rays UV IR Microwaves Radiowaves High energy Low λ High ν visible Low energy quantization of energy levels X-Ray UV-visible Infrared

### Wave Properties of Electromagnetic Radiation

Wave Properties of Electromagnetic Radiation Two options are available for analytical utility when an analyte interacts with a beam of electromagnetic radiation in an instrument 1. We can monitor the changes

### CHEM 343: Problem Set #4 (Spectroscopy)

CHEM 343: Problem Set #4 (Spectroscopy) 1) What is the energy, in ev, of UV radiation at 250 nm? What about Visible radiation at 550 nm? hc a) Use the expression E = = hv. Where c is the speed of light,

### DETERMINACIÓN DE ESTRUCTURAS ORGÁNICAS (ORGANIC SPECTROSCOPY) IR SPECTROSCOPY

DETERMINACIÓN DE ESTRUCTURAS ORGÁNICAS (ORGANIC SPECTROSCOPY) IR SPECTROSCOPY Hermenegildo García Gómez Departamento de Química Instituto de Tecnología Química Universidad Politécnica de Valencia 46022

### Spectrophotometry. Theory

is any technique that uses light to measure chemical concentrations. Theory When a sample absorbs electromagnetic radiation it undergoes a change in energy. The interaction happens between the sample and

### UV-Vis Vis spectroscopy. Electronic absorption spectroscopy

UV-Vis Vis spectroscopy Electronic absorption spectroscopy Absortpion spectroscopy Provide information about presence and absence of unsaturated functional groups Useful adjunct to IR Determination of

### Chapter 8 Molecules. Some molecular bonds involve sharing of electrons between atoms. These are covalent bonds.

Chapter 8 Molecules (We have only three days for chapter 8!) 8.1 The Molecular Bond A molecule is an electrically neutral group of atoms held together strongly enough to behave as a single particle. A

### MODERN PHYSICS. CET questions from Bohr s atom model, Lasers and Scattering

MODERN PHYSICS CET questions from Bohr s atom model, Lasers and Scattering 1. For the electron to revolve around the atomic nucleus without radiating energy, the electronic orbit should be : (1) Circular

### Raman Scattering Theory David W. Hahn Department of Mechanical and Aerospace Engineering University of Florida (dwhahn@ufl.edu)

Introduction Raman Scattering Theory David W. Hahn Department of Mechanical and Aerospace Engineering University of Florida (dwhahn@ufl.edu) The scattering of light may be thought of as the redirection

### Ultraviolet Spectroscopy

Ultraviolet Spectroscopy The wavelength of UV and visible light are substantially shorter than the wavelength of infrared radiation. The UV spectrum ranges from 100 to 400 nm. A UV-Vis spectrophotometer

### Types of Spectroscopy

Introduction to Infrared and Raman spectroscopy Arto Koistinen UEF / SIB-labs Optical microscopy course 2012 31.10.2012 Types of Spectroscopy = study of interaction between radiation and matter X-ray photoelectron

### Absorption spectra of plant pigments

Laboratory exercise #1 in FY 2302 - Biophysics Autumn 2006 Absorption spectra of plant pigments Content *Objectives * Absorption spectrum and Beers law * Energy levels and transitions * nstrumentation

### 5.33 Lecture Notes: Introduction to Spectroscopy

5.33 Lecture Notes: ntroduction to Spectroscopy What is spectroscopy? Studying the properties of matter through its interaction with different frequency components of the electromagnetic spectrum. Latin:

### Absorption of IR Light

Absorption of IR Light Absorption of IR light causes changes in the vibrational motions of a molecule. The different vibrational modes available to a molecule include stretching and bending modes. The

### (3)

1. Organic compounds are often identified by using more than one analytical technique. Some of these techniques were used to identify the compounds in the following reactions. C 3 H 7 Br C 3 H 8 O C 3

### Analysis of Riboflavin in a Vitamin Pill by Fluorescence Spectroscopy**

Analysis of Riboflavin in a Vitamin Pill by Fluorescence Spectroscopy** Objectives In this lab, you will use fluorescence spectroscopy to determine the mass and percentage of riboflavin in a vitamin pill.

