* Magnetic Scalar Potential * Magnetic Vector Potential. PPT No. 19

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "* Magnetic Scalar Potential * Magnetic Vector Potential. PPT No. 19"

Transcription

1 * Magnetic Scalar Potential * Magnetic Vector Potential PPT No. 19

2 Magnetic Potentials The Magnetic Potential is a method of representing the Magnetic field by using a quantity called Potential instead of the actual B vector field.

3 Magnetic Potentials Magnetic field can be related to a potential by two methods which give rise to two possible types of magnetic potentials used in different situations: 1. Magnetic Scalar Potential 2. Magnetic Vector Potential

4 A) Magnetic Scalar Potential In Electrostatics, electric field E is derivable from the electric potential V. V is a scalar quantity and easier to handle than E which is a vector quantity. In Magnetostatics, the quantity Magnetic scalar potential can be obtained using analogues relation

5 A) Magnetic Scalar Potential In regions of space in the absence of currents, the current density j =0 = 0 B is derivable from the gradient of a potential Therefore B can be expressed as the gradient of a scalar quantity φ m B = - φ m φ m is called as the Magnetic scalar potential.

6 A) Magnetic Scalar Potential The presence of a magnetic moment m creates a magnetic field B which is the gradient of some scalar field φ m. The divergence of the magnetic field B is zero,.b = 0 By definition, the divergence of the gradient of the scalar field is also zero, -. φ m = 0 or 2 φ m = 0. The operator 2 is called the Laplacian and 2 φ m = 0 is the Laplace s equation.

7 A) Magnetic Scalar Potential 2 φ m = 0 Laplace s equation is valid only outside the magnetic sources and away from currents. Magnetic field can be calculated from the magnetic scalar potential using solutions of Laplace s equation.

8 The magnetic scalar potential is useful only in the region of space away from free currents. If J=0, then only magnetic flux density can be computed from the magnetic scalar potential The potential function which overcomes this limitation and is useful to compute B in region where J is present is. Magnetic Vector Potential

9 Magnetic fields are generated by steady (time-independent) currents & satisfy Gauss Law Since the divergence of a curl is zero, B can be written as the curl of a vector A as

10 Any solenoidal vector field (e.g. B) in physics can always be written as the curl of some other vector field (A). The quantity A is known as the Magnetic Vector Potential.

11 {However, magnetic vector potential is not directly associated with work the way that scalar potential (e.g. Electric potential V) is associated with work} Work done against the electric field E is stored as electric potential energy U given in terms of electric dipole moment p and E as

12 The vector potential is defined to be consistent with Ampere s Circuital Law and It can be expressed in terms of either current i or current density j (i.e. the sources of magnetic field) as follows

13 However, A is Not uniquely defined by the above equation. Any function whose curl is zero, can be added to A, then the result would still be the same field B. e.g. If ψ, the Gradient of a scalar ψ is added to A x (A + ψ )= x A + x ψ = x A = B

14 To make A more specific/ unique, additional condition needs to be imposed on A. In Magnetostatics a convenient condition which makes calculations easier can be specified as. A = 0 (In Electrodynamics, this condition cannot be imposed)

15 The set of equations which uniquely define the vector potential A and also satisfy the fundamental equation of Gauss Law. B = 0 {the magnetic field is divergence-free}, are as follows

16 From Ampere s law Therefore the equation can be written as This equation is similar to Poisson's equation, the only difference is that A is a vector.

17 Each component (e.g. along x, y, z axes) of A must satisfy the differential equation of the type A unique solution to the above Poisson's equation can be found (By combining the solutions for components on x, y, z). It specifies the magnetic vector potential A generated by steady currents.

18 First A is determined using Poisson's equation then it is substituted in the equation Thus the field B produced by a steady current can be computed.

19 Gauge Transformation According to Helmholtz's theorem a vector field is fully specified by its divergence and its curl. The curl of the vector potential A gives the magnetic field B via Eq. However, the divergence of A has no physical significance can be chosen freely as desired

20 According to the equation the magnetic field is invariant under the transformation In other words, the vector potential is undetermined to the gradient of a scalar field can be chosen as desired

21 The electric scalar potential is undetermined to an arbitrary additive constant, since the transformation leaves the electric field invariant in Equation The transformations and are examples of gauge transformations in Mathematics.

22 In electromagnetic theory, several "gauges" have been used to advantage depending on the specific types of calculations The choice of a particular function ψ or a particular constant c is referred to as a choice of the gauge.

23 The gauge can be fixed as desired. Usually it is chosen to make equations simplest possible. It is convenient to choose gauge for the scalar potential Ф such that Ф 0 at infinity. The gauge for A is chosen such that This particular choice is known as the Coulomb gauge

Electro Magnetic Fields

Electro Magnetic Fields Electro Magnetic Fields Faheem Ahmed Khan, Assoc Prof. EEE Department, Ghousia College of Engineering, Ramanagaram EEE, GCE,Ramanagaram Page 1 of 50 Coulomb s Law and electric field intensity Experimental

More information

* Biot Savart s Law- Statement, Proof Applications of Biot Savart s Law * Magnetic Field Intensity H * Divergence of B * Curl of B. PPT No.

