CET Moving Charges & Magnetism

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "CET Moving Charges & Magnetism"

Transcription

1 CET 2014 Moving Charges & Magnetism

2

3

4

5

6

7 1. When a charged particle moves perpendicular to the direction of uniform magnetic field its a) energy changes. b) momentum changes. c) both energy and momentum change. d) energy and momentum remain the same.

8 A Charged particle entering a magnetic field in a perpendicular direction experiences a force acting perpendicular to the path of the particle [the charged particle describes circular path in a perpendicular plane]. Therefore the magnitude of the velocity remains constant but the direction changes. Therefore, the momentum changes but the energy remains constant.

9 2. When a charged particle enters a uniform magnetic field along the direction of the field. The force experienced by the particle is a) zero. b) maximum. c) half the maximum value. d) one fourth the maximum value.

10 The magnitude of the force experienced by a charged particle moving in a magnetic field a given by F = B q v sin. When the particle moves along the direction of the field = 0 0. Sin 0 0 = 0 => F = 0

11 3. When a charged particle enters a magnetic field at angle between 0 0 and 90 0, it traces a) a helical path b) a circle c) a parabola d) a hyperbola

12 When a charged particle enters the magnetic field at right angles to it, it describes a circular path in a plane perpendicular to the magnetic field. When it enters the magnetic field at any angle between 0 0 and 90 0 it describes helical path.

13

14

15

16

17 6. Of the following graphs, the one that correctly represents the variation of magnetic field B, with the distance from he center of along straight conductor is

18

19 7. A circular conductor of radius R and an infinitely long straight conductor are kept as shown in figure. At the point of contact P, the two conductors are well insulated from one another. The magnetic field at the center O of the circular conductor is

20 Since the current through the coil is clockwise with respect to the observer, the magnetic Field (B 1 ), is directed in to the plane of the coil. By the right hand clasp rule, the magnetic field B 2 at O due to the infinitely long conductor is directed outwards. Therefore, the net field at O; B = B 1 -B 2

21 8. A wire loop ABCDA is formed by joining two semi circular wires of radii R 1 and R 2 as shown in figure. The magnitude of the field at their common centre O due to the current flowing through it is

22 Since the loops BC and AD carry currents in opposite direction, the magnetic field at O;

23 9. In the figure shown, the magnetic field at the center of the semi circular loop due to the current flowing through the conductor is

24 The magnetic field produced by the vertical portion is zero where as, the field produced due to semi circular loop and the horizontal portion of the wire is directed in to the plane of the paper (by right hand clasp rule.) Therefore, the resultant field B=B circle + B straight.

25 10. A rectangular loop ABCD carrying a constant current I is kept near a long straight wire carrying current as shown in figure. If a steady current I is established in the wire, then the loop will a) move towards the wire. b) move away from the wire. c) remain stationary. d) rotate parallel to the wire.

26 Since near side of the loop AB and the wire carry current in the same direction, there exists a attractive force between them. The force between the farther side CD and the wire is repulsive. But the repulsive force is less than the attractive force because AB lies close to the wire than CD. Therefore a net attractive force acts between the wire and the loop. Hence they move towards each other.

27 11. In the figure shown, the magnetic field at the centre O due to the current I is (radius of curvature R = 3 cm )

28

29

30 The magnetic field at a point on the axis of the circular coil is given by

31 14. The magnetic dipole moment of current loop is independent of a) Number of turns. b) area of loop. c) current in the loop. d) magnetic field in which it is lying. Magnetic dipole moment of current loop M = nia, it is independent of B.

32

33

34 16. A current carrying loop placed in a uniform magnetic field experiences torque. The torque experienced is independent of a) area of the loop. b) current through the loop. c) shape of the loop. d) applied magnetic field.

35 The torque experienced by the current loop nbia, where B is he strength of the applied field, I is the current and A is the area of the loop. Thus torque is independent of shape of the loop.

36 17. In a moving coil galvanometer, a radial magnetic field is used so that the galvanometer scale is a) Logarithmic. b) exponential. c) linear. d) none of these. Since the field is redial, the coil is subjected to a constant torque at all positions in the vertical plane. Therefore the scale is linear (I ).

37

38

39

40 19. In a cyclotron, if a deuteron can gain an energy of40 Mev,then a proton can gain an energy of a) 40 Mev b) 80 Mev c) 20 Mev d) 60 Mev

41 20. An a-particle crosses a space without any deflection. If electric E = 8 x 10 6 Vm -1 and magnetic field is B = 1.6 T, the velocity of particle is a) 2.5 x 10 6 ms -1 b) 5 x 10 6 ms -1 c) 8 x 10 6 ms -1 d) 5 x 10 7 ms -1

42 21. If a long hollow copper pipe carries a current, the magnetic field produced will be a) inside the pipe only b) outside the pipe only c) neither inside nor outside the pipe. d) both inside and outside the pipe. Current flows on the surface of the pipe, so as per Ampere s circuital law, there is no magnetic field at a point inside the pipe.

43 22. In the given figure, the loop is fixed but straight wire can move. The straight wire will a) remain stationary b) move towards the loop c) move away from the loop d) rotate about the axis.

44 Force of attraction between the wire and the left side of the loop is greater than the force of repulsion between the wire and the right side of the loop.

