Organic Chemistry Nuclear Magnetic Resonance H. D. Roth. Chemistry 307 Chapter 13 Nuclear Magnetic Resonance

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Organic Chemistry Nuclear Magnetic Resonance H. D. Roth. Chemistry 307 Chapter 13 Nuclear Magnetic Resonance"

Transcription

1 Chemistry 307 Chapter 13 Nuclear Magnetic Resonance Nuclear magnetic resonance (NMR) spectroscopy is one of three spectroscopic techniques that are useful tools for determining the structures of organic compounds. [You will learn about infrared (IR) spectroscopy in chapter 13 and about ultraviolet/visible (UVVis) spectroscopy in chapter 15.] Spectroscopic techniques probe the energy differences between two states in a molecule by irradiating it with electromagnetic radiation of known frequency. We can observe transitions, i.e., signals, when the incident radiation has the exact frequency, ν (that is a Greek nu) for which the energy of the photon, hν, matches the energy difference, E, between the two states, E = hν (p. 562). Spectroscopic techniques are non-destructive; the excited molecules decay back to the ground state without decomposition. Photons of different energies can probe different types of transitions. Different spectroscopic methods use different units to characterize the energies of the photons applied. The units are all related to the general equation, linking energy ( E) to frequency, ν (unit: s 1 or z, named after the German physicist ertz). E = h ν 1

2 UVVis spectroscopy uses wavelength, λ (unit: nm, nanometer, 10 9 m), to characterize the energy of the photon. Wavelength is related to frequency by ν = c / λ, therefore: E = h c / λ IR spectroscopy uses wave number, 1/λ (unit: cm 1 ) E = h c ~ ν Nuclear magnetic transitions are probed with radio waves. Compared to other spectroscopic techniques NMR has an additional complication: the energy differences between nuclear states and the resonance frequency are not constant, but depend on the magnetic field, 0, at which the spectrometer operates i.e., E, ν α B 0. At a magnetic field, B 0 = 14, 47, or 70 kgauss, 1 nuclei resonate at 60, 200, or 300 Mz. E ν α B Magnetic Field Strength, B [kgauss] Therefore, it is not sufficient to give the frequency at which an NMR transition occurs; in addition to the photon frequency we have to specify the magnetic field strength to describe our results unambiguously. Instead of denoting these two parameters for each NMR transition, we define chemical 2

3 shift as the ratio, δ, of the response frequency relative to that of a standard (TMS) divided by the resonance frequency: δ = shift from TMS (in z) spectrometer frequency (in Mz) Since the resonance frequency is proportional to the magnetic field strength, this is equivalent to denoting the frequency of the signal and the magnetic field strength. This ratio is given in ppm (parts per million, 10 6 ); it has no dimension. Different nuclei have different ranges of chemical shifts, e.g., Nucleus Range Standard 1 (10 ppm) Si(C3 ) 4 (TMS) 13 C (200 ppm) Si(C3 ) 4 19 F (400 ppm) CF3 COO 31 P (700 ppm) 85 % 3 PO 4 Because of the very small energy difference between the two nuclear spin levels transitions between them are very fast: both levels are in equilibrium (see Chapter 2). G = RTlnK or lnk = G /RT The energy difference, E, between 1 nuclear levels at 70 kgauss is only ~3x10 5kcal mol 1. Because of this very low energy difference the equilibrium populations of the nuclear spin levels are almost identical; typically they differ by much less than 1%. 3

4 We will focus our discussion on the magnetic resonance of 1 and 13C nuclei. owever many other nuclei also show magnetic resonance effects. The ability to show such effects is determined by the number of protons (Z) and neutrons (N) in the nucleus. Very significantly, nuclei with even Z and even N have no magnetic moment, i.e., they show no magnetic resonance. Unfortunately, this group includes two of the key elements of organic chemistry: 12C (Z = 6, N = 6) and 16O (Z = 8, N = 8). On the other hand nuclei with an odd number of protons or neutrons have magnetic moments and, thus, show magnetic resonance. Two features determine how easy it is to record the spectrum of a magnetic nucleus, its natural abundance and its relative sensitivity. The magnetic nucleus of hydrogen, 1, has a high natural abundance while the magnetic 13C is only a minor component of carbon. The relative sensitivity is related to the energy difference between the nuclear spin levels. It is high for 1 and 19F, but much lower for most other nuclei. Remember that a change in G affects K and the equilibrium populations exponentially. Nucleus Z N Abundance Relative Sensitivity C C N O

5 19F Si P In principle, we could record all magnetic nuclei if we had an instrument probing the wide range of frequencies required for this purpose. = 70 kg 15 N 13 C 1 19 F Resonance Frequency, ν [Mz] 300 In such a wide-band instrument chlorofluoromethane would show six signals, due to the nuclei 1, 19F, 13C, 2, 35, and F 1 ( 2 ) 1 C F ( 37 ) C Frequency (Mz) 0 5

6 owever, the significant value of NMR lies in the fact that nuclei of the same element, particularly 1 or 13C, resonate at slightly different frequencies, depending on their chemical environment. When we use an NMR spectrometer with a limited range of frequencies and expand the narrow range of the 1, and 13C spectrum, the different responses will give us an insight into different chemical environments. We call this type of spectroscopy high-resolution magnetic resonance F F 2 C O C 3 13 C ppm 0 ppm 200 ppm 0 ppm We will learn about high resolution 1 NMR; its value lies in three features, each of which provides us important information: 1) The different response frequencies of individual nuclei are called their chemical shift; they identify the number of different types of nuclei and the chemical environment of a nucleus or group of nuclei; 2) The intensity of the response signal, obtained by integration, provides a measure for the relative number of nuclei giving rise to this signal; 6

7 3) Adjacent non-equivalent nuclei cause a splitting (spin spin splitting, J coupling) of the signal into multiple lines, called multiplets; these multiplets identify the number of adjacent nuclei. Typical information gained from examining an NMR spectrum include: i) The number of different chemical shifts identifies the number of different types of groups present in the molecule. Typically, because of overlap, there are fewer signals than groups; however, for the simple spectra we will discuss the number of signals likely matches the number of groups. ii) The position of signals in the spectrum, the chemical shift, identifies the chemical environment of a group of nuclei; iii) The signal intensity identifies the relative number of nuclei represented by the signal; iv) The multiplicity (the number of lines in a signal) identifies the number of nearby nuclei interacting with the nucleus/i considered. Let us recall that the energy difference between the two nuclear spin levels, α (in the direction of the magnetic field, 0 ) and β [oriented antiparallel (opposite) to 0 ] are very minor. At a field of 70 kgauss E = hν = kcal mol 1 G = RTln K = RT log K [α] [β] n(α β) = 1 in 10,000 We now turn to the details of the three key features identified above. 1) Chemical Shift 7