### Practice Problem Set 7 Applications of UV-Vis Absorption Spectroscopy

Practice Problem Set 7 Applications of UV-Vis Absorption Spectroscopy 1. π π Transition is the most concenient and useful transition in UV-Vis Spectroscopy. Why? In σ σ* transitions The high energy required

### Spectroscopy. The Interaction of Electromagnetic Radiation (Light) with Molecules

Spectroscopy. The Interaction of Electromagnetic Radiation (Light) with Molecules (1) Electromagnetic Radiation-wave description propagation c = 3 x 10 10 cm/sec magnetic () and electric (E) field vectors

### A Guide to Recording Fluorescence Quantum Yields

A Guide to Recording Fluorescence Quantum Yields Introduction: When a fluorophore absorbs a photon of light, an energetically excited state is formed. The fate of this species is varied, depending upon

### 5.111 Principles of Chemical Science

MIT OpenCourseWare http://ocw.mit.edu 5.111 Principles of Chemical Science Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.111 Lecture Summary

### ULTRAVIOLET/VISIBLE ABSORPTION SPECTROSCOPY

ULTRAVIOLET/VISIBLE ABSORPTION SPECTROSCOPY Widely used in chemistry. Perhaps the most widely used in Biological Chemistry. Easy to do. Very easy to do wrong. MUJEEB KHAN BASIS SEMINAR 29th April 2009

### On-Line Monitoring and Process Analytical Technologies

September 9, 2003 On-Line Monitoring and Process Analytical Technologies Purpose Process analytical technologies (PAT) are systems which provide continuous on-line monitoring of critical quality parameters

### Chapter 13 Mass Spectrometry and Infrared Spectroscopy

Chapter 13 Mass Spectrometry and Infrared Spectroscopy Copyright 2011 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Overview of Mass Spectrometry Mass spectrometry

### Absorption Spectroscopy: Case I Error. Instrumental Errors. Absorption Spectroscopy: Case I Error. Case I Error. Case I Error

Instrumental Errors A 1975 paper in Analytical Chemistry derived a model for error estimation in absorbance spectroscopy The model is based on the eqn below (derivation from Beer s Law on pg. 343 of text)

### Chapter 18 Let there be light Overhead Fig 18-2 problems: 3, 8, 9, 11,13, 17, 20, 21

Chapter 18 Let there be light Overhead Fig 18-2 problems: 3, 8, 9, 11,13, 17, 20, 21 18-1 Properties of light We are all familiar with the wave picture of light. For simplicity we diagram a plane polarized

Activity 17 Electromagnetic Radiation Why? Electromagnetic radiation, which also is called light, is an amazing phenomenon. It carries energy and has characteristics of both particles and waves. We can

### Department of Chemistry College of Science Sultan Qaboos University. Topics and Learning Outcomes

Department of Chemistry College of Science Sultan Qaboos University Title : CHEM 3326 (Applied Spectroscopy) Credits : 3 Course Format : 2 lectures and 2 tutorials Course Text : Spectrometric Identification

### SPECTROSCOPY. Light interacting with matter as an analytical tool

SPECTROSCOPY Light interacting with matter as an analytical tool Electronic Excitation by UV/Vis Spectroscopy : X-ray: core electron excitation UV: valance electronic excitation IR: molecular vibrations

### Spectroscopy II - Transmission, Absorption, Fluorescence, Beer s law and Scattering.

Spectroscopy II - Transmission, Absorption, Fluorescence, Beer s law and Scattering. Spectrophotometry and Fluorometry In this experiment you will use the Vernier SpectroVis Plus, a small, computer controlled

### Particle in a Box : Absorption Spectrum of Conjugated Dyes

Particle in a Box : Absorption Spectrum of Conjugated Dyes Part A Recording the Spectra and Theoretical determination of λ max Theory Absorption bands in the visible region of the spectrum (350-700 nm)

### Molecular Spectroscopy:

: How are some molecular parameters determined? Bond lengths Bond energies What are the practical applications of spectroscopic knowledge? Can molecules (or components thereof) be identified based on differences

### Section 6 Raman Scattering (lecture 10)

Section 6 Scattering (lecture 10) Previously: Quantum theory of atoms / molecules Quantum Mechanics Valence Atomic and Molecular Spectroscopy Scattering The scattering process Elastic (Rayleigh) and inelastic

### Guide for the Measurements of Absolute Quantum Yields of Liquid Samples

` T e c h n i c a l N o t e Page 1 Guide for the Measurements of Absolute Quantum Yields of Liquid Samples This Guide is designed to help you to determine the Fluorescence Quantum Yields (QY) of liquid

### 0 10 20 30 40 50 60 70 m/z

Mass spectrum for the ionization of acetone MS of Acetone + Relative Abundance CH 3 H 3 C O + M 15 (loss of methyl) + O H 3 C CH 3 43 58 0 10 20 30 40 50 60 70 m/z It is difficult to identify the ions

### Info Note UV-VIS Nomenclature and Units

Info Note 804: Ultraviolet-visible spectroscopy or ultraviolet-visible spectrophotometry (UV/VIS) involves the spectroscopy of photons in the UV-visible region. It uses light in the visible and adjacent

### Proton Nuclear Magnetic Resonance Spectroscopy

Proton Nuclear Magnetic Resonance Spectroscopy Introduction: The NMR Spectrum serves as a great resource in determining the structure of an organic compound by revealing the hydrogen and carbon skeleton.