45 23. A circular coil carrying current is placed in a region of uniform magnetic field acting perpendicular to the plane of the coil as shown in figure. Mark the correct option. a) Coil contracts b) Coil remains the same c) Coil expands d) Coil moves

46 The coil made up of tiny current elements. Force acting on each current element is directed outwards. As a result of this the coil expands.

47 24. A wire of given length is first bent in one loop and then in three loops, If same current is passed in both cases, the ration of magnetic inductions at the center will be: a) 1 : 4 b) 1 : 9 c) 9 : 1 d) 1 : 3

48

49 25. If a current is passed through a spring then the spring will a) expand b) compress c) remains same d) done of these It will compress due to the force of attraction between two adjacent coils carrying current in the same direction.

50 Thank You GOOD LUCK

Fall 12 PHY 122 Homework Solutions #8

Fall 12 PHY 122 Homework Solutions #8 Fall 12 PHY 122 Homework Solutions #8 Chapter 27 Problem 22 An electron moves with velocity v= (7.0i - 6.0j)10 4 m/s in a magnetic field B= (-0.80i + 0.60j)T. Determine the magnitude and direction of the

More information

Magnetism. d. gives the direction of the force on a charge moving in a magnetic field. b. results in negative charges moving. clockwise.

Magnetism. d. gives the direction of the force on a charge moving in a magnetic field. b. results in negative charges moving. clockwise. Magnetism 1. An electron which moves with a speed of 3.0 10 4 m/s parallel to a uniform magnetic field of 0.40 T experiences a force of what magnitude? (e = 1.6 10 19 C) a. 4.8 10 14 N c. 2.2 10 24 N b.

More information

MOVING CHARGES AND MAGNETISM

MOVING CHARGES AND MAGNETISM MOVING CHARGES AND MAGNETISM 1. A circular Coil of 50 turns and radius 0.2m carries of current of 12A Find (a). magnetic field at the centre of the coil and (b) magnetic moment associated with it. 3 scores

More information

Physics Notes for Class 12 Chapter 4 Moving Charges and Magnetrism

Physics Notes for Class 12 Chapter 4 Moving Charges and Magnetrism 1 P a g e Physics Notes for Class 12 Chapter 4 Moving Charges and Magnetrism Oersted s Experiment A magnetic field is produced in the surrounding of any current carrying conductor. The direction of this

More information

Chapter 14: Magnets and Electromagnetism

Chapter 14: Magnets and Electromagnetism Chapter 14: Magnets and Electromagnetism 1. Electrons flow around a circular wire loop in a horizontal plane, in a direction that is clockwise when viewed from above. This causes a magnetic field. Inside

More information

1. Units of a magnetic field might be: A. C m/s B. C s/m C. C/kg D. kg/c s E. N/C m ans: D

1. Units of a magnetic field might be: A. C m/s B. C s/m C. C/kg D. kg/c s E. N/C m ans: D Chapter 28: MAGNETIC FIELDS 1 Units of a magnetic field might be: A C m/s B C s/m C C/kg D kg/c s E N/C m 2 In the formula F = q v B: A F must be perpendicular to v but not necessarily to B B F must be

More information

Q28.1 A positive point charge is moving to the right. The magnetic field that the point charge produces at point P (see diagram below) P

Q28.1 A positive point charge is moving to the right. The magnetic field that the point charge produces at point P (see diagram below) P Q28.1 A positive point charge is moving to the right. The magnetic field that the point charge produces at point P (see diagram below) P r + v r A. points in the same direction as v. B. points from point

More information

Chapter 19 Magnetic Forces and Fields

Chapter 19 Magnetic Forces and Fields Chapter 19 Magnetic Forces and Fields Student: 3. The magnetism of the Earth acts approximately as if it originates from a huge bar magnet within the Earth. Which of the following statements are true?

More information

(b) Draw the direction of for the (b) Draw the the direction of for the

(b) Draw the direction of for the (b) Draw the the direction of for the 2. An electric dipole consists of 2A. A magnetic dipole consists of a positive charge +Q at one end of a bar magnet with a north pole at one an insulating rod of length d and a end and a south pole at

More information

Phys222 Winter 2012 Quiz 4 Chapters 29-31. Name

Phys222 Winter 2012 Quiz 4 Chapters 29-31. Name Name If you think that no correct answer is provided, give your answer, state your reasoning briefly; append additional sheet of paper if necessary. 1. A particle (q = 5.0 nc, m = 3.0 µg) moves in a region

More information

Magnetism Conceptual Questions. Name: Class: Date:

Magnetism Conceptual Questions. Name: Class: Date: Name: Class: Date: Magnetism 22.1 Conceptual Questions 1) A proton, moving north, enters a magnetic field. Because of this field, the proton curves downward. We may conclude that the magnetic field must

More information

Review Questions PHYS 2426 Exam 2

Review Questions PHYS 2426 Exam 2 Review Questions PHYS 2426 Exam 2 1. If 4.7 x 10 16 electrons pass a particular point in a wire every second, what is the current in the wire? A) 4.7 ma B) 7.5 A C) 2.9 A D) 7.5 ma E) 0.29 A Ans: D 2.