8 Different chemical shifts are caused by different electronic environment of the corresponding 1 nucleus (or group of nuclei). This effect has its root in two physical principles: a) a magnetic field causes charged particles (electrons, such as the lone pairs at electronegative atoms, and magnetic nuclei) to move in circular fashion; and b) a moving charged particle (electron) induces a (small) magnetic field, hlocal. The induced field, hlocal, enhances or reduces the external magnetic field 0 by a small amount. We call a nucleus experiencing a higher field, 0 + hlocal deshielded. Its resonance is shifted to the left (to lower field or downfield). Nuclei experiencing the opposite effect are called shielded; they experience a smaller field, 0 hlocal. Their resonance is shifted to the right (to higher field or upfield). Different functional groups near a nucleus cause characteristic chemical shifts (Table 13.3). Electronegative atoms have a deshielding effect; the magnitude of the inductive effect correlates with the 8

9 electronegativity of the heteroatom. These effects decrease along an alkane chain, Br C 2 C 2 C ppm Empirical 1 Chemical Shift Benchmarks high field alkane, cycloalkane shielded allylic, benzylic alkyl next to electronegative atoms alkenes benzene and aromatics 10.0 aldehydes low field 12.0 carboxylic acids deshielded The question whether a group of nuclei are magnetically equivalent or nonequivalent is of great significance. 1 nuclei, which are chemically equivalent, have identical chemical shifts. 1 nuclei, which are magnetically equivalent have identical chemical shifts and couple to other nuclei in identical fashion. Chemical equivalence may be due to symmetry or to a molecular motion causing equivalence. Rapid rotation of a methyl group or conformational interconversion of two cyclohexane chair conformers will render nuclei equivalent. Be sure to check carefully for equivalence models will help. 2) Integration The intensity of a magnetic resonance signal is proportional to the number of equivalent nuclei represented by that signal. The intensity can be 9

10 obtained by integration, performed by a computer, which measures the area under the peak. The integrals provide the numerical ratio of the nuclei represented by the signal. The spectrum of methyl t-butyl ether has two signals in the ratio of 2 : 6 reflecting the presence of 1 and 3 C 3 groups. The three dichloropropanes have different chemical shifts and different ratios of 1 nuclei. C 3 three 1 signals 1 : 2 : 3 5.9, 2.35, 1.0 ppm C 3 two 1 signals 4 : 2 3.7, 2.25 ppm four 1 signals 1 : 1 : 1 : , 3.55, 4.15, 1.6 ppm 1,2-Dichloropropane has four different shifts because the two 1 nuclei on carbon 1 next to the chiral carbon are diastereotopic (see below). 10

11 3) Spin-spin coupling The few spectra discussed so far showed only single lines (singlets). Such signals are observed for groups of 1 nuclei without any 1 nuclei on an adjacent carbon. For compounds containing a nucleus or group of nuclei on an adjacent carbon the resonances appear as multiplets, groups of lines separated by identical distances. Such multiplets reveal significant information about the connectivity of individual groups in a molecule. The number of lines representing a nucleus (or group of equivalent nuclei) is determined by the number of nearby nuclei. This effect is caused by the alignment of nuclear magnets parallel or antiparallel to 0. A nucleus aligned parallel to 0 increases the field and deshields the neighboring nucleus; nuclei aligned antiparallel to 0 shield adjacent nuclei. Empirically signals with n neighboring nuclei are split into an n + 1 multiplet; if a is coupled to (b)n, its signal has (n + 1) lines. This relationship is called the n + 1 rule. Example: 3 C O C C 2 C ppm 1.0 ppm 3 C3 interacting with C2: (n + 1) triplet 2.2 ppm 3 C3 not coupled: (n + 1) singlet 2.4 ppm 2 C2 interacting with C3: (n + 1) quartet 3 C C C ppm 11

12 1.6 ppm 6 (C3)2 interacting with C: (n + 1) doublet 3.7 ppm 1 C interacting with (C3)2: (n + 1) septet Note that the J coupling is a mutual interaction. The strength of the interaction (the magnitude of J) is a function of a) the distance between the nuclei and b) the magnetic moments of these nuclei. For any two nuclei, these parameters must be identical, e.g., J a -C C- b = J b -C C- a ow do these interactions arise? When placed in a magnetic field magnetic nuclei align themselves either parallel or anti-parallel to the field. As a result nuclei in their vicinity experience either a slightly larger or a slightly smaller magnetic field than the nominal field, 0. We can explain the number of lines in a multiplet and their intensities by simple statistic considerations. The intensities of multiplet lines are determined by the probabilities of having the nuclei up (α) or down (β). For example, a nucleus, B, can have two orientations, parallel ( up, α) or anti-parallel ( down, β). The signal of the neighboring nucleus, A, is split into two lines; because of the miniscule energy difference between α and β spins, their levels are populated essentially equally: the two lines of A have 12

13 identical intensities (1 : 1). Two equivalent nuclei, B, have four probabilities: αα, αβ, βα, and ββ. Because αβ and βα are equivalent, there are three energy levels and three signals in the ratio of 1 : 2 : 1. Three equivalent nuclei, B, have eight probabilities: ααα - ααβ, αβα, and βαα - αββ, βαβ, and ββα - and ββ. Because the arrays with 13

14 2 αs are equivalent, and so are those with 2 βs, A has four signals in the ratio of 1 : 3 : 3 : 1. The multiplet intensities are given by Pascal's Triangle (p. 580). Note that each new term (number) is the sum of the two terms (numbers) above; this means that you can construct the triangle yourself readily. Number of neighboring nuclei n singlet Normalized Signal Intensities 1 0 doublet triplet quartet quintet sextet septet ) Spin-spin coupling complications The simple rules for multiplets given by Pascal s triangle are idealized and do not always apply. We will consider several such cases. i) Coupling to nuclei with very similar chemical shifts. 14

15 The NMR spectra of compounds having several groups with closelying chemical shifts have distorted spectra; we call these non-first-order spectra. In some spectra no clear multiplet pattern is discernible; in others, the multiplet intensities are slightly to seriously distorted. Recording the spectra at higher magnetic fields will improve the separation of the peaks and change the spectrum in the direction of the idealized pattern. ii) Coupling to non-equivalent nuclei In the majority of compounds hydrogens are coupled to two or three sets of neighboring 1 nuclei. In some compounds these neighbors have identical couplings, giving rise to a normal multiplet, cf., the hydrogens at C-2 of 1-bromopropane. In other cases, however, non-equivalent nuclei have different coupling constants, resulting in more complicated splitting patterns, cf., 1-iodopropane. ere, the n + 1 rule has to be applied sequentially for the sets of non-equivalent neighbors. It is convenient to begin with the largest coupling. 5) Enantiotopic and diastereotopic hydrogens (or groups) In some cases the two hydrogens of a C 2 group are nonequivalent. Typically, this is the case for a C 2 group next to a chiral center, e.g., the C 2 of 1,2-dichloropropane (see above). We call such hydrogens diastereotopic, because replacing one ( a ) or the other ( b ) by another function (e.g., Br) would generate diastereomers (bottom line, below). Diastereotopic hydrogens are nonequivalent; they have different chemical shifts and split each other, resulting in more complicated spectra. When a methylene group (C 2 ) has no adjacent chiral center, the two 1 nuclei are said to be enantiotopic, i.e., replacement of one ( a ) or the other ( b ) by 15