* Biot Savart s Law- Statement, Proof Applications of Biot Savart s Law * Magnetic Field Intensity H * Divergence of B * Curl of B. PPT No. * Biot Savart s Law- Statement, Proof Applications of Biot Savart s Law * Magnetic Field Intensity H * Divergence of B * Curl of B PPT No. 17 Biot Savart s Law A straight infinitely long wire is carrying

More information

7-3 The Biot-Savart Law and the Magnetic Vector Potential

7-3 The Biot-Savart Law and the Magnetic Vector Potential 11/14/4 section 7_3 The Biot-Savart Law blank.doc 1/1 7-3 The Biot-Savart Law and the Magnetic ector Potential Reading Assignment: pp. 8-18 Q: Given some field B, how can we determine the source J that

More information

Magnetostatics II. Lecture 24: Electromagnetic Theory. Professor D. K. Ghosh, Physics Department, I.I.T., Bombay

Magnetostatics II. Lecture 24: Electromagnetic Theory. Professor D. K. Ghosh, Physics Department, I.I.T., Bombay Magnetostatics II Lecture 4: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay Magnetic field due to a solenoid and a toroid A solenoid is essentially a long current loop

More information

6 J - vector electric current density (A/m2 )

6 J - vector electric current density (A/m2 ) Determination of Antenna Radiation Fields Using Potential Functions Sources of Antenna Radiation Fields 6 J - vector electric current density (A/m2 ) M - vector magnetic current density (V/m 2 ) Some problems

More information

VII MAXWELL S EQUATIONS

VII MAXWELL S EQUATIONS VII MAXWELL S EQUATIONS 71 The story so far In this section we will summarise the understanding of electromagnetism which we have arrived at so far We know that there are two fields which must be considered,

More information

Example: The Electrostatic Fields of a Coaxial Line

Example: The Electrostatic Fields of a Coaxial Line /8/24 Example The Electorostatic Fields of a Coaxial Line / Example: The Electrostatic Fields of a Coaxial Line A common form of a transmission line is the coaxial cable. Outer Conductor a b ε + V - Inner

More information

ÇANKAYA UNIVERSITY Faculty of Engineering and Architecture

ÇANKAYA UNIVERSITY Faculty of Engineering and Architecture ÇANKAYA UNIVERSITY Faculty of Engineering and Architecture Course Definition Form This form should be used for both a new elective or compulsory course being proposed and curricula development processes

More information

6. In cylindrical coordinate system, the differential normal area along a z is calculated as: a) ds = ρ d dz b) ds = dρ dz c) ds = ρ d dρ d) ds = dρ d

6. In cylindrical coordinate system, the differential normal area along a z is calculated as: a) ds = ρ d dz b) ds = dρ dz c) ds = ρ d dρ d) ds = dρ d Electrical Engineering Department Electromagnetics I (802323) G1 Dr. Mouaaz Nahas First Term (1436-1437), Second Exam Tuesday 07/02/1437 H االسم: الرقم الجامعي: Start from here Part A CLO 1: Students will

More information

Chapter 5. Magnetostatics and Electromagnetic Induction

Chapter 5. Magnetostatics and Electromagnetic Induction Chapter 5. Magnetostatics and Electromagnetic Induction 5.1 Magnetic Field of Steady Currents The Lorentz force law The magnetic force in a charge q, moving with velocity v in a magnetic field B in a magnetic

More information

Divergence and Curl of the Magnetic Field

Divergence and Curl of the Magnetic Field Divergence and Curl of the Magnetic Field The static electric field E(x,y,z such as the field of static charges obeys equations E = 1 ǫ ρ, (1 E =. (2 The static magnetic field B(x,y,z such as the field

More information

DIVERGENCE AND CURL THEOREMS

DIVERGENCE AND CURL THEOREMS This document is stored in Documents/4C/Gausstokes.tex. with LaTex. Compile it November 29, 2014 Hans P. Paar DIVERGENCE AND CURL THEOREM 1 Introduction We discuss the theorems of Gauss and tokes also

More information

Electromagnetism - Lecture 2. Electric Fields

Electromagnetism - Lecture 2. Electric Fields Electromagnetism - Lecture 2 Electric Fields Review of Vector Calculus Differential form of Gauss s Law Poisson s and Laplace s Equations Solutions of Poisson s Equation Methods of Calculating Electric

More information

Electrostatic Fields: Coulomb s Law & the Electric Field Intensity

Electrostatic Fields: Coulomb s Law & the Electric Field Intensity Electrostatic Fields: Coulomb s Law & the Electric Field Intensity EE 141 Lecture Notes Topic 1 Professor K. E. Oughstun School of Engineering College of Engineering & Mathematical Sciences University

More information

dv div F = F da (1) D

dv div F = F da (1) D Note I.6 1 4 October The Gauss Theorem The Gauss, or divergence, theorem states that, if is a connected three-dimensional region in R 3 whose boundary is a closed, piece-wise connected surface and F is

More information

The force on a moving charged particle. A particle with charge Q moving with velocity v in a magnetic field B is subject to a force F mag = Q v B