More information

Magnetic Forces and Magnetic Fields

Magnetic Forces and Magnetic Fields 1 Magnets Magnets are metallic objects, mostly made out of iron, which attract other iron containing objects (nails) etc. Magnets orient themselves in roughly a north - south direction if they are allowed

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road, New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road, New Delhi , Ph. : , 1 E L E C T R O S TAT I C S 1. Define lines of forces and write down its properties. Draw the lines of force to represent (i) uniform electric field (ii) positive charge (iii) negative charge (iv) two

More information

Physics 112 Homework 5 (solutions) (2004 Fall) Solutions to Homework Questions 5

Physics 112 Homework 5 (solutions) (2004 Fall) Solutions to Homework Questions 5 Solutions to Homework Questions 5 Chapt19, Problem-2: (a) Find the direction of the force on a proton (a positively charged particle) moving through the magnetic fields in Figure P19.2, as shown. (b) Repeat

More information

Physics 126 Practice Exam #3 Professor Siegel

Physics 126 Practice Exam #3 Professor Siegel Physics 126 Practice Exam #3 Professor Siegel Name: Lab Day: 1. Which one of the following statements concerning the magnetic force on a charged particle in a magnetic field is true? A) The magnetic force

More information

Q27.1 When a charged particle moves near a bar magnet, the magnetic force on the particle at a certain point depends

Q27.1 When a charged particle moves near a bar magnet, the magnetic force on the particle at a certain point depends Q27.1 When a charged particle moves near a bar magnet, the magnetic force on the particle at a certain point depends A. on the direction of the magnetic field at that point only. B. on the magnetic field

More information

Physics 121 Sample Common Exam 3 NOTE: ANSWERS ARE ON PAGE 6. Instructions: 1. In the formula F = qvxb:

Physics 121 Sample Common Exam 3 NOTE: ANSWERS ARE ON PAGE 6. Instructions: 1. In the formula F = qvxb: Physics 121 Sample Common Exam 3 NOTE: ANSWERS ARE ON PAGE 6 Signature Name (Print): 4 Digit ID: Section: Instructions: Answer all questions 24 multiple choice questions. You may need to do some calculation.

More information

Handout 7: Magnetic force. Magnetic force on moving charge

Handout 7: Magnetic force. Magnetic force on moving charge 1 Handout 7: Magnetic force Magnetic force on moving charge A particle of charge q moving at velocity v in magnetic field B experiences a magnetic force F = qv B. The direction of the magnetic force is

More information

5.Magnetic Fields due to Currents( with Answers)

5.Magnetic Fields due to Currents( with Answers) 5.Magnetic Fields due to Currents( with Answers) 1. Suitable units for µ. Ans: TmA -1 ( Recall magnetic field inside a solenoid is B= µ ni. B is in tesla, n in number of turn per metre, I is current in

More information

Last Name: First Name: Physics 102 Spring 2006: Exam #2 Multiple-Choice Questions 1. A charged particle, q, is moving with speed v perpendicular to a uniform magnetic field. A second identical charged

More information

TIME OF COMPLETION DEPARTMENT OF NATURAL SCIENCES. PHYS 2212, Exam 2 Section 1 Version 1 April 16, 2014 Total Weight: 100 points

TIME OF COMPLETION DEPARTMENT OF NATURAL SCIENCES. PHYS 2212, Exam 2 Section 1 Version 1 April 16, 2014 Total Weight: 100 points TIME OF COMPLETION NAME DEPARTMENT OF NATURAL SCIENCES PHYS 2212, Exam 2 Section 1 Version 1 April 16, 2014 Total Weight: 100 points 1. Check your examination for completeness prior to starting. There

More information

It is the force experienced by a charged particle moving in a space where both electric and magnetic fields exist. F =qe + q(v B )

It is the force experienced by a charged particle moving in a space where both electric and magnetic fields exist. F =qe + q(v B ) Moving Charges And Magnetism Moving Charges Moving charges produce magnetic field around them. SI unit of magnetic field is Tesla (T). Lorentz Force It is the force experienced by a charged particle moving

More information

Question Details C14: Magnetic Field Direction Abbott [ ]

Question Details C14: Magnetic Field Direction Abbott [ ] Phys 1114: Assignment 9 Abbott (5420633) Due: Mon Apr 7 2014 11:59 PM CDT Question 1 2 3 4 5 6 7 8 9 10 11 1. Question Details C14: Magnetic Field Direction Abbott [2861537] a) A wire is oriented horizontally

More information

Chapter 19 Magnetism Magnets Poles of a magnet are the ends where objects are most strongly attracted Two poles, called north and south Like poles

Chapter 19 Magnetism Magnets Poles of a magnet are the ends where objects are most strongly attracted Two poles, called north and south Like poles Chapter 19 Magnetism Magnets Poles of a magnet are the ends where objects are most strongly attracted Two poles, called north and south Like poles repel each other and unlike poles attract each other Similar

More information

My Website:

My Website: PH203 Recitation Week 09 Problem Set Spring 2015 Ryan Scheirer Email: scheirer@onid.orst.edu My Website: http://people.oregonstate.edu/~scheirer/ph203_rec.html Problem 01 For the following questions, use

More information

Chapter 26 Magnetism

Chapter 26 Magnetism What is the fundamental hypothesis of science, the fundamental philosophy? [It is the following:] the sole test of the validity of any idea is experiment. Richard P. Feynman 26.1 The Force on a Charge