16 another group, such as, generates enantiomers (top line, below); the two 1 nuclei are magnetically equivalent. These nuclei are magnetically equivalent and have identical chemical shifts. a enantiotopic O b a O enantiomers O b COO COO COO a O b O b a O C 3 COO diastereotopic C 3 COO diastereomers C 3 COO 6) Fast exchange and consequences The signals of O functions often show no coupling to the hydrogens at the adjacent carbon. This observation is related to hydrogen bonding (remember?); the coupling is voided by a rapid exchange of the proton with other O groups and with traces of water; any remains in place (attached to the same O) for less than 10 5 s. Therefore, the NMR spectrum 16

17 shows only an average peak. The fast exchange can be slowed by cooling, causing the splitting to be observed. 7) 13C nuclear magnetic resonance You have learned that NMR spectroscopy is not limited to 1 nuclei. In particular, 13C NMR significantly aids structure elucidation. owever, the observation of 13C spectra faces major problems; we have learned earlier about the low natural abundance of 13C and the significantly lower sensitivity (the resonance frequency of 13C is only 1/4 that of 1. Furthermore 13C spectra have complex splitting patterns. Although we need not consider 13C 13C splittings (at the 1.1% natural abundance of 13C the probability of adjacent 13C nuclei is little more than 0.01%), 1 13C splittings are common and would further diminish the poor 13C intensities. In order to facility the recording of 13C spectra, all 1 splittings are removed by broad-band decoupling. This is achieved by applying a strong radiofrequency signal, covering the entire range of 1 frequencies, to the sample while the 13C spectrum is recorded. The resulting spectra show single lines for each magnetically distinct type of carbon. Like 1 spectra 13C spectra also have characteristic chemical shifts reflecting the chemical environment. The range of 13C shifts is much greater (~200 ppm) than that of 1 (10 ppm); 13C chemical shifts show similar trends to those of 1. Because of their low natural abundance, their low sensitivity, and because of the need to apply broad-band decoupling, 13C spectra are usually recorded by a special technique that allows ready accumulation. 17

18 Methods of Recording NMR Spectra There are two principal modes how NMR spectra, or any other spectra are recorded: a) Continuous Wave mode, CW Spectra recorded under conditions where the excitation frequency is changed continuously or, as in the case of NMR, where the magnetic field is changed continuously, are called continuous wave (CW) spectra. There will be spectral responses at a few frequencies, but at all other frequencies random noise is recorded. Multiple scans of the same sample can be accumulated to increase S/N, the signal to noise ratio. S/N increases with the square root of the number of scans; you need 100 scans to increase S/N tenfold. b) Fourier Transform mode, FT If we apply an energy pulse of frequency F to a sample for a very short time, t (turn excitation ON and OFF rapidly), we sample all frequencies in the range (F 1/t) < F < (F + 1/t) We then record the decay of the changes induced by the energy pulse; the result is called a free-induction decay (FID). Fourier transform is a mathematical procedure that converts the time record (FID) into a frequency record, the NMR spectrum. Multiple scans of the same sample can be accumulated increasing the signal to noise ratio, S/N. S/N increases with the square root of the number of scans; 100 scans will increase S/N tenfold. The FT method can be applied in NMR, IR, and MS. 9) Off-Resonance Decoupling Advanced Topic Broad-band decoupling simplifies the 13C spectra, but it also causes the loss of any information concerning nearby protons. For organic structure 18

19 determination it is of interest to know how many 1 nuclei are attached to a particular carbon. We have two methods that can provide that information and we will mention them briefly. The first, off-resonance decoupling, simplifies the 13C spectrum by eliminating all splittings but that due to 1 nuclei directly attached to the 13C in question. For example, the three signals in the 13C spectrum of 1,2,2-trichloromethane (shown below) can be assigned unambiguously. NOTE: you need not remember off-resonance decoupling for the coming exam. 10) DEPT (Distortionless Enhanced Polarization Transfer) Advanced The second method that identifies how many 1 nuclei are attached to a particular carbon is DEPT. A DEPT experiment separately identifies C 3, C 2, and C functions. It supplies the same information as off-resonance decoupling, but is easier to use with modern, computer controlled FT spectrometers. 19

20 Typically, a DEPT spectrum consists of three scans: the top trace has all, broad-band decoupled 13 C signals; the second, called DEPT-90, contains all methine carbons, bearing to a single1 nucleus; the third trace, called DEPT-135, has C and C 3 groups in absorption and C 2 groups in emission. Signals of quaternary carbons appear only in the top trace. The data can be manipulated further so that the top trace has all 13 C signals and the second, third and fourth traces have the C 3, C 2, and C groups, respectively. Computers have no problems sorting the signals for you. 11) 2D NMR COSY and ETCOR Advanced Topic 2D NMR spectroscopy records a spectrum as a function of two characteristic times. The resulting array of data is subjected to two Fourier transformations, yielding a spectrum as a function of two frequencies. We can plot a spectrum correlating two 1 frequencies (COSY); This gives 20

21 detailed insight into connectivity. Alternatively, we can correlate 1 with 13C frequencies; the resulting spectra reveal which 13C atom is connected to which group of protons. 21

Chemistry 307 Chapter 10 Nuclear Magnetic Resonance

Chemistry 307 Chapter 10 Nuclear Magnetic Resonance Chemistry 307 Chapter 10 Nuclear Magnetic Resonance Nuclear magnetic resonance (NMR) spectroscopy is one of three spectroscopic techniques that are useful tools for determining the structures of organic

More information

Organic Chemistry Tenth Edition

Organic Chemistry Tenth Edition Organic Chemistry Tenth Edition T. W. Graham Solomons Craig B. Fryhle Welcome to CHM 22 Organic Chemisty II Chapters 2 (IR), 9, 3-20. Chapter 2 and Chapter 9 Spectroscopy (interaction of molecule with

More information

Used to determine relative location of atoms within a molecule Most helpful spectroscopic technique in organic chemistry Related to MRI in medicine

Used to determine relative location of atoms within a molecule Most helpful spectroscopic technique in organic chemistry Related to MRI in medicine Structure Determination: Nuclear Magnetic Resonance CHEM 241 UNIT 5C 1 The Use of NMR Spectroscopy Used to determine relative location of atoms within a molecule Most helpful spectroscopic technique in

More information

H NMR (proton NMR): determines number and type of H atoms 13. C NMR (proton NMR): determines number and type of C atoms

H NMR (proton NMR): determines number and type of H atoms 13. C NMR (proton NMR): determines number and type of C atoms 14.1 An Introduction to NMR Spectroscopy A. The Basics of Nuclear Magnetic Resonance (NMR) Spectroscopy nuclei with odd atomic number have a S = ½ with two spin states (+1/2 and -1/2) 1 H NMR (proton NMR):