The force on a moving charged particle. A particle with charge Q moving with velocity v in a magnetic field B is subject to a force F mag = Q v B Magnetostatics The force on a moving charged particle A particle with charge Q moving with velocity v in a magnetic field B is subject to a force F mag = Q v B If there is also an electric field E present,

More information

Coefficient of Potential and Capacitance

Coefficient of Potential and Capacitance Coefficient of Potential and Capacitance Lecture 12: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay We know that inside a conductor there is no electric field and that

More information

" - angle between l and a R

 - angle between l and a R Magnetostatic Fields According to Coulomb s law, any distribution of stationary charge produces a static electric field (electrostatic field). The analogous equation to Coulomb s law for electric fields

More information

Electromagnetic Induction

Electromagnetic Induction Electromagnetic Induction Lecture 29: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay Mutual Inductance In the last lecture, we enunciated the Faraday s law according to

More information

POTENTIAL FORMULATIONS IN MAGNETICS APPLYING THE FINITE ELEMENT METHOD. Lecture notes

POTENTIAL FORMULATIONS IN MAGNETICS APPLYING THE FINITE ELEMENT METHOD. Lecture notes MIKLÓS KUCZMANN POTENTIAL FORMULATIONS IN MAGNETICS APPLYING THE FINITE ELEMENT METHOD Lecture notes Laboratory of Electromagnetic Fields Széchenyi István University Győr, Hungary 2009. Contents 1 Introduction

More information

PH585: Magnetic dipoles and so forth

PH585: Magnetic dipoles and so forth PH585: Magnetic dipoles and so forth 1 Magnetic Moments Magnetic moments µ are analogous to dipole moments p in electrostatics. There are two sorts of magnetic dipoles we will consider: a dipole consisting

More information

PPT No. 26. Uniformly Magnetized Sphere in the External Magnetic Field. Electromagnets

PPT No. 26. Uniformly Magnetized Sphere in the External Magnetic Field. Electromagnets PPT No. 26 Uniformly Magnetized Sphere in the External Magnetic Field Electromagnets Uniformly magnetized sphere in external magnetic field The Topic Uniformly magnetized sphere in external magnetic field,

More information

Faraday s Law & Maxwell s Equations (Griffiths Chapter 7: Sections 2-3) B t da = S

Faraday s Law & Maxwell s Equations (Griffiths Chapter 7: Sections 2-3) B t da = S Dr. Alain Brizard Electromagnetic Theory I PY 3 Faraday s Law & Maxwell s Equations Griffiths Chapter 7: Sections -3 Electromagnetic Induction The flux rule states that a changing magnetic flux Φ B = S

More information

The electronic Hamiltonian in an electromagnetic field

The electronic Hamiltonian in an electromagnetic field The electronic Hamiltonian in an electromagnetic field Trygve Helgaker Department of Chemistry, University of Oslo, P.O.B. 1033 Blindern, N-0315 Oslo, Norway Poul Jørgensen and Jeppe Olsen Department of

More information

Teaching Electromagnetic Field Theory Using Differential Forms

Teaching Electromagnetic Field Theory Using Differential Forms IEEE TRANSACTIONS ON EDUCATION, VOL. 40, NO. 1, FEBRUARY 1997 53 Teaching Electromagnetic Field Theory Using Differential Forms Karl F. Warnick, Richard H. Selfridge, Member, IEEE, and David V. Arnold

More information

Note: be careful not confuse the conductivity σ with the surface charge σ, or resistivity ρ with volume charge ρ.

Note: be careful not confuse the conductivity σ with the surface charge σ, or resistivity ρ with volume charge ρ. SECTION 7 Electrodynamics This section (based on Chapter 7 of Griffiths) covers effects where there is a time dependence of the electric and magnetic fields, leading to Maxwell s equations. The topics

More information

Physics 217: Electricity and Magnetism I

Physics 217: Electricity and Magnetism I Physics 217: Electricity and Magnetism I Fall 2002 This semester we will explore electrostatics and magnetostatics the consequences of the laws discovered empirically by Coulomb, Gauss, Ampère and Faraday

More information

Then the second equation becomes ³ j

Then the second equation becomes ³ j Magnetic vector potential When we derived the scalar electric potential we started with the relation r E = 0 to conclude that E could be written as the gradient of a scalar potential. That won t work for

More information

A RIGOROUS AND COMPLETED STATEMENT ON HELMHOLTZ THEOREM

A RIGOROUS AND COMPLETED STATEMENT ON HELMHOLTZ THEOREM Progress In Electromagnetics Research, PIER 69, 287 304, 2007 A RIGOROU AND COMPLETED TATEMENT ON HELMHOLTZ THEOREM Y. F. Gui and W. B. Dou tate Key Lab of Millimeter Waves outheast University Nanjing,

More information

Elasticity Theory Basics

Elasticity Theory Basics G22.3033-002: Topics in Computer Graphics: Lecture #7 Geometric Modeling New York University Elasticity Theory Basics Lecture #7: 20 October 2003 Lecturer: Denis Zorin Scribe: Adrian Secord, Yotam Gingold