More information

Solution: (a) For a positively charged particle, the direction of the force is that predicted by the right hand rule. These are:

Solution: (a) For a positively charged particle, the direction of the force is that predicted by the right hand rule. These are: Problem 1. (a) Find the direction of the force on a proton (a positively charged particle) moving through the magnetic fields as shown in the figure. (b) Repeat part (a), assuming the moving particle is

More information

Module 3 : MAGNETIC FIELD Lecture 15 : Biot- Savarts' Law

Module 3 : MAGNETIC FIELD Lecture 15 : Biot- Savarts' Law Module 3 : MAGNETIC FIELD Lecture 15 : Biot- Savarts' Law Objectives In this lecture you will learn the following Study Biot-Savart's law Calculate magnetic field of induction due to some simple current

More information

Physics 30 Worksheet #10 : Magnetism From Electricity

Physics 30 Worksheet #10 : Magnetism From Electricity Physics 30 Worksheet #10 : Magnetism From Electricity 1. Draw the magnetic field surrounding the wire showing electron current below. x 2. Draw the magnetic field surrounding the wire showing electron

More information

2. Consider a dipole AB of dipole moment p placed at an angle θ in an uniform electric field E

2. Consider a dipole AB of dipole moment p placed at an angle θ in an uniform electric field E 1) Field due to an infinite long straight charged wire Consider an uniformly charged wire of infinite length having a constant linear charge density λ (charge per unit length). 2. Consider a dipole AB

More information

1. The diagram below represents magnetic lines of force within a region of space.

1. The diagram below represents magnetic lines of force within a region of space. 1. The diagram below represents magnetic lines of force within a region of space. 4. In which diagram below is the magnetic flux density at point P greatest? (1) (3) (2) (4) The magnetic field is strongest

More information

Physics 25 Exam 3 November 3, 2009

Physics 25 Exam 3 November 3, 2009 1. A long, straight wire carries a current I. If the magnetic field at a distance d from the wire has magnitude B, what would be the the magnitude of the magnetic field at a distance d/3 from the wire,

More information

4.1.Motion Of Charged Particles In Electric And Magnetic Field Motion Of Charged Particles In An Electric Field

4.1.Motion Of Charged Particles In Electric And Magnetic Field Motion Of Charged Particles In An Electric Field 4.1.Motion Of Charged Particles In Electric And Magnetic Field 4.1.1. Motion Of Charged Particles In An Electric Field A charged particle in an electric field will experience an electric force due to the

More information

Chapter 14 Magnets and Electromagnetism

Chapter 14 Magnets and Electromagnetism Chapter 14 Magnets and Electromagnetism Magnets and Electromagnetism In the 19 th century experiments were done that showed that magnetic and electric effects were just different aspect of one fundamental

More information

2. B The magnetic properties of a material depend on its. A) shape B) atomic structure C) position D) magnetic poles

2. B The magnetic properties of a material depend on its. A) shape B) atomic structure C) position D) magnetic poles ame: Magnetic Properties 1. B What happens if you break a magnet in half? A) One half will have a north pole only and one half will have a south pole only. B) Each half will be a new magnet, with both

More information

Essential Physics II. Lecture 8:

Essential Physics II. Lecture 8: Essential Physics II E II Lecture 8: 16-12-15 News Schedule change: Monday 7th December ( ) NO CLASS! Thursday 26th November ( ) 18:15-19:45 This week s homework: 11/26 (next lecture) Next week s homework:

More information

Magnetic Forces cont.

Magnetic Forces cont. Magnetic Fields Magnetism Magnets can exert forces on each other. The magnetic forces between north and south poles have the property that like poles repel each other, and unlike poles attract. This behavior

More information

Physics 202 Spring 2010 Practice Questions for Chapters 21-24

Physics 202 Spring 2010 Practice Questions for Chapters 21-24 Note: Answer key is at end. Physics 202 Spring 2010 Practice Questions for Chapters 21-24 1. A uniformly positively charged spherical conductor is placed midway between two identical uncharged conducting

More information

electron due to the magnetic field. (b) Repeat your calculation for a proton having the same velocity.

electron due to the magnetic field. (b) Repeat your calculation for a proton having the same velocity. PROBLEMS sec. 28-3 The Definition of 1 A proton traveling at 23.0 with respect to the direction of a magnetic field of strength 2.60 mt experiences a magnetic force of 6.50 10-17 N. Calculate (a) the proton's

More information

Physics 1653 Exam 3 - Review Questions

Physics 1653 Exam 3 - Review Questions Physics 1653 Exam 3 - Review Questions 3.0 Two uncharged conducting spheres, A and B, are suspended from insulating threads so that they touch each other. While a negatively charged rod is held near, but

More information

1 of 7 4/13/2010 8:05 PM

1 of 7 4/13/2010 8:05 PM Chapter 33 Homework Due: 8:00am on Wednesday, April 7, 2010 Note: To understand how points are awarded, read your instructor's Grading Policy [Return to Standard Assignment View] Canceling a Magnetic Field