More information

Chapter 11 Structure Determination: Nuclear Magnetic Resonance Spectroscopy. Nuclear Magnetic Resonance Spectroscopy. 11.1 Nuclear Magnetic Resonance

Chapter 11 Structure Determination: Nuclear Magnetic Resonance Spectroscopy. Nuclear Magnetic Resonance Spectroscopy. 11.1 Nuclear Magnetic Resonance John E. McMurry http://www.cengage.com/chemistry/mcmurry Chapter 11 Structure Determination: Nuclear Magnetic Resonance Spectroscopy 11.1 Nuclear Magnetic Resonance Spectroscopy Many atomic nuclei behave

More information

Nuclear Magnetic Resonance Spectroscopy

Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance Spectroscopy Nuclear magnetic resonance spectroscopy is a powerful analytical technique used to characterize organic molecules by identifying carbonhydrogen frameworks within

More information

Nuclear Magnetic Resonance Spectroscopy

Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance Spectroscopy Introduction NMR is the most powerful tool available for organic structure determination. It is used to study a wide variety of nuclei: 1 H 13 C 15 N 19 F 31 P 2

More information

By far the most important and useful technique to identify organic molecules. Often the only technique necessary.

By far the most important and useful technique to identify organic molecules. Often the only technique necessary. Chapter 13: NMR Spectroscopy 39 NMR Spectroscopy By far the most important and useful technique to identify organic molecules. Often the only technique necessary. NMR spectrum can be recorded for many

More information

NMR is the most powerful structure determination tool available to organic chemists.

NMR is the most powerful structure determination tool available to organic chemists. Nuclear Magnetic esonance (NM) Spectrometry NM is the most powerful structure determination tool available to organic chemists. An NM spectrum provides information about: 1. The number of atoms of a given

More information

Chapter 13 Nuclear Magnetic Resonance Spectroscopy

Chapter 13 Nuclear Magnetic Resonance Spectroscopy Organic Chemistry, 6 th Edition L. G. Wade, Jr. Chapter 13 Nuclear Magnetic Resonance Spectroscopy Jo Blackburn Richland College, Dallas, TX Dallas County Community College District 2006, Prentice Hall

More information

C NMR Spectroscopy C NMR. C Transition Energy

C NMR Spectroscopy C NMR. C Transition Energy NMR NMR Spectroscopy is the most abundant natural isotope of carbon, but has a nuclear spin I = 0, rendering it unobservable by NMR. Limited to the observation of the nucleus which constitutes only.% of

More information

Chemical Shift (δ) 0 (by definition) 0.8-1.0 1.2-1.4 1.4-1.7 1.6-2.6 2.0-3.0 2.2-2.5 2.3-2.8 0.5-6.0 3.4-4.0 3.3-4.0 0.5-5.0

Chemical Shift (δ) 0 (by definition) 0.8-1.0 1.2-1.4 1.4-1.7 1.6-2.6 2.0-3.0 2.2-2.5 2.3-2.8 0.5-6.0 3.4-4.0 3.3-4.0 0.5-5.0 Chemical Shifts 1 H-NMR Type of Hydrogen (CH 3 ) 4 Si RCH 3 RCH 2 R R 3 CH R 2 C=CRCHR 2 RC CH ArCH 3 ArCH 2 R ROH RCH 2 OH RCH 2 OR R 2 NH O RCCH 3 O RCCH 2 R Chemical Shift (δ) 0 (by definition) 0.8-1.0

More information

Proton Nuclear Magnetic Resonance ( 1 H-NMR) Spectroscopy

Proton Nuclear Magnetic Resonance ( 1 H-NMR) Spectroscopy Proton Nuclear Magnetic Resonance ( 1 H-NMR) Spectroscopy Theory behind NMR: In the late 1940 s, physical chemists originally developed NMR spectroscopy to study different properties of atomic nuclei,

More information

Proton Nuclear Magnetic Resonance Spectroscopy

Proton Nuclear Magnetic Resonance Spectroscopy Proton Nuclear Magnetic Resonance Spectroscopy Introduction: The NMR Spectrum serves as a great resource in determining the structure of an organic compound by revealing the hydrogen and carbon skeleton.

More information

Chapter 13 Spectroscopy NMR, IR, MS, UV-Vis

Chapter 13 Spectroscopy NMR, IR, MS, UV-Vis Chapter 13 Spectroscopy NMR, IR, MS, UV-Vis Main points of the chapter 1. Hydrogen Nuclear Magnetic Resonance a. Splitting or coupling (what s next to what) b. Chemical shifts (what type is it) c. Integration

More information

13C NMR Spectroscopy

13C NMR Spectroscopy 13 C NMR Spectroscopy Introduction Nuclear magnetic resonance spectroscopy (NMR) is the most powerful tool available for structural determination. A nucleus with an odd number of protons, an odd number

More information

Examination of Proton NMR Spectra

Examination of Proton NMR Spectra Examination of Proton NMR Spectra What to Look For 1) Number of Signals --- indicates how many "different kinds" of protons are present. 2) Positions of the Signals --- indicates something about magnetic

More information

NMR Phenomenon. Nuclear Magnetic Resonance. µ A spinning charged particle generates a magnetic field.

NMR Phenomenon. Nuclear Magnetic Resonance. µ A spinning charged particle generates a magnetic field. NMR Phenomenon Nuclear Magnetic Resonance µ A spinning charged particle generates a magnetic field. A nucleus with a spin angular momentum will generate a magnetic moment (μ). If these tiny magnets are

More information

SIGNAL SPLITTING: Why are there so many peaks all in one area? This is called signal splitting. Example: (image from Illustrated Glossary, splitting)

SIGNAL SPLITTING: Why are there so many peaks all in one area? This is called signal splitting. Example: (image from Illustrated Glossary, splitting) Proton NMR Spectroscopy: Split the signals, not your brain! Before we can understand signal splitting, we have to understand what NMR is. This tutorial will first discuss a few concepts about NMR and then

More information

Chemical shift = observed chemical shift in MHz/ frequency of spectrometer (MHz)

Chemical shift = observed chemical shift in MHz/ frequency of spectrometer (MHz) Chapter 4. Physical Basis of NMR Spectroscopy. Today the most widely used method for determining the structure of organic compounds is nuclear magnetic resonance (NMR) spectroscopy. NMR spectroscopy involves

More information

Chapter 16: NMR Spectroscopy (i.e., the most exciting thing on the planet)

Chapter 16: NMR Spectroscopy (i.e., the most exciting thing on the planet) Chapter 16: NMR Spectroscopy (i.e., the most exciting thing on the planet) ne day (soon), the following will make a lot of sense to you: 16.1-16.3 The Proton: An Unexpected Journey NMR: Like electrons,

More information

NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY NMR Spectroscopy F34 1 NULEAR MAGNETI RESONANE SPETROSOPY Involves interaction of materials with the low-energy radiowave region of the electromagnetic spectrum Origin of Spectra Theory All nuclei possess