More information

Electromagnetism - Lecture 8. Maxwell s Equations

Electromagnetism - Lecture 8. Maxwell s Equations Electromagnetism - Lecture 8 Maxwell s Equations Continuity Equation Displacement Current Modification to Ampère s Law Maxwell s Equations in Vacuo Solution of Maxwell s Equations Introduction to Electromagnetic

More information

Chapter 7: Polarization

Chapter 7: Polarization Chapter 7: Polarization Joaquín Bernal Méndez Group 4 1 Index Introduction Polarization Vector The Electric Displacement Vector Constitutive Laws: Linear Dielectrics Energy in Dielectric Systems Forces

More information

Lecture 13. Magnetic Field, Magnetic Forces on Moving Charges. Outline:

Lecture 13. Magnetic Field, Magnetic Forces on Moving Charges. Outline: Lecture 13. Magnetic Field, Magnetic Forces on Moving Charges. Outline: Intro to Magnetostatics. Magnetic Field Flux, Absence of Magnetic Monopoles. Force on charges moving in magnetic field. 1 Intro to

More information

Special Relativity and Electromagnetism Yannis PAPAPHILIPPOU CERN

Special Relativity and Electromagnetism Yannis PAPAPHILIPPOU CERN Special Relativity and Electromagnetism Yannis PAPAPHILIPPOU CERN United States Particle Accelerator School, University of California - Santa Cruz, Santa Rosa, CA 14 th 18 th January 2008 1 Outline Notions

More information

3.8 Finding Antiderivatives; Divergence and Curl of a Vector Field

3.8 Finding Antiderivatives; Divergence and Curl of a Vector Field 3.8 Finding Antiderivatives; Divergence and Curl of a Vector Field 77 3.8 Finding Antiderivatives; Divergence and Curl of a Vector Field Overview: The antiderivative in one variable calculus is an important

More information

SIO 229 Gravity and Geomagnetism: Class Description and Goals

SIO 229 Gravity and Geomagnetism: Class Description and Goals SIO 229 Gravity and Geomagnetism: Class Description and Goals This graduate class provides an introduction to gravity and geomagnetism at a level suitable for advanced non-specialists in geophysics. Topics

More information

Divergence and Curl. . Here we discuss some details of the divergence and curl. and the magnetic field B ( r,t)

Divergence and Curl. . Here we discuss some details of the divergence and curl. and the magnetic field B ( r,t) Divergence and url Overview and Motivation: In the upcoming two lectures we will be discussing Maxwell's equations. These equations involve both the divergence and curl of two vector fields the electric

More information

arxiv:1111.4354v2 [physics.acc-ph] 27 Oct 2014

arxiv:1111.4354v2 [physics.acc-ph] 27 Oct 2014 Theory of Electromagnetic Fields Andrzej Wolski University of Liverpool, and the Cockcroft Institute, UK arxiv:1111.4354v2 [physics.acc-ph] 27 Oct 2014 Abstract We discuss the theory of electromagnetic

More information

VECTOR CALCULUS: USEFUL STUFF Revision of Basic Vectors

VECTOR CALCULUS: USEFUL STUFF Revision of Basic Vectors Prof. S.M. Tobias Jan 2009 VECTOR CALCULUS: USEFUL STUFF Revision of Basic Vectors A scalar is a physical quantity with magnitude only A vector is a physical quantity with magnitude and direction A unit

More information

F = U. (1) We shall answer these questions by examining the dimensions n = 1,2,3 separately.

F = U. (1) We shall answer these questions by examining the dimensions n = 1,2,3 separately. Lecture 24 Conservative forces in physics (cont d) Determining whether or not a force is conservative We have just examined some examples of conservative forces in R 2 and R 3. We now address the following

More information

A Theoretical Model for Mutual Interaction between Coaxial Cylindrical Coils Lukas Heinzle

A Theoretical Model for Mutual Interaction between Coaxial Cylindrical Coils Lukas Heinzle A Theoretical Model for Mutual Interaction between Coaxial Cylindrical Coils Lukas Heinzle Page 1 of 15 Abstract: The wireless power transfer link between two coils is determined by the properties of the

More information

Module 3 : MAGNETIC FIELD Lecture 15 : Biot- Savarts' Law

Module 3 : MAGNETIC FIELD Lecture 15 : Biot- Savarts' Law Module 3 : MAGNETIC FIELD Lecture 15 : Biot- Savarts' Law Objectives In this lecture you will learn the following Study Biot-Savart's law Calculate magnetic field of induction due to some simple current

More information

Using contemporary education strategies and approaches to redesign Classical Electrodynamics

Using contemporary education strategies and approaches to redesign Classical Electrodynamics Using contemporary education strategies and approaches to redesign Classical Electrodynamics Wang Yue College of Applied Science Beijing University of Technology Beijing 100022 People s Republic of China

More information

Module 3 : Electromagnetism Lecture 13 : Magnetic Field

Module 3 : Electromagnetism Lecture 13 : Magnetic Field Module 3 : Electromagnetism Lecture 13 : Magnetic Field Objectives In this lecture you will learn the following Electric current is the source of magnetic field. When a charged particle is placed in an