More information

BASANT S SCIENCE ACADEMY STUDY MATERIAL MAGNETIC EFFECT OF CURRENT

BASANT S SCIENCE ACADEMY STUDY MATERIAL MAGNETIC EFFECT OF CURRENT BASANT S SCIENCE ACADEMY Why does a compass needle get deflected when brought near a bar magnet? A compass needle is a small bar magnet. When it is brought near a bar magnet, its magnetic field lines interact

More information

2. The sum of the emf s and potential differences around a closed loop equals zero is a consequence

2. The sum of the emf s and potential differences around a closed loop equals zero is a consequence Chapter 27: CIRCUITS 1 The sum of the currents into a junction equals the sum of the currents out of the junction is a consequence of: A Newton s third law B Ohm s law C Newton s second law D conservation

More information

Force on Moving Charges in a Magnetic Field

Force on Moving Charges in a Magnetic Field [ Assignment View ] [ Eðlisfræði 2, vor 2007 27. Magnetic Field and Magnetic Forces Assignment is due at 2:00am on Wednesday, February 28, 2007 Credit for problems submitted late will decrease to 0% after

More information

Homework #8 203-1-1721 Physics 2 for Students of Mechanical Engineering. Part A

Homework #8 203-1-1721 Physics 2 for Students of Mechanical Engineering. Part A Homework #8 203-1-1721 Physics 2 for Students of Mechanical Engineering Part A 1. Four particles follow the paths shown in Fig. 32-33 below as they pass through the magnetic field there. What can one conclude

More information

Magnetic Fields; Sources of Magnetic Field

Magnetic Fields; Sources of Magnetic Field This test covers magnetic fields, magnetic forces on charged particles and current-carrying wires, the Hall effect, the Biot-Savart Law, Ampère s Law, and the magnetic fields of current-carrying loops

More information

physics 112N magnetic fields and forces

physics 112N magnetic fields and forces physics 112N magnetic fields and forces bar magnet & iron filings physics 112N 2 bar magnets physics 112N 3 the Earth s magnetic field physics 112N 4 electro -magnetism! is there a connection between electricity

More information

Multiple Choice Questions for Physics 1 BA113 Chapter 23 Electric Fields

Multiple Choice Questions for Physics 1 BA113 Chapter 23 Electric Fields Multiple Choice Questions for Physics 1 BA113 Chapter 23 Electric Fields 63 When a positive charge q is placed in the field created by two other charges Q 1 and Q 2, each a distance r away from q, the

More information

Test - A2 Physics. Primary focus Magnetic Fields - Secondary focus electric fields (including circular motion and SHM elements)

Test - A2 Physics. Primary focus Magnetic Fields - Secondary focus electric fields (including circular motion and SHM elements) Test - A2 Physics Primary focus Magnetic Fields - Secondary focus electric fields (including circular motion and SHM elements) Time allocation 40 minutes These questions were ALL taken from the June 2010

More information

Chapter 14 Magnets and

Chapter 14 Magnets and Chapter 14 Magnets and Electromagnetism How do magnets work? What is the Earth s magnetic field? Is the magnetic force similar to the electrostatic force? Magnets and the Magnetic Force! We are generally

More information

If two identical balls each of mass m and having charge q are suspended by silk thread of length l from the same point o,then the distance between

If two identical balls each of mass m and having charge q are suspended by silk thread of length l from the same point o,then the distance between If two identical balls each of mass m and having charge q are suspended by silk thread of length l from the same point o,then the distance between the balls is given by : = X = 2 ( ) 1 Two pith balls each

More information

4. The units of the electric field are: A. N C 2 B. C/N C. N D. N/C E. C/m 2 ans: D

4. The units of the electric field are: A. N C 2 B. C/N C. N D. N/C E. C/m 2 ans: D Chapter 22: ELECTRIC FIELDS 1 An electric field is most directly related to: A the momentum of a test charge B the kinetic energy of a test charge C the potential energy of a test charge D the force acting

More information

mv = ev ebr Application: circular motion of moving ions In a uniform magnetic field: The mass spectrometer KE=PE magnitude of electron charge

mv = ev ebr Application: circular motion of moving ions In a uniform magnetic field: The mass spectrometer KE=PE magnitude of electron charge 1.4 The Mass Spectrometer Application: circular motion of moving ions In a uniform magnetic field: The mass spectrometer mv r qb mv eb magnitude of electron charge 1 mv ev KEPE v 1 mv ebr m v e r m B m

More information

Nowadays we know that magnetic fields are set up by charges in motion, as in

Nowadays we know that magnetic fields are set up by charges in motion, as in 6 Magnetostatics 6.1 The magnetic field Although the phenomenon of magnetism was known about as early as the 13 th century BC, and used in compasses it was only in 1819 than Hans Oersted recognised that

More information

Conceptual: 1, 3, 5, 6, 8, 16, 18, 19. Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65. Conceptual Questions

Conceptual: 1, 3, 5, 6, 8, 16, 18, 19. Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65. Conceptual Questions Conceptual: 1, 3, 5, 6, 8, 16, 18, 19 Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65 Conceptual Questions 1. The magnetic field cannot be described as the magnetic force per unit charge

More information

VIII. Magnetic Fields - Worked Examples

VIII. Magnetic Fields - Worked Examples MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.0 Spring 003 VIII. Magnetic Fields - Worked Examples Example : Rolling rod A rod with a mass m and a radius R is mounted on two parallel rails