### Absorbance Spectroscopy and Beer's Law

CHEM 121L General Chemistry Laboratory Revision 1.0 Absorbance Spectroscopy and Beer's Law Learn about the Interaction of Photons with Molecules and Ions in Solution. Learn about Spectroscopy. Learn about

Absorption of EM radiation Molecular absorption processes Electronic transitions UV and visible wavelengths Molecular vibrations Thermal infrared wavelengths Molecular rotations Microwave and far-ir wavelengths

### Problem Set 6 UV-Vis Absorption Spectroscopy. 13-1. Express the following absorbances in terms of percent transmittance:

Problem Set 6 UV-Vis Absorption Spectroscopy 13-1. Express the following absorbances in terms of percent transmittance: a 0.051 b 0.918 c 0.379 d 0.261 e 0.485 f 0.072 A = log P o /P = log1/t = - log T

### Ultraviolet - Visible Spectroscopy (UV)

UV Ultraviolet - Visible Spectroscopy (UV) Introduction to Ultraviolet - Visible Spectroscopy 1 (UV) Background Theory UV Absorption of ultraviolet and visible radiation Absorption of visible and ultraviolet

### Make-up Lab: Investigating an Unexpected Fluorescence in Chlorophyll.

Introduction: In this one-week lab, you will be further investigating the fluorescence of chlorophyll. Chlorophyll absorbs light in the UV, violet, and blue regions of the EM spectrum and fluoresces in

### Introduction to Fourier Transform Infrared Spectrometry

Introduction to Fourier Transform Infrared Spectrometry What is FT-IR? I N T R O D U C T I O N FT-IR stands for Fourier Transform InfraRed, the preferred method of infrared spectroscopy. In infrared spectroscopy,

### Lecture Topics: I. IR spectroscopy

IR and Mass Spectrometry Reading: Wade chapter 12, sections 12-1- 12-15 Study Problems: 12-15, 12-16, 12-23, 12-25 Key Concepts and Skills: Given an IR spectrum, identify the reliable characteristic peaks

### The excitation in Raman spectroscopy is usually. Practical Group Theory and Raman Spectroscopy, Part II: Application of Polarization

Electronically reprinted from March 214 Molecular Spectroscopy Workbench Practical Group Theory and Raman Spectroscopy, Part II: Application of Polarization In this second installment of a two-part series

### CHEM1002 Worksheet 4: Spectroscopy Workshop (1)

CHEM1002 Worksheet 4: Spectroscopy Workshop (1) This worksheet forms part of the Spectroscopy Problem Solving Assignment which represents 10% of the assessment of this unit. You should use the support

### For example: (Example is from page 50 of the Thinkbook)

SOLVING COMBINED SPECTROSCOPY PROBLEMS: Lecture Supplement: page 50-53 in Thinkbook CFQ s and PP s: page 216 241 in Thinkbook Introduction: The structure of an unknown molecule can be determined using

### Fundamentals of modern UV-visible spectroscopy. Presentation Materials

Fundamentals of modern UV-visible spectroscopy Presentation Materials The Electromagnetic Spectrum E = hν ν = c / λ 1 Electronic Transitions in Formaldehyde 2 Electronic Transitions and Spectra of Atoms

### Determining the Structure of an Organic Compound

Determining the Structure of an Organic Compound The analysis of the outcome of a reaction requires that we know the full structure of the products as well as the reactants In the 19 th and early 20 th

### FTIR Instrumentation

FTIR Instrumentation Adopted from the FTIR lab instruction by H.-N. Hsieh, New Jersey Institute of Technology: http://www-ec.njit.edu/~hsieh/ene669/ftir.html 1. IR Instrumentation Two types of instrumentation

### COLLEGE PHYSICS. Chapter 29 INTRODUCTION TO QUANTUM PHYSICS

COLLEGE PHYSICS Chapter 29 INTRODUCTION TO QUANTUM PHYSICS Quantization: Planck s Hypothesis An ideal blackbody absorbs all incoming radiation and re-emits it in a spectrum that depends only on temperature.