More information

Syllabus for EE 341 Electromagnetic Fields and Waves Fall

Syllabus for EE 341 Electromagnetic Fields and Waves Fall Syllabus for EE 34 Electromagnetic Fields and Waves Fall 205-206 Instructor: Prof. Dr. Erdem YAZGAN Office: 38 Phone: (032) 585-00-27 E-mail: erdem.yazgan@tedu.edu.tr Time Schedule: Monday (.00 2.50),

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road, New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road, New Delhi , Ph. : , 1 E L E C T R O S TAT I C S 1. Define lines of forces and write down its properties. Draw the lines of force to represent (i) uniform electric field (ii) positive charge (iii) negative charge (iv) two

More information

Part A Electromagnetism

Part A Electromagnetism Part A Electromagnetism James Sparks sparks@maths.ox.ac.uk Hilary Term 2009 E = ρ ǫ 0 B = 0 E = B ( ) E B = µ 0 J + ǫ 0 Contents 0 Introduction ii 0.1 About these notes.................................

More information

Chapter 22: The Electric Field. Read Chapter 22 Do Ch. 22 Questions 3, 5, 7, 9 Do Ch. 22 Problems 5, 19, 24

Chapter 22: The Electric Field. Read Chapter 22 Do Ch. 22 Questions 3, 5, 7, 9 Do Ch. 22 Problems 5, 19, 24 Chapter : The Electric Field Read Chapter Do Ch. Questions 3, 5, 7, 9 Do Ch. Problems 5, 19, 4 The Electric Field Replaces action-at-a-distance Instead of Q 1 exerting a force directly on Q at a distance,

More information

AP Physics C Chapter 23 Notes Yockers Faraday s Law, Inductance, and Maxwell s Equations

AP Physics C Chapter 23 Notes Yockers Faraday s Law, Inductance, and Maxwell s Equations AP Physics C Chapter 3 Notes Yockers Faraday s aw, Inductance, and Maxwell s Equations Faraday s aw of Induction - induced current a metal wire moved in a uniform magnetic field - the charges (electrons)

More information

Lecture 13. Magnetic Field, Magnetic Forces on Moving Charges. Outline:

Lecture 13. Magnetic Field, Magnetic Forces on Moving Charges. Outline: Lecture 13. Magnetic Field, Magnetic Forces on Moving Charges. Outline: Intro to Magnetostatics. Magnetic Field Flux, Absence of Magnetic Monopoles. Force on charges moving in magnetic field. 1 Structure

More information

Multipole Theory in Electromagnetism

Multipole Theory in Electromagnetism Multipole Theory in Electromagnetism Classical, quantum, and symmetry aspects, with applications R. E. RAAB О. L. DE LANGE School of Chemical and Physical Sciences, University of Natal, Pietermaritzburg,

More information

Objectives for the standardized exam

Objectives for the standardized exam III. ELECTRICITY AND MAGNETISM A. Electrostatics 1. Charge and Coulomb s Law a) Students should understand the concept of electric charge, so they can: (1) Describe the types of charge and the attraction

More information

Chapter 9. Electromagnetic Waves

Chapter 9. Electromagnetic Waves Chapter 9. Electromagnetic Waves 9.2 Electromagnetic waves in Vacuum 9.2.1 The Wave Equation for E and B In Vacuum, no free charges and no currents 0, J 0, q 0, I 0 B E 0 B 0 E - t B 0 0 Let s derive the

More information

ELECTROSTATICS. Ans: It is a fundamental property of matter which is responsible for all electrical effects

ELECTROSTATICS. Ans: It is a fundamental property of matter which is responsible for all electrical effects ELECTROSTATICS One Marks Questions with Answers: 1.What is an electric charge? Ans: It is a fundamental property of matter which is responsible for all electrical effects 2. Write the SI unit of charge?

More information

Relativistic Electromagnetism

Relativistic Electromagnetism Chapter 8 Relativistic Electromagnetism In which it is shown that electricity and magnetism can no more be separated than space and time. 8.1 Magnetism from Electricity Our starting point is the electric

More information

* Self-inductance * Mutual inductance * Transformers. PPT No. 32

* Self-inductance * Mutual inductance * Transformers. PPT No. 32 * Self-inductance * Mutual inductance * Transformers PPT No. 32 Inductance According to Faraday s Electromagnetic Induction law, induction of an electromotive force occurs in a circuit by varying the magnetic

More information

THE ELECTROMAGNETIC FIELD DUE TO THE ELECTRONS.