More information

Module 3 : Electromagnetism Lecture 13 : Magnetic Field

Module 3 : Electromagnetism Lecture 13 : Magnetic Field Module 3 : Electromagnetism Lecture 13 : Magnetic Field Objectives In this lecture you will learn the following Electric current is the source of magnetic field. When a charged particle is placed in an

More information

Chapter 19: Magnetic Forces and Fields

Chapter 19: Magnetic Forces and Fields Chapter 19: Magnetic Forces and Fields Magnetic Fields Magnetic Force on a Point Charge Motion of a Charged Particle in a Magnetic Field Crossed E and B fields Magnetic Forces on Current Carrying Wires

More information

Chapter 27 Magnetic Field and Magnetic Forces

Chapter 27 Magnetic Field and Magnetic Forces Chapter 27 Magnetic Field and Magnetic Forces - Magnetism - Magnetic Field - Magnetic Field Lines and Magnetic Flux - Motion of Charged Particles in a Magnetic Field - Applications of Motion of Charged

More information

Magnetic Field and Magnetic Forces

Magnetic Field and Magnetic Forces Chapter 27 Magnetic Field and Magnetic Forces PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 27 To study

More information

PHY2049 Exam #2 Solutions Fall 2012

PHY2049 Exam #2 Solutions Fall 2012 PHY2049 Exam #2 Solutions Fall 2012 1. The diagrams show three circuits consisting of concentric circular arcs (either half or quarter circles of radii r, 2r, and 3r) and radial segments. The circuits

More information

ConcepTest PowerPoints

ConcepTest PowerPoints ConcepTest PowerPoints Chapter 20 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for

More information

Question Bank. 1. Electromagnetism 2. Magnetic Effects of an Electric Current 3. Electromagnetic Induction

Question Bank. 1. Electromagnetism 2. Magnetic Effects of an Electric Current 3. Electromagnetic Induction 1. Electromagnetism 2. Magnetic Effects of an Electric Current 3. Electromagnetic Induction 1. Diagram below shows a freely suspended magnetic needle. A copper wire is held parallel to the axis of magnetic

More information

Chapter 20. Magnetic Induction Changing Magnetic Fields yield Changing Electric Fields

Chapter 20. Magnetic Induction Changing Magnetic Fields yield Changing Electric Fields Chapter 20 Magnetic Induction Changing Magnetic Fields yield Changing Electric Fields Introduction The motion of a magnet can induce current in practical ways. If a credit card has a magnet strip on its

More information

Magnetic Fields. David J. Starling Penn State Hazleton PHYS 212

Magnetic Fields. David J. Starling Penn State Hazleton PHYS 212 Magnetism, as you recall from physics class, is a powerful force that causes certain items to be attracted to refrigerators. - Dave Barry David J. Starling Penn State Hazleton PHYS 212 Objectives (a) Determine

More information

Spinning Stuff Review

Spinning Stuff Review Spinning Stuff Review 1. A wheel (radius = 0.20 m) is mounted on a frictionless, horizontal axis. A light cord wrapped around the wheel supports a 0.50-kg object, as shown in the figure below. When released

More information

Chapter 22 Magnetism

Chapter 22 Magnetism 22.6 Electric Current, Magnetic Fields, and Ampere s Law Chapter 22 Magnetism 22.1 The Magnetic Field 22.2 The Magnetic Force on Moving Charges 22.3 The Motion of Charged particles in a Magnetic Field

More information

Worked solutions Chapter 9 Magnets and electricity

Worked solutions Chapter 9 Magnets and electricity 9.1 Fundamentals of magnetism 1 A magnetic field exists at any point in space where a magnet or magnetic material (e.g. iron, nickel, cobalt) will experience a magnetic force. 2 C. The magnetic force between

More information

Week of Feb 2 4. Week of Feb 9 11

Week of Feb 2 4. Week of Feb 9 11 Week of Feb 2 4 No labs or tests! Week of Feb 9 11 Tutorial and Test 2 Chapters 19, 20, 21 29 Force on a charge moving in a magnetic field F = qvbsin! q Force is at right angles to bothv and B F B! Magnetic

More information

Electromagnetism Extra Study Questions Short Answer

Electromagnetism Extra Study Questions Short Answer Electromagnetism Extra Study Questions Short Answer 1. The electrostatic force between two small charged objects is 5.0 10 5 N. What effect would each of the following changes have on the magnitude of

More information

PHYSICS 212 INDUCED VOLTAGES AND INDUCTANCE WORKBOOK ANSWERS

PHYSICS 212 INDUCED VOLTAGES AND INDUCTANCE WORKBOOK ANSWERS PHYSICS 212 CHAPTER 20 INDUCED VOLTAGES AND INDUCTANCE WORKOOK ANSWERS STUDENT S FULL NAME (y placing your name above and submitting this for credit you are affirming this to be predominantly your own

More information

AP Physics C Chapter 23 Notes Yockers Faraday s Law, Inductance, and Maxwell s Equations

AP Physics C Chapter 23 Notes Yockers Faraday s Law, Inductance, and Maxwell s Equations AP Physics C Chapter 3 Notes Yockers Faraday s aw, Inductance, and Maxwell s Equations Faraday s aw of Induction - induced current a metal wire moved in a uniform magnetic field - the charges (electrons)