More information

Shielding and Chemical Shift. Figure 14.3

Shielding and Chemical Shift. Figure 14.3 Shielding and Chemical Shift Figure 14.3 1 Summary of Shielding Figure 14.4 2 Shielding and Signal Position 3 Characteristic Chemical Shifts Protons in a given environment absorb in a predictable region

More information

Solving Spectroscopy Problems

Solving Spectroscopy Problems Solving Spectroscopy Problems The following is a detailed summary on how to solve spectroscopy problems, key terms are highlighted in bold and the definitions are from the illustrated glossary on Dr. Hardinger

More information

PROTON NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY (H-NMR)

PROTON NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY (H-NMR) PROTON NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY (H-NMR) WHAT IS H-NMR SPECTROSCOPY? References: Bruice 14.1, 14.2 Introduction NMR or nuclear magnetic resonance spectroscopy is a technique used to determine

More information

Introduction to Nuclear Magnetic Resonance

Introduction to Nuclear Magnetic Resonance Reminder: These notes are meant to supplement, not replace, the textbook and laboratory manual. Introduction to Nuclear Magnetic Resonance (See also the Gas Chromatography notes, which also apply to today's

More information

NMR Spectroscopy. Introduction

NMR Spectroscopy. Introduction Introduction NMR Spectroscopy Over the past fifty years nuclear magnetic resonance spectroscopy, commonly referred to as nmr, has become the most important technique for determining the structure of organic

More information

Instrumental Lab. Nuclear Magnetic Resonance. Dr Alex J. Roche

Instrumental Lab. Nuclear Magnetic Resonance. Dr Alex J. Roche Instrumental Lab Nuclear Magnetic Resonance Dr Alex J. Roche 1 Nuclear Magnetic Resonance (NMR) Spectroscopy NMR is the most powerful analytical tool currently available to an organic chemist. NMR allows

More information

Background A nucleus with an odd atomic number or an odd mass number has a nuclear spin that can be observed by NMR spectrometers.

Background A nucleus with an odd atomic number or an odd mass number has a nuclear spin that can be observed by NMR spectrometers. NMR Spectroscopy I Reading: Wade chapter, sections -- -7 Study Problems: -, -7 Key oncepts and Skills: Given an structure, determine which protons are equivalent and which are nonequivalent, predict the

More information

Information contained in an NMR spectrum includes: 1. number of signals. Interpreting 1 H (Proton) NMR Spectra

Information contained in an NMR spectrum includes: 1. number of signals. Interpreting 1 H (Proton) NMR Spectra Information contained in an NMR spectrum includes: Interpreting 1 (Proton) NMR Spectra 1. number of signals 2. their intensity (as measured by area under peak) 3. splitting pattern (multiplicity) Number

More information

1 H and 13 C NMR compared: Both give information about the number of chemically nonequivalent nuclei (nonequivalent

1 H and 13 C NMR compared: Both give information about the number of chemically nonequivalent nuclei (nonequivalent 1 H and 13 C NMR compared: 13 C NMR Spectroscopy Both give information about the number of chemically nonequivalent nuclei (nonequivalent hydrogens or nonequivalent carbons) Both give information about

More information

TYPES OF INFORMATION FROM NMR SPECTRUM

TYPES OF INFORMATION FROM NMR SPECTRUM TYPES OF INFORMATION FROM NMR SPETRUM 1. Each different type of hydrogen gives a peak or group of peaks (multiplet). 2. The chemical shift (δ, in ppm) gives a clue as to the type of hydrogen generating

More information

NUCLEAR MAGNETIC RESONANCE AND INTRODUCTION TO MASS SPECTROMETRY

NUCLEAR MAGNETIC RESONANCE AND INTRODUCTION TO MASS SPECTROMETRY NUCLEAR MAGNETIC RESNANCE AND INTRDUCTIN T MASS SPECTRMETRY A STUDENT SHULD BE ABLE T: 1. Identify and explain the processes involved in proton and carbon-13 nuclear magnetic resonance (NMR), and mass

More information

Proton Nuclear Magnetic Resonance Spectroscopy

Proton Nuclear Magnetic Resonance Spectroscopy CHEM 334L Organic Chemistry Laboratory Revision 2.0 Proton Nuclear Magnetic Resonance Spectroscopy In this laboratory exercise we will learn how to use the Chemistry Department's Nuclear Magnetic Resonance

More information

The Four Questions to Ask While Interpreting Spectra. 1. How many different environments are there?

The Four Questions to Ask While Interpreting Spectra. 1. How many different environments are there? 1 H NMR Spectroscopy (#1c) The technique of 1 H NMR spectroscopy is central to organic chemistry and other fields involving analysis of organic chemicals, such as forensics and environmental science. It

More information

Nuclear Magnetic Resonance

Nuclear Magnetic Resonance Nuclear Magnetic Resonance NMR is probably the most useful and powerful technique for identifying and characterizing organic compounds. Felix Bloch and Edward Mills Purcell were awarded the 1952 Nobel

More information

NMR SPECTROSCOPY A N I N T R O D U C T I O N T O... Self-study booklet NUCLEAR MAGNETIC RESONANCE. 4 3 2 1 0 δ PUBLISHING

NMR SPECTROSCOPY A N I N T R O D U C T I O N T O... Self-study booklet NUCLEAR MAGNETIC RESONANCE. 4 3 2 1 0 δ PUBLISHING A N I N T R O D U T I O N T O... NMR SPETROSOPY NULEAR MAGNETI RESONANE 4 3 1 0 δ Self-study booklet PUBLISING NMR Spectroscopy NULEAR MAGNETI RESONANE SPETROSOPY Origin of Spectra Theory All nuclei possess

More information

If replacement of each of two hydrogens by some group leads to enantiomers, those hydrogens are enantiotopic

If replacement of each of two hydrogens by some group leads to enantiomers, those hydrogens are enantiotopic Homotopic Hydrogens Hydrogens are chemically equivalent or homotopic if replacing each one in turn by the same group would lead to an identical compound If replacement of each of two hydrogens by some

More information

NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY PRINCIPLE AND APPLICATION IN STRUCTURE ELUCIDATION Professor S. SANKARARAMAN Department of Chemistry Indian Institute of Technology Madras Chennai 600 036 sanka@iitm.ac.in

More information

Nuclear Magnetic Resonance notes

Nuclear Magnetic Resonance notes Reminder: These notes are meant to supplement, not replace, the laboratory manual. Nuclear Magnetic Resonance notes Nuclear Magnetic Resonance (NMR) is a spectrometric technique which provides information

More information

Nuclear Shielding and 1. H Chemical Shifts. 1 H NMR Spectroscopy Nuclear Magnetic Resonance

Nuclear Shielding and 1. H Chemical Shifts. 1 H NMR Spectroscopy Nuclear Magnetic Resonance NMR Spectroscopy Nuclear Magnetic Resonance Nuclear Shielding and hemical Shifts What do we mean by "shielding?" What do we mean by "chemical shift?" The electrons surrounding a nucleus affect the effective

More information

A 13 C-NMR spectrum. RF Frequency The intensity of the peak doesn t does not necessarily correlate to the number of carbons.