THE ELECTROMAGNETIC FIELD DUE TO THE ELECTRONS. THE ELECTROMAGNETIC FIELD DUE TO THE ELECTRONS 367 Proceedings of the London Mathematical Society Vol 1 1904 p 367-37 (Retyped for readability with same page breaks) ON AN EXPRESSION OF THE ELECTROMAGNETIC

More information

Scalar and vector potentials, Helmholtz decomposition, and de Rham cohomology

Scalar and vector potentials, Helmholtz decomposition, and de Rham cohomology Scalar and vector potentials,, and de Rham cohomology Alberto Valli Department of Mathematics, University of Trento, Italy A. Valli Potentials,, de Rham cohomology Outline 1 Introduction 2 3 4 5 A. Valli

More information

CLASSICAL ELECTRODYNAMICS AND THEORY OF RELATIVITY

CLASSICAL ELECTRODYNAMICS AND THEORY OF RELATIVITY arxiv:physics/0311011v1 [physics.ed-ph] 4 Nov RUSSIAN FEDERAL COMMITTEE FOR HIGHER EDUCATION BASHKIR STATE UNIVERSITY SHARIPOV R. A. CLASSICAL ELECTRODYNAMICS AND THEORY OF RELATIVITY the manual Ufa 1997

More information

The Charge to Mass Ratio (e/m) Ratio of the Electron. NOTE: You will make several sketches of magnetic fields during the lab.

The Charge to Mass Ratio (e/m) Ratio of the Electron. NOTE: You will make several sketches of magnetic fields during the lab. The Charge to Mass Ratio (e/m) Ratio of the Electron NOTE: You will make several sketches of magnetic fields during the lab. Remember to include these sketches in your lab notebook as they will be part

More information

Physics 221A Spring 2016 Appendix A Gaussian, SI and Other Systems of Units in Electromagnetic Theory

Physics 221A Spring 2016 Appendix A Gaussian, SI and Other Systems of Units in Electromagnetic Theory Copyright c 2016 by Robert G. Littlejohn Physics 221A Spring 2016 Appendix A Gaussian, SI and Other Systems of Units in Electromagnetic Theory 1. Introduction Most students are taught SI units in their

More information

Chapter 4. Electrostatic Fields in Matter

Chapter 4. Electrostatic Fields in Matter Chapter 4. Electrostatic Fields in Matter 4.1. Polarization A neutral atom, placed in an external electric field, will experience no net force. However, even though the atom as a whole is neutral, the

More information

PHY 301: Mathematical Methods I Curvilinear Coordinate System (10-12 Lectures)

PHY 301: Mathematical Methods I Curvilinear Coordinate System (10-12 Lectures) PHY 301: Mathematical Methods I Curvilinear Coordinate System (10-12 Lectures) Dr. Alok Kumar Department of Physical Sciences IISER, Bhopal Abstract The Curvilinear co-ordinates are the common name of

More information

Magnetic Field & Right Hand Rule. Academic Resource Center

Magnetic Field & Right Hand Rule. Academic Resource Center Magnetic Field & Right Hand Rule Academic Resource Center Magnetic Fields And Right Hand Rules By: Anthony Ruth Magnetic Fields vs Electric Fields Magnetic fields are similar to electric fields, but they

More information

Chapter 33. The Magnetic Field

Chapter 33. The Magnetic Field Chapter 33. The Magnetic Field Digital information is stored on a hard disk as microscopic patches of magnetism. Just what is magnetism? How are magnetic fields created? What are their properties? These

More information

AP Physics C: Electricity and Magnetism: Syllabus 2

AP Physics C: Electricity and Magnetism: Syllabus 2 AP Physics C: Electricity and Magnetism: Syllabus 2 Scoring Components SC1 SC2 SC SC SC5 SC6 SC7 The course provides and provides instruction in electrostatics. The course provides and provides instruction

More information

Chapter 29 Electromagnetic Induction

Chapter 29 Electromagnetic Induction Chapter 29 Electromagnetic Induction - Induction Experiments - Faraday s Law - Lenz s Law - Motional Electromotive Force - Induced Electric Fields - Eddy Currents - Displacement Current and Maxwell s Equations

More information

Sources of Magnetic Field: Summary

Sources of Magnetic Field: Summary Sources of Magnetic Field: Summary Single Moving Charge (Biot-Savart for a charge): Steady Current in a Wire (Biot-Savart for current): Infinite Straight Wire: Direction is from the Right Hand Rule The

More information

Electromagnetism Laws and Equations

Electromagnetism Laws and Equations Electromagnetism Laws and Equations Andrew McHutchon Michaelmas 203 Contents Electrostatics. Electric E- and D-fields............................................. Electrostatic Force............................................2

More information

Eðlisfræði 2, vor 2007

Eðlisfræði 2, vor 2007 [ Assignment View ] [ Pri Eðlisfræði 2, vor 2007 28. Sources of Magnetic Field Assignment is due at 2:00am on Wednesday, March 7, 2007 Credit for problems submitted late will decrease to 0% after the deadline

More information

This chapter describes magnetostatics in a vacuum. By magnetostatics we, of course, don t mean that the charges are static but rather the magnetic

This chapter describes magnetostatics in a vacuum. By magnetostatics we, of course, don t mean that the charges are static but rather the magnetic This chapter describes magnetostatics in a vacuum. By magnetostatics we, of course, don t mean that the charges are static but rather the magnetic fields, electric fields and currents are constant in time.