More information

Magnetic Fields. I. Magnetic Field and Magnetic Field Lines

Magnetic Fields. I. Magnetic Field and Magnetic Field Lines Magnetic Fields I. Magnetic Field and Magnetic Field Lines A. The concept of the magnetic field can be developed in a manner similar to the way we developed the electric field. The magnitude of the magnetic

More information

Eðlisfræði 2, vor 2007

Eðlisfræði 2, vor 2007 [ Assignment View ] [ Pri Eðlisfræði 2, vor 2007 28. Sources of Magnetic Field Assignment is due at 2:00am on Wednesday, March 7, 2007 Credit for problems submitted late will decrease to 0% after the deadline

More information

HMWK 3. Ch 23: P 17, 23, 26, 34, 52, 58, 59, 62, 64, 73 Ch 24: Q 17, 34; P 5, 17, 34, 42, 51, 52, 53, 57. Chapter 23

HMWK 3. Ch 23: P 17, 23, 26, 34, 52, 58, 59, 62, 64, 73 Ch 24: Q 17, 34; P 5, 17, 34, 42, 51, 52, 53, 57. Chapter 23 HMWK 3 Ch 23: P 7, 23, 26, 34, 52, 58, 59, 62, 64, 73 Ch 24: Q 7, 34; P 5, 7, 34, 42, 5, 52, 53, 57 Chapter 23 P23.7. Prepare: The connecting wires are ideal with zero resistance. We have to reduce the

More information

* Biot Savart s Law- Statement, Proof Applications of Biot Savart s Law * Magnetic Field Intensity H * Divergence of B * Curl of B. PPT No.

* Biot Savart s Law- Statement, Proof Applications of Biot Savart s Law * Magnetic Field Intensity H * Divergence of B * Curl of B. PPT No. * Biot Savart s Law- Statement, Proof Applications of Biot Savart s Law * Magnetic Field Intensity H * Divergence of B * Curl of B PPT No. 17 Biot Savart s Law A straight infinitely long wire is carrying

More information

Chapter 5. Magnetic Fields and Forces. 5.1 Introduction

Chapter 5. Magnetic Fields and Forces. 5.1 Introduction Chapter 5 Magnetic Fields and Forces Helmholtz coils and a gaussmeter, two of the pieces of equipment that you will use in this experiment. 5.1 Introduction Just as stationary electric charges produce

More information

Name: Date: Regents Physics Mr. Morgante UNIT 4B Magnetism

Name: Date: Regents Physics Mr. Morgante UNIT 4B Magnetism Name: Regents Physics Date: Mr. Morgante UNIT 4B Magnetism Magnetism -Magnetic Force exists b/w charges in motion. -Similar to electric fields, an X stands for a magnetic field line going into the page,

More information

Electrostatics. Ans.The particles 1 and 2 are negatively charged and particle 3 is positively charged.

Electrostatics. Ans.The particles 1 and 2 are negatively charged and particle 3 is positively charged. Electrostatics [ Two marks each] Q1.An electric dipole with dipole moment 4 10 9 C m is aligned at 30 with the direction of a uniform electric field of magnitude 5 10 4 N C 1. Calculate the net force and

More information

The Solar Wind. Earth s Magnetic Field p.1/15

The Solar Wind. Earth s Magnetic Field p.1/15 The Solar Wind 1. The solar wind is a stream of charged particles - a plasma - from the upper atmosphere of the sun consisting of electrons and protons with energies of 1 kev. 2. The particles escape the

More information

MASSACHUSETTS INSTINUTE OF TECHNOLOGY ESG Physics. Problem Set 9 Solution

MASSACHUSETTS INSTINUTE OF TECHNOLOGY ESG Physics. Problem Set 9 Solution MASSACHUSETTS INSTINUTE OF TECHNOLOGY ESG Physics 8. with Kai Spring 3 Problem 1: 3-7 and 8 Problem Set 9 Solution A conductor consists of a circular loop of radius R =.1 m and two straight, long sections,

More information

MFF 3a: Charged Particle and a Straight Current-Carrying Wire... 2

MFF 3a: Charged Particle and a Straight Current-Carrying Wire... 2 MFF 3a: Charged Particle and a Straight Current-Carrying Wire... 2 MFF3a RT1: Charged Particle and a Straight Current-Carrying Wire... 3 MFF3a RT2: Charged Particle and a Straight Current-Carrying Wire...