### Chapter 13 Spectroscopy NMR, IR, MS, UV-Vis

Chapter 13 Spectroscopy NMR, IR, MS, UV-Vis Main points of the chapter 1. Hydrogen Nuclear Magnetic Resonance a. Splitting or coupling (what s next to what) b. Chemical shifts (what type is it) c. Integration

### Module 3 : Molecular Spectroscopy Lecture 13 : Rotational and Vibrational Spectroscopy

Module 3 : Molecular Spectroscopy Lecture 13 : Rotational and Vibrational Spectroscopy Objectives After studying this lecture, you will be able to Calculate the bond lengths of diatomics from the value

### By far the most important and useful technique to identify organic molecules. Often the only technique necessary.

Chapter 13: NMR Spectroscopy 39 NMR Spectroscopy By far the most important and useful technique to identify organic molecules. Often the only technique necessary. NMR spectrum can be recorded for many

### Spectroscopy. Biogeochemical Methods OCN 633. Rebecca Briggs

Spectroscopy Biogeochemical Methods OCN 633 Rebecca Briggs Definitions of Spectrometry Defined by the method used to prepare the sample 1. Optical spectrometry Elements are converted to gaseous atoms or

### We consider a hydrogen atom in the ground state in the uniform electric field

Lecture 13 Page 1 Lectures 13-14 Hydrogen atom in electric field. Quadratic Stark effect. Atomic polarizability. Emission and Absorption of Electromagnetic Radiation by Atoms Transition probabilities and

### The Raman effect was theoretically predicted in The first experimental observation was made by. Copyright 1997 Encyclopædia Britannica, Inc

8. Raman scattering The Raman effect was theoretically predicted in 1923 The first experimental observation was made by C.V. Raman in 1928. Copyright 1997 Encyclopædia Britannica, Inc Raman scattering

### Atoms and Spectra. Relativity and Astrophysics Lecture 11 Terry Herter

Atoms and Spectra Relativity and Astrophysics Lecture 11 Terry Herter Outline Bohr Model of the Atom Electronic Transitions Hydrogen Atom Other elements Spectral signatures 1-cm Hydrogen line My office

### Experiment #5: Qualitative Absorption Spectroscopy

Experiment #5: Qualitative Absorption Spectroscopy One of the most important areas in the field of analytical chemistry is that of spectroscopy. In general terms, spectroscopy deals with the interactions

### PROTON NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY (H-NMR)

PROTON NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY (H-NMR) WHAT IS H-NMR SPECTROSCOPY? References: Bruice 14.1, 14.2 Introduction NMR or nuclear magnetic resonance spectroscopy is a technique used to determine

### for excitation to occur, there must be an exact match between the frequency of the applied radiation and the frequency of the vibration

! = 1 2"c k (m + M) m M wavenumbers! =!/c = 1/" wavelength frequency! units: cm 1 for excitation to occur, there must be an exact match between the frequency of the applied radiation and the frequency

### Determination of Molecular Structure by MOLECULAR SPECTROSCOPY

Determination of Molecular Structure by MOLEULAR SPETROSOPY hemistry 3 B.Z. Shakhashiri Fall 29 Much of what we know about molecular structure has been learned by observing and analyzing how electromagnetic

### Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry

Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry Jon H. Hardesty, PhD and Bassam Attili, PhD Collin College Department of Chemistry Introduction: In the last lab

### Used to determine relative location of atoms within a molecule Most helpful spectroscopic technique in organic chemistry Related to MRI in medicine

Structure Determination: Nuclear Magnetic Resonance CHEM 241 UNIT 5C 1 The Use of NMR Spectroscopy Used to determine relative location of atoms within a molecule Most helpful spectroscopic technique in

### Introduction to Molecular Vibrations and Infrared Spectroscopy

hemistry 362 Fall 2015 Dr. Jean M. Standard September 16, 2015 Introduction to Molecular Vibrations and Infrared Spectroscopy Vibrational Modes For a molecule with N atoms, the number of vibrational modes

### Experiment 11. Infrared Spectroscopy

Chem 22 Spring 2010 Experiment 11 Infrared Spectroscopy Pre-lab preparation. (1) In Ch 5 and 12 of the text you will find examples of the most common functional groups in organic molecules. In your notebook,

### Simple Laser-Induced Fluorescence Setup to Explore Molecular Spectroscopy. Abstract

Simple Laser-Induced Fluorescence Setup to Explore Molecular Spectroscopy S. B. Bayram and M.D. Freamat Miami University, Department of Physics, Oxford, OH 45056 (Dated: July 23, 2012) Abstract We will