More information

Electric Flux. Phys 122 Lecture 4 G. Rybka

Electric Flux. Phys 122 Lecture 4 G. Rybka Electric Flux Phys 122 Lecture 4 G. Rybka Electric Field Distribution Summary Dipole ~ 1 / R 3 Point Charge ~ 1 / R 2 Infinite Line of Charge ~ 1 / R Outline Electric field acting on charges Defining Electric

More information

RAJALAKSHMI ENGINEERING COLLEGE MA 2161 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS PART A

RAJALAKSHMI ENGINEERING COLLEGE MA 2161 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS PART A RAJALAKSHMI ENGINEERING COLLEGE MA 26 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS. Solve (D 2 + D 2)y = 0. 2. Solve (D 2 + 6D + 9)y = 0. PART A 3. Solve (D 4 + 4)x = 0 where D = d dt 4. Find Particular Integral:

More information

Chapter 4 Parabolic Equations

Chapter 4 Parabolic Equations 161 Chapter 4 Parabolic Equations Partial differential equations occur in abundance in a variety of areas from engineering, mathematical biology and physics. In this chapter we will concentrate upon the

More information

Microwaves. Microwaves in the Electromagnetic Spectrum (300 MHz GHz)

Microwaves. Microwaves in the Electromagnetic Spectrum (300 MHz GHz) Microwaves Microwaves in the Electromagnetic Spectrum (300 MHz - 300 GHz) ELF Extremely Low Frequency 3-30 Hz SLF Super Low Frequency 30-300 Hz ULF Ultra Low Frequency 300 Hz - 3 khz VLF Very Low Frequency

More information

CONSERVATION LAWS. See Figures 2 and 1.

CONSERVATION LAWS. See Figures 2 and 1. CONSERVATION LAWS 1. Multivariable calculus 1.1. Divergence theorem (of Gauss). This states that the volume integral in of the divergence of the vector-valued function F is equal to the total flux of F

More information

Electromagnetic interactionsi. 1.H.Hutchinson

Electromagnetic interactionsi. 1.H.Hutchinson Electromagnetic interactionsi 1.H.Hutchinson Chapter 1 Maxwell's Equations and Electromagnetic Fields 1.1 Introduction 1.l.1 Maxwell's Equations (1865) The governing equations of electromagnetism P V.E=

More information

Differentiation of vectors

Differentiation of vectors Chapter 4 Differentiation of vectors 4.1 Vector-valued functions In the previous chapters we have considered real functions of several (usually two) variables f : D R, where D is a subset of R n, where

More information

APPLICATIONS OF TENSOR ANALYSIS

APPLICATIONS OF TENSOR ANALYSIS APPLICATIONS OF TENSOR ANALYSIS (formerly titled: Applications of the Absolute Differential Calculus) by A J McCONNELL Dover Publications, Inc, Neiv York CONTENTS PART I ALGEBRAIC PRELIMINARIES/ CHAPTER

More information

Reduction of the Navier-Stocks Equation to the Natural Three-Velocity Form

Reduction of the Navier-Stocks Equation to the Natural Three-Velocity Form ISSN: 359-0040 Vol. 2 Issue 4, April - 205 Reduction of the Navier-Stocks Equation to the Natural Three-Velocity Form Alexei M. Frolov Department of Applied Mathematics University of Western Ontario, London,

More information

Scalars, Vectors and Tensors

Scalars, Vectors and Tensors Scalars, Vectors and Tensors A scalar is a physical quantity that it represented by a dimensional number at a particular point in space and time. Examples are hydrostatic pressure and temperature. A vector

More information

Gauss Formulation of the gravitational forces

Gauss Formulation of the gravitational forces Chapter 1 Gauss Formulation of the gravitational forces 1.1 ome theoretical background We have seen in class the Newton s formulation of the gravitational law. Often it is interesting to describe a conservative

More information

Electrical impedance - Wikipedia, the free encyclopedia

Electrical impedance - Wikipedia, the free encyclopedia Electrical impedance From Wikipedia, the free encyclopedia Electrical impedance, or simply impedance, describes a measure of opposition to a sinusoidal alternating current (AC). Electrical impedance extends

More information

Name: Lab Partner: Section: The purpose of this lab is to study induction. Faraday s law of induction and Lenz s law will be explored.

Name: Lab Partner: Section: The purpose of this lab is to study induction. Faraday s law of induction and Lenz s law will be explored. Chapter 8 Induction - Faraday s Law Name: Lab Partner: Section: 8.1 Purpose The purpose of this lab is to study induction. Faraday s law of induction and Lenz s law will be explored. 8.2 Introduction It

More information

PHYS 1444 Section 003. Lecture #6. Chapter 21. Chapter 22 Gauss s Law. Electric Dipoles. Electric Flux. Thursday, Sept. 8, 2011 Dr.

PHYS 1444 Section 003. Lecture #6. Chapter 21. Chapter 22 Gauss s Law. Electric Dipoles. Electric Flux. Thursday, Sept. 8, 2011 Dr. PHYS 1444 Section 003 Chapter 21 Lecture #6 Dr. Jaehoon Electric Dipoles Chapter 22 Gauss s Law Electric Flux 1 Quiz #2 Thursday, Sept. 15 Beginning of the class Announcements Covers: CH21.1 through what

More information

SCHWEITZER ENGINEERING LABORATORIES, COMERCIAL LTDA.