A 13 C-NMR spectrum. RF Frequency The intensity of the peak doesn t does not necessarily correlate to the number of carbons. 13 -NMR We can examine the nuclear magnetic properties of carbon atoms in a molecule to learn about a molecules structure. Most carbons are 12 ; 12 has an even number of protons and neutrons and cannot

More information

Chapter 15 NMR Spectroscopy

Chapter 15 NMR Spectroscopy Chempocalypse Now! Chapter 15 NMR Spectroscopy Page 1 Chapter 15 NMR Spectroscopy Parts of Topics A5 and A9 from the IB HL Chemistry Curriculum A5 A.5.1 Nuclear magnetic resonance (NMR) spectrometry (2

More information

Introduction to NMR Part 1. Revised 2/19/07 Anne M. Gorham

Introduction to NMR Part 1. Revised 2/19/07 Anne M. Gorham Introduction to NMR Part 1 Revised 2/19/07 Anne M. Gorham What is an NMR? Niobium-tin-copper clad coil wound like a spool of thread. The current runs through this coil, creating the magnetic field. This

More information

Nuclear Magnetic Resonance Spectroscopy (NMR)

Nuclear Magnetic Resonance Spectroscopy (NMR) Nuclear Magnetic Resonance Spectroscopy (NMR) NMR is a spectroscopic technique which relies on the magnetic properties of the atomic nucleus. When placed in a strong magnetic field, certain nuclei resonate

More information

Molecular spectroscopy III: Nuclear Magnetic Resonance (NMR)

Molecular spectroscopy III: Nuclear Magnetic Resonance (NMR) Molecular spectroscopy III: Nuclear Magnetic Resonance (NMR) Nuclear magnetic resonance (NMR) is a physical phenomenon in which magnetic nuclei in a magnetic field absorb electromagnetic radiation at a

More information

Structure Determination by NMR

Structure Determination by NMR Structure Determination by NMR * Introduction to NMR * 2D NMR, resonance assignments J Correlated Based Experiments * COSY - Correlated Spectroscopy * NOESY - Nuclear Overhauser Effect Spectroscopy * HETCOR

More information

Nuclear Magnetic Resonance (NMR) Wade Textbook

Nuclear Magnetic Resonance (NMR) Wade Textbook Nuclear Magnetic Resonance (NMR) Wade Textbook Background Is a nondestructive structural analysis technique Has the same theoretical basis as magnetic resonance imaging (MRI) Referring to MRI as nuclear

More information

Now that we know why we re putting ourselves through the hassle of understanding all of this, let s get started with the analysis process.

Now that we know why we re putting ourselves through the hassle of understanding all of this, let s get started with the analysis process. 13 C -NMR: Cracking Those Carbons A little background: Protons, neutrons, and electrons all have something called spin. This doesn t mean that they re actually spinning around in tight circles like Olympian

More information

For example: (Example is from page 50 of the Thinkbook)

For example: (Example is from page 50 of the Thinkbook) SOLVING COMBINED SPECTROSCOPY PROBLEMS: Lecture Supplement: page 50-53 in Thinkbook CFQ s and PP s: page 216 241 in Thinkbook Introduction: The structure of an unknown molecule can be determined using

More information

Signal Manipulation. time domain NMR signal in MHz range is converted to khz (audio) range by mixing with the reference ( carrier ) frequency

Signal Manipulation. time domain NMR signal in MHz range is converted to khz (audio) range by mixing with the reference ( carrier ) frequency NMR Spectroscopy: 3 Signal Manipulation time domain NMR signal in MHz range is converted to khz (audio) range by mixing with the reference ( carrier ) frequency Ref in (MHz) mixer Signal in (MHz) Signal

More information

NMR Spectroscopy. B = B o - B e ν o = γb/2π

NMR Spectroscopy. B = B o - B e ν o = γb/2π NMR Spectroscopy hem 345 Univ. Wisconsin, Madison hemical Shifts hemical shifts have their origin in the circulation of electrons induced by the magnetic field, which reduces the actual field at the nucleus.

More information

NMR - Basic principles

NMR - Basic principles NMR - Basic principles Subatomic particles like electrons, protons and neutrons are associated with spin - a fundamental property like charge or mass. In the case of nuclei with even number of protons

More information

Interpretation of 1 H spectra

Interpretation of 1 H spectra Interpretation of 1 spectra So far we have talked about different NMR techniques and pulse sequences, but we haven t focused seriously on how to analyze the data that we obtain from these experiments.

More information

4. It is possible to excite, or flip the nuclear magnetic vector from the α-state to the β-state by bridging the energy gap between the two. This is a

4. It is possible to excite, or flip the nuclear magnetic vector from the α-state to the β-state by bridging the energy gap between the two. This is a BASIC PRINCIPLES INTRODUCTION TO NUCLEAR MAGNETIC RESONANCE (NMR) 1. The nuclei of certain atoms with odd atomic number, and/or odd mass behave as spinning charges. The nucleus is the center of positive

More information

CHEMISTRY 251 Spectroscopy Problems

CHEMISTRY 251 Spectroscopy Problems EMISTRY 251 Spectroscopy Problems The IR below is most likely of a: aldehyde alkane alkene alkyl bromide alkyne The IR below is most likely of a: acyl chloride alcohol 3 amide ether nitrile The IR spectrum

More information

CHEM1002 Worksheet 4: Spectroscopy Workshop (1)

CHEM1002 Worksheet 4: Spectroscopy Workshop (1) CHEM1002 Worksheet 4: Spectroscopy Workshop (1) This worksheet forms part of the Spectroscopy Problem Solving Assignment which represents 10% of the assessment of this unit. You should use the support

More information

Proton NMR. One Dimensional H-NMR. Cl S. Common types of NMR experiments: 1-H NMR

Proton NMR. One Dimensional H-NMR. Cl S. Common types of NMR experiments: 1-H NMR Common types of NMR experiments: 1- NMR Proton NMR ne Dimensional -NMR a. Experiment igh field proton NMR (400Mz). single-pulse experiment. b. Spectral nterpretation i. Number of multiplets gives the different

More information

IV. Chemical Shifts - δ unit

IV. Chemical Shifts - δ unit Chem 215-216 W11 Notes - Dr. Masato Koreeda Date: January 5, 2011 Topic: _NMR-II page 1 of 10. IV. Chemical Shifts - δ unit Each nucleus in a molecule has a different degree of electron surrounding it.