More information

NAME. and 2I o. (1) Two long wires carry magnetic fields I o. , where I o

NAME. and 2I o. (1) Two long wires carry magnetic fields I o. , where I o (1) Two long wires carry magnetic fields I o and 2I o, where I o is a constant. The two wires cross at the origin (but without making any electrical connection), and lie in the x-y plane. (a) Find the

More information

Pearson Physics Level 30 Unit VI Forces and Fields: Chapter 12 Solutions

Pearson Physics Level 30 Unit VI Forces and Fields: Chapter 12 Solutions Concept Check (top) Pearson Physics Level 30 Unit VI Forces and Fields: Chapter 1 Solutions Student Book page 583 Concept Check (bottom) The north-seeking needle of a compass is attracted to what is called

More information

2015 Pearson Education, Inc. Section 24.5 Magnetic Fields Exert Forces on Moving Charges

2015 Pearson Education, Inc. Section 24.5 Magnetic Fields Exert Forces on Moving Charges Section 24.5 Magnetic Fields Exert Forces on Moving Charges Magnetic Fields Sources of Magnetic Fields You already know that a moving charge is the creator of a magnetic field. Effects of Magnetic Fields

More information

4/16/ Bertrand

4/16/ Bertrand Physics B AP Review: Electricity and Magnetism Name: Charge (Q or q, unit: Coulomb) Comes in + and The proton has a charge of e. The electron has a charge of e. e = 1.602 10-19 Coulombs. Charge distribution

More information

1. A wire carries 15 A. You form the wire into a single-turn circular loop with magnetic field 80 µ T at the loop center. What is the loop radius?

1. A wire carries 15 A. You form the wire into a single-turn circular loop with magnetic field 80 µ T at the loop center. What is the loop radius? CHAPTER 3 SOURCES O THE MAGNETC ELD 1. A wire carries 15 A. You form the wire into a single-turn circular loop with magnetic field 8 µ T at the loop center. What is the loop radius? Equation 3-3, with

More information

Magnetic Field and Magnetic Forces

Magnetic Field and Magnetic Forces Chapter 27 Magnetic Field and Magnetic Forces PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 27 Magnets

More information

Pre-lab Quiz/PHYS 224 Magnetic Force and Current Balance. Your name Lab section

Pre-lab Quiz/PHYS 224 Magnetic Force and Current Balance. Your name Lab section Pre-lab Quiz/PHYS 224 Magnetic Force and Current Balance Your name Lab section 1. What do you investigate in this lab? 2. Two straight wires are in parallel and carry electric currents in opposite directions

More information

Lecture PowerPoints. Chapter 20 Physics: Principles with Applications, 7 th edition Giancoli

Lecture PowerPoints. Chapter 20 Physics: Principles with Applications, 7 th edition Giancoli Lecture PowerPoints Chapter 20 Physics: Principles with Applications, 7 th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

Lesson 12: Magnetic Forces and Circular Motion!

Lesson 12: Magnetic Forces and Circular Motion! Lesson 12: Magnetic Forces and Circular Motion If a magnet is placed in a magnetic field, it will experience a force. Types of magnets: Direction of the force on a permanent magnet: Direction of the force

More information

PHYS 155: Final Tutorial

PHYS 155: Final Tutorial Final Tutorial Saskatoon Engineering Students Society eric.peach@usask.ca April 13, 2015 Overview 1 2 3 4 5 6 7 Tutorial Slides These slides have been posted: sess.usask.ca homepage.usask.ca/esp991/ Section

More information

2. A 200-N/C electric field is in the positive x direction. The force on an electron in this field is:

2. A 200-N/C electric field is in the positive x direction. The force on an electron in this field is: University Physics (Prof. David Flory) Chapt_23 Sunday, February 03, 2008 Page 1 Name: Date: 1. The dipole moment of an electric dipole in a 300-N/C electric field is initially perpendicular to the field,

More information

104 Practice Exam 2-3/21/02

104 Practice Exam 2-3/21/02 104 Practice Exam 2-3/21/02 1. Two electrons are located in a region of space where the magnetic field is zero. Electron A is at rest; and electron B is moving westward with a constant velocity. A non-zero

More information

** Can skip to Problems: 6, 7, 9, 15, 19, 28, 29, 35, 36, 39, 42 **

** Can skip to Problems: 6, 7, 9, 15, 19, 28, 29, 35, 36, 39, 42 ** Walker, Physics, 3 rd Edition Chapter 22 ** Can skip to Problems: 6, 7, 9, 15, 19, 28, 29, 35, 36, 39, 42 ** Conceptual Questions (Answers to odd-numbered Conceptual Questions can be found in the back

More information

Magnetic Field Lines. Uniform Magnetic Field. Earth s Magnetic Field 6/3/2013

Magnetic Field Lines. Uniform Magnetic Field. Earth s Magnetic Field 6/3/2013 Chapter 33: Magnetism Ferromagnetism Iron, cobalt, gadolinium strongly magnetic Can cut a magnet to produce more magnets (no magnetic monopole) Electric fields can magnetize nonmagnetic metals Heat and

More information

Phys 102 Spg Exam No. 2 Solutions

Phys 102 Spg Exam No. 2 Solutions Phys 102 Spg. 2008 Exam No. 2 Solutions I. (20 pts) A 10-turn wire loop measuring 8.0 cm by 16.0 cm carrying a current of 2.0 A lies in the horizontal plane and is free to rotate about a horizontal axis

More information

Home Work 9. i 2 a 2. a 2 4 a 2 2

Home Work 9. i 2 a 2. a 2 4 a 2 2 Home Work 9 9-1 A square loop of wire of edge length a carries current i. Show that, at the center of the loop, the of the magnetic field produced by the current is 0i B a The center of a square is a distance

More information

Chapter 31. Faraday s Law

Chapter 31. Faraday s Law Chapter 31 Faraday s Law Michael Faraday 1791 1867 British physicist and chemist Great experimental scientist Contributions to early electricity include: Invention of motor, generator, and transformer

More information