SCHWEITZER ENGINEERING LABORATORIES, COMERCIAL LTDA. Pocket book of Electrical Engineering Formulas Content 1. Elementary Algebra and Geometry 1. Fundamental Properties (real numbers) 1 2. Exponents 2 3. Fractional Exponents 2 4. Irrational Exponents 2 5.

More information

Electric field outside a parallel plate capacitor

Electric field outside a parallel plate capacitor Electric field outside a parallel plate capacitor G. W. Parker a) Department of Physics, North Carolina State University, Raleigh, North Carolina 7695-80 Received 7 September 00; accepted 3 January 00

More information

(b) Draw the direction of for the (b) Draw the the direction of for the

(b) Draw the direction of for the (b) Draw the the direction of for the 2. An electric dipole consists of 2A. A magnetic dipole consists of a positive charge +Q at one end of a bar magnet with a north pole at one an insulating rod of length d and a end and a south pole at

More information

Chapter 19 Magnetism Magnets Poles of a magnet are the ends where objects are most strongly attracted Two poles, called north and south Like poles

Chapter 19 Magnetism Magnets Poles of a magnet are the ends where objects are most strongly attracted Two poles, called north and south Like poles Chapter 19 Magnetism Magnets Poles of a magnet are the ends where objects are most strongly attracted Two poles, called north and south Like poles repel each other and unlike poles attract each other Similar

More information

arxiv:physics/0106088v1 [physics.ed-ph] 27 Jun 2001

arxiv:physics/0106088v1 [physics.ed-ph] 27 Jun 2001 Introducing Time Dependence into the Static Maxwell Equations arxiv:physics/0106088v1 [physics.ed-ph] 27 Jun 2001 Avraham Gal Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel

More information

Derivation of the relativistic momentum and relativistic equation of motion from Newton s second law and Minkowskian space-time geometry

Derivation of the relativistic momentum and relativistic equation of motion from Newton s second law and Minkowskian space-time geometry Apeiron, Vol. 15, No. 3, July 2008 206 Derivation of the relativistic momentum and relativistic equation of motion from Newton s second law and Minkowskian space-time geometry Krzysztof Rȩbilas Zak lad

More information

Eðlisfræði 2, vor 2007

Eðlisfræði 2, vor 2007 [ Assignment View ] [ Print ] Eðlisfræði 2, vor 2007 30. Inductance Assignment is due at 2:00am on Wednesday, March 14, 2007 Credit for problems submitted late will decrease to 0% after the deadline has

More information

Hermitian Operators An important property of operators is suggested by considering the Hamiltonian for the particle in a box: d 2 dx 2 (1)

Hermitian Operators An important property of operators is suggested by considering the Hamiltonian for the particle in a box: d 2 dx 2 (1) CHAPTER 4 PRINCIPLES OF QUANTUM MECHANICS In this Chapter we will continue to develop the mathematical formalism of quantum mechanics, using heuristic arguments as necessary. This will lead to a system

More information

Transformed E&M I homework. Divergence and Curl of B (Ampereʼs Law) (Griffiths Chapter 5)

Transformed E&M I homework. Divergence and Curl of B (Ampereʼs Law) (Griffiths Chapter 5) Transformed E&M I homework Divergence and Curl of B (Ampereʼs Law) (Griffiths Chapter 5) Divergence and curl of B (Connections between E and B, Ampere s Law) Question 1. B of cylinder with hole Pollack

More information

Dirichlet forms methods for error calculus and sensitivity analysis

Dirichlet forms methods for error calculus and sensitivity analysis Dirichlet forms methods for error calculus and sensitivity analysis Nicolas BOULEAU, Osaka university, november 2004 These lectures propose tools for studying sensitivity of models to scalar or functional

More information

Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur

Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Module No. #01 Lecture No. #15 Special Distributions-VI Today, I am going to introduce

More information

Chap 21. Electromagnetic Induction

Chap 21. Electromagnetic Induction Chap 21. Electromagnetic Induction Sec. 1 - Magnetic field Magnetic fields are produced by electric currents: They can be macroscopic currents in wires. They can be microscopic currents ex: with electrons

More information

Moving Charge in Magnetic Field

Moving Charge in Magnetic Field Chapter 1 Moving Charge in Magnetic Field Day 1 Introduction Two bar magnets attract when opposite poles (N and S, or and N) are next to each other The bar magnets repel when like poles (N and N, or S

More information

Magnetostatics (Free Space With Currents & Conductors)

Magnetostatics (Free Space With Currents & Conductors) Magnetostatics (Free Space With Currents & Conductors) Suggested Reading - Shen and Kong Ch. 13 Outline Review of Last Time: Gauss s Law Ampere s Law Applications of Ampere s Law Magnetostatic Boundary

More information

Gradient, Divergence and Curl in Curvilinear Coordinates

Gradient, Divergence and Curl in Curvilinear Coordinates Gradient, Divergence and Curl in Curvilinear Coordinates Although cartesian orthogonal coordinates are very intuitive and easy to use, it is often found more convenient to work with other coordinate systems.

More information