More information

CHARACTERISTIC FUNCTIONAL-GROUP NMR ABSORPTIONS 13.7. A. NMR Spectra of Alkenes 612 CHAPTER 13 NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

CHARACTERISTIC FUNCTIONAL-GROUP NMR ABSORPTIONS 13.7. A. NMR Spectra of Alkenes 612 CHAPTER 13 NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 612 APTER 13 NULEAR MAGNETI RESONANE SPETROSOPY PROBLEMS 13.22 The d 1.2 1.5 region of the 300-Mz NMR spectrum of 1-chlorohexane, given in Fig. 13.12, is complex and not first-order. Assuming you could

More information

Determination of Molecular Structure by MOLECULAR SPECTROSCOPY

Determination of Molecular Structure by MOLECULAR SPECTROSCOPY Determination of Molecular Structure by MOLEULAR SPETROSOPY hemistry 3 B.Z. Shakhashiri Fall 29 Much of what we know about molecular structure has been learned by observing and analyzing how electromagnetic

More information

Lecture Topics: I. IR spectroscopy

Lecture Topics: I. IR spectroscopy IR and Mass Spectrometry Reading: Wade chapter 12, sections 12-1- 12-15 Study Problems: 12-15, 12-16, 12-23, 12-25 Key Concepts and Skills: Given an IR spectrum, identify the reliable characteristic peaks

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Exam Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 1) Calculate the magnetic field that corresponds to the proton resonance frequency of 300.00

More information

Department of Chemistry College of Science Sultan Qaboos University. Topics and Learning Outcomes

Department of Chemistry College of Science Sultan Qaboos University. Topics and Learning Outcomes Department of Chemistry College of Science Sultan Qaboos University Title : CHEM 3326 (Applied Spectroscopy) Credits : 3 Course Format : 2 lectures and 2 tutorials Course Text : Spectrometric Identification

More information

Organic Spectroscopy: a Primer

Organic Spectroscopy: a Primer EM 03 rganic Spectroscopy: a Primer INDEX A. Introduction B. Infrared (IR) Spectroscopy 3. Proton Nuclear Magnetic Resonance ( NMR) Spectroscopy A. Introduction The problem of determining the structure

More information

INTERPRETING 2D NMR SPECTRA 1

INTERPRETING 2D NMR SPECTRA 1 INTERPRETING D NMR SPETRA 1 ow To Read SY Spectra -Nitropropane: To see what type of information a SY spectrum may provide. we shall consider several examples of increasing complexity. The first is the

More information

Nuclear Magnetic Resonance Spectroscopy

Nuclear Magnetic Resonance Spectroscopy Chapter 8 Nuclear Magnetic Resonance Spectroscopy http://www.yteach.co.uk/page.php/resources/view_all?id=nuclear_magnetic _resonance_nmr_spectroscopy_spin_spectrometer_spectrum_proton_t_pag e_5&from=search

More information

How to Quickly Solve Spectrometry Problems

How to Quickly Solve Spectrometry Problems How to Quickly Solve Spectrometry Problems You should be looking for: Mass Spectrometry (MS) Chemical Formula DBE Infrared Spectroscopy (IR) Important Functional Groups o Alcohol O-H o Carboxylic Acid

More information

NMR 13 13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8 13.9 13.10 13.11 13.12 1H NMR

NMR 13 13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8 13.9 13.10 13.11 13.12 1H NMR A P T E R 13 Spectroscopy A P T E R U T L I N E 13.1 Principles of Molecular Spectroscopy: Electromagnetic Radiation......... 518 13.2 Principles of Molecular Spectroscopy: Quantized Energy States..........

More information

Special versions of COSY can differentiate between short range and long range interactions, as illustrated below.

Special versions of COSY can differentiate between short range and long range interactions, as illustrated below. 2D NMR Spectroscopy To record a normal FT NMR spectrum we apply a pulse to our spin system and record the free induction decay (FID) following the pulse. The spectrum is obtained by Fourier Transform where

More information

The Hydrogen Atom Is a Magnet. http://www.seed.slb.com/en/scictr/watch/gashydrates/detecting.htm

The Hydrogen Atom Is a Magnet. http://www.seed.slb.com/en/scictr/watch/gashydrates/detecting.htm The Hydrogen Atom Is a Magnet Nuclear Magnetic Resonance Spectroscopy (NMR) Proton NMR A hydrogen nucleus can be viewed as a proton, which can be viewed as a spinning charge. As with any spinning charge,

More information

2D NMR Spectroscopy. Lecture 3

2D NMR Spectroscopy. Lecture 3 2D NMR Spectroscopy Lecture 3 hemical shifts The chemical environment affects the magnetic field of nuclei. B eff = B o - B loc B eff = B o ( - σ ) σ is the magnetic shielding of the nucleus. Factors that

More information

By submitting this essay, I attest that it is my own work, completed in accordance with University regulations. Andrew Yang

By submitting this essay, I attest that it is my own work, completed in accordance with University regulations. Andrew Yang CHEM 251L: Inorganic Chemistry Laboratory Professor Jonathan Parr By submitting this essay, I attest that it is my own work, completed in accordance with University regulations. Andrew Yang An Introduction

More information

Introduction. Chapter 12 Mass Spectrometry and Infrared Spectroscopy. Electromagnetic Spectrum. Types of Spectroscopy 8/29/2011

Introduction. Chapter 12 Mass Spectrometry and Infrared Spectroscopy. Electromagnetic Spectrum. Types of Spectroscopy 8/29/2011 Organic Chemistry, 6 th Edition L. G. Wade, Jr. Chapter 12 Mass Spectrometry and Infrared Spectroscopy Introduction Spectroscopy is an analytical technique which helps determine structure. It destroys

More information

Introduction to Nuclear Magnetic Resonance Spectroscopy

Introduction to Nuclear Magnetic Resonance Spectroscopy Introduction to Nuclear Magnetic Resonance Spectroscopy Dr. Dean L. Olson, NMR Lab Director School of Chemical Sciences University of Illinois Called figures, equations, and tables are from Principles

More information

Nuclear Magnetic Resonance Spectroscopy

Nuclear Magnetic Resonance Spectroscopy Most spinning nuclei behave like magnets. Nuclear Magnetic Resonance Spectroscopy asics owever, as opposed to the behavior of a classical magnet the nuclear spin magnetic moment does not always align with

More information

E35 SPECTROSCOPIC TECHNIQUES IN ORGANIC CHEMISTRY

E35 SPECTROSCOPIC TECHNIQUES IN ORGANIC CHEMISTRY E35 SPECTRSCPIC TECNIQUES IN RGANIC CEMISTRY TE TASK To use mass spectrometry and IR, UV/vis and NMR spectroscopy to identify organic compounds. TE SKILLS By the end of the experiment you should be able

More information

CHAPTER 12 INFRARED SPECTROSCOPY. and MASS SPECTROSCOPY

CHAPTER 12 INFRARED SPECTROSCOPY. and MASS SPECTROSCOPY KOT 222 ORGANIC CHEMISTRY II CHAPTER 12 INFRARED SPECTROSCOPY and MASS SPECTROSCOPY Part I Infrared Spectroscopy What is Spectroscopy? Spectroscopy is the study of the interaction of matter and electromagnetic

More information

NMR Spectroscopy of Aromatic Compounds (#1e)

NMR Spectroscopy of Aromatic Compounds (#1e) NMR Spectroscopy of Aromatic Compounds (#1e) 1 H NMR Spectroscopy of Aromatic Compounds Erich Hückel s study of aromaticity in the 1930s produced a set of rules for determining whether a compound is aromatic.

More information

NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY PRINCIPLE AND APPLICATION IN STRUCTURE ELUCIDATION Professor S. SANKARARAMAN Department of Chemistry Indian Institute of Technology Madras Chennai 600 036 sanka@iitm.ac.in

More information

Chapter 13 Mass Spectrometry and Infrared Spectroscopy

Chapter 13 Mass Spectrometry and Infrared Spectroscopy Chapter 13 Mass Spectrometry and Infrared Spectroscopy Copyright 2011 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Overview of Mass Spectrometry Mass spectrometry

More information

Interpretation of Experimental Data

Interpretation of Experimental Data Lab References When evaluating experimental data it is important to recognize what the data you are collecting is telling you, as well as the strengths and limitations of each method you are using. Additionally,

More information

Introduction to Quantum Mechanics and Multiplet Splitting in 1 H NMR Spectrum: A Demonstration and Classroom Activity

Introduction to Quantum Mechanics and Multiplet Splitting in 1 H NMR Spectrum: A Demonstration and Classroom Activity Introduction to Quantum Mechanics and Multiplet Splitting in 1 H NMR Spectrum: A Demonstration and Classroom Activity John Frost Ph.D. 01/24-2014 Abstract: Quantum mechanics is an incredibly important

More information

1 H NMR and 13 C NMR spectra interpretation

1 H NMR and 13 C NMR spectra interpretation 1 NMR and 13 C NMR spectra interpretation Ewa Dudziak Introduction Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful method for organic molecule structure determination. Moreover, NMR allows

More information

Nuclear Magnetic Resonance (NMR) Spectroscopy cont... Recommended Reading:

Nuclear Magnetic Resonance (NMR) Spectroscopy cont... Recommended Reading: Applied Spectroscopy Nuclear Magnetic Resonance (NMR) Spectroscopy cont... Recommended Reading: Banwell and McCash Chapter 7 Skoog, Holler Nieman Chapter 19 Atkins, Chapter 18 Relaxation processes We need

More information

How to Report NMR Spectra in a Formal Report

How to Report NMR Spectra in a Formal Report How to Report NMR Spectra in a Formal Report Chem7L Spring 007 ne of the most important elements of authoring an experimental publication is the correct reporting of analytical data. In Experiment, you

More information

NMR Guidelines for ACS Journals

NMR Guidelines for ACS Journals NMR Guidelines for ACS Journals Updated December 2013 1. NMR Text (Experimental Section) 1.1 The compound must be clearly identified, for example in a header at the beginning of a) the synthetic procedure

More information

Infrared Spectroscopy and Mass Spectrometry

Infrared Spectroscopy and Mass Spectrometry Infrared Spectroscopy and Mass Spectrometry Introduction It is fundamental for an organic chemist to be able to identify, or characterize, the new compound that he/she has just made. Sometimes this can

More information

NMR for Organic Chemistry III

NMR for Organic Chemistry III NMR for rganic Chemistry III Lecture 1 Lecture 2 Lecture 3 Lecture 4 Recap of Key Themes from NMR II + Problems CSY + Problems HSQC + Problems HMBC and Solving Structures + Problems 1 1. Practical Aspects

More information

NMR SPECTROSCOPY. Basic Principles, Concepts, and Applications in Chemistry. Harald Günther University of Siegen, Siegen, Germany.

NMR SPECTROSCOPY. Basic Principles, Concepts, and Applications in Chemistry. Harald Günther University of Siegen, Siegen, Germany. NMR SPECTROSCOPY Basic Principles, Concepts, and Applications in Chemistry Harald Günther University of Siegen, Siegen, Germany Second Edition Translated by Harald Günther JOHN WILEY & SONS Chichester

More information

1 Introduction to NMR Spectroscopy

1 Introduction to NMR Spectroscopy Introduction to NMR Spectroscopy Tremendous progress has been made in NMR spectroscopy with the introduction of multidimensional NMR spectroscopy and pulse Fourier transform NMR spectroscopy. For a deeper

More information

Symmetric Stretch: allows molecule to move through space

Symmetric Stretch: allows molecule to move through space BACKGROUND INFORMATION Infrared Spectroscopy Before introducing the subject of IR spectroscopy, we must first review some aspects of the electromagnetic spectrum. The electromagnetic spectrum is composed

More information

THEORY and INTERPRETATION of ORGANIC SPECTRA. H. D. Roth Nuclear Magnetic Resonance

THEORY and INTERPRETATION of ORGANIC SPECTRA. H. D. Roth Nuclear Magnetic Resonance Organic Spectra NMR Spectroscopy. D. Roth TEORY and INTERPRETATION of ORGANIC SPECTRA Nuclei differ in mass number (A). D. Roth Nuclear Magnetic Resonance Classes of Nuclei atomic number (number of protons,

More information

Spectroscopy. energy Low λ High ν. UV-visible

Spectroscopy. energy Low λ High ν. UV-visible Spectroscopy frequency 10 20 10 18 10 16 10 14 10 12 10 8 Gamma rays X-rays UV IR Microwaves Radiowaves High energy Low λ High ν visible Low energy quantization of energy levels X-Ray UV-visible Infrared

More information

NMR and other Instrumental Techniques in Chemistry and the proposed National Curriculum.

NMR and other Instrumental Techniques in Chemistry and the proposed National Curriculum. NMR and other Instrumental Techniques in Chemistry and the proposed National Curriculum. Dr. John Jackowski Chair of Science, Head of Chemistry Scotch College Melbourne john.jackowski@scotch.vic.edu.au

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Calculate the percentage of 1-chloro-2-methylbutane in the following reaction. 1) A)

More information

Using Nuclear Magnetic Resonance Spectroscopy to Identify an Unknown Compound prepared by Joseph W. LeFevre, SUNY Oswego

Using Nuclear Magnetic Resonance Spectroscopy to Identify an Unknown Compound prepared by Joseph W. LeFevre, SUNY Oswego m o d u l a r l a b o r a t o r y p r o g r a m i n c h e m i s t r y publisher:. A. Neidig organic editor: Joe Jeffers TE 711 Using Nuclear Magnetic Resonance Spectroscopy to Identify an Unknown ompound

More information

Determination of Equilibrium Constants using NMR Spectrscopy

Determination of Equilibrium Constants using NMR Spectrscopy CHEM 331L Physical Chemistry Laboratory Revision 2.0 Determination of Equilibrium Constants using NMR Spectrscopy In this laboratory exercise we will measure the Equilibrium Constant K c for the keto-enol

More information

20. NMR Spectroscopy and Magnetic Properties

20. NMR Spectroscopy and Magnetic Properties 20. NMR Spectroscopy and Magnetic Properties Nuclear Magnetic Resonance (NMR) Spectroscopy is a technique used largely by organic, inorganic, and biological chemists to determine a variety of physical

More information