# Light. Light. Overview. In-class activity. What are waves? In this section: PSC 203. What is it? Your thoughts?

Save this PDF as:

Size: px
Start display at page:

Download "Light. Light. Overview. In-class activity. What are waves? In this section: PSC 203. What is it? Your thoughts?"

## Transcription

1 Light PSC 203 Overview In this section: What is light? What is the EM Spectrum? How is light created? What can we learn from light? In-class activity Discuss your answers in groups of 2 Think of as many examples light sources that you can think of. List as many as you can on your paper. Hold onto this list until the end of lecture for the rest of the in-class assignment. What is it? Your thoughts? Light What is light? light is an electro-magnetic wave electric and magnetic fields oscillate carries energy as it travels What are waves? If light is a wave we need to understand what a wave is. 1

2 Waves all waves have three related properties speed: how fast the wave moves wavelength: the distance between peaks frequency: how often a peak passes by Speed the speed of light is very fast c = 300,000,000 m/s = 3 x 10 8 m/s c = 671,000,000 mi/hr Wavelength the distance between peaks You can see the wavelength of an ocean wave You can t see the wavelength of light but it works the same way Frequency how many peaks pass a fixed point during a set amount of time most commonly measured in Hz (Hertz) 1 Hz = 1 wave peak per second Visible Light We don t see the waves in light because they are very small Different wavelengths correspond to different colors We can see the colors if we use a tool In-class experiment 2

3 Visible Light the small portion of the light that our eyes can perceive Spectrum light has a range of energies, wavelengths, and frequencies the range is called the spectrum When we break light into its wavelengths, we see its spectrum Types of Spectra When we break light into its spectrum it doesn t always look the same It depends on how the light was generated Real Spectra Non-visible light The portion our eyes see is just a small part of the whole range Spectrum is divided into named bands What are they? 3

4 Spectrum Wavelength vs frequency Wavelength and frequency are related Speed = wavelength*frequency c c = λ f Frequency increases -> > wavelength decreases Frequency decreases -> > wavelength increases Energy vs frequency As frequency increases, so does the energy (takes more energy to create high frequencies) High frequency = high energy Low frequency = low energy Wavelength is opposite High energy = short wavelength Low energy = long wavelength Energy Span?? Radio waves have the lowest energy the frequency is very low (10 7 Hz) the wavelength is very large (30 m) Gamma rays have the highest energy the frequency is very high (10 18 Hz) the wavelength is very small (3 x m) Which of the following travels slowest through space? a) Radio waves. b) Visible light. c) X-rays. d) Infrared photons. e) They all travel at the same speed. 4

5 ?? A photon of which color of light carries the most energy? a. Red. b. Yellow. c. Green. d. Blue. e. All photons have the same energy. Appearance Objects look different depending on what type of light is used Need special tools to see different types of light We can get new information by looking at different types of light Object in various light Infrared Shows heat levels IR goes through dust and smoke X-rays Emitted only by high energy processes Can pass through lower density materials Ultraviolet Emitted by medium-high energy sources Flowers show highlighted portions near the pollen when viewed in UV (bees see UV light too) Old bruises on human skin can sometimes be seen in UV but not visible 5

6 Radio Emitted by cold hydrogen Can pass through solid objects (like walls) Types of Spectra Continuous, emission, absorption It depends on how the light was generated So how is light generated? Emission the release of light from any material light is a form of energy... energy has to be transformed into light from some other form sources are categorized by the original energy Incandescence light created from thermal energy object radiates its heat as light Light is radiated at all wavelengths Spectrum provides information about the temperature Temperature vs brightness Total amount of light generated depends on temperature Hotter object -> > more light Cooler object -> > less light Temperature vs color As an object heats, it appears to change color from red to white to blue Peak wavelength depends on Temperature T = (3 x 10 6 K nm)/λ m 6

7 Incandescent examples People radiate light because they have thermal energy Peak wavelength is in infrared Brightness is fairly low Incandescent examples Electric stoves radiate light because they have thermal energy Peak wavelength is in red orange yellow region of the visible spectrum Brightness is moderate Incandescent examples Blow torches radiate light because they have thermal energy Peak wavelength is in blue region of the visible spectrum Brightness is high Other processes Not all light is generated by heat Atomic Emission light created from atomic energy atom releases energy as light Light is radiated at specific wavelengths Spectrum provides information on the atoms 7

8 Atomic Excitation atoms have energy levels for each electron normally electrons in lowest levels possible can excite electrons into higher levels to move back into lower levels, need to release energy Emission spectra when a gas is excited it releases light at specific wavelengths, depending on the type of gas Hydrogen Iron Atomic examples Neon lamps High voltage electricity passes through gas Lasers Fluorescent materials Absorption spectra when a cold gas is in front of a continuous source only specific wavelength are absorbed same wavelength produced in emission spectra 8

9 Real Spectra Non-sources of light Some light we see appears to come from one source but it is really from another source Reflections or scattering Moon light Not generated by the moon Just reflected sunlight In-class activity Using the light source lists you created earlier Discuss as a group which are incandescent, atomic, non-sources 9

### From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation?

From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation? From lowest energy to highest energy, which of the following correctly

### Map to Help Room (G2B90)

Map to Help Room (G2B90) Lecture room Help room Homework Turn in your homework at the beginning of class next lecture. It will be collected shortly after lecture starts. Put your homework in the appropriate

### The Nature of Light. As a particle

The Nature of Light Light is radiant energy. Travels very fast 300,000 km/sec! Can be described either as a wave or as a particle traveling through space. As a wave A small disturbance in an electric field

### Today. Electromagnetic Radiation. Light & beyond. Thermal Radiation. Wien & Stefan-Boltzmann Laws

Today Electromagnetic Radiation Light & beyond Thermal Radiation Wien & Stefan-Boltzmann Laws 1 Electromagnetic Radiation aka Light Properties of Light are simultaneously wave-like AND particle-like Sometimes

### Astro Lecture 15. Light and Matter (Cont d) 23/02/09 Habbal_Astro Lecture 15

Astro110-01 Lecture 15 Light and Matter (Cont d) 1 What have we learned? Three basic types of spectra continuous spectrum emission line spectrum absorption line spectrum Light tells us what things are

### Light is a type of electromagnetic (EM) radiation, and light has energy. Many kinds of light exist. Ultraviolet (UV) light causes skin to tan or burn.

Light and radiation Light is a type of electromagnetic (EM) radiation, and light has energy. Many kinds of light exist. Ultraviolet (UV) light causes skin to tan or burn. Infrared (IR) light is used in

### CHM111 Lab Atomic Emission Spectroscopy Grading Rubric

Name Team Name CHM111 Lab Atomic Emission Spectroscopy Grading Rubric Criteria Points possible Points earned Lab Performance Printed lab handout and rubric was brought to lab 3 Followed procedure correctly

### Electromagnetic Radiation and Atomic Physics

Electromagnetic Radiation and Atomic Physics Properties of Electrons, Protons, and Neutrons (The Main Constituents of Ordinary Matter) Mass Electrons have a mass of 9.11 10-31 kg. The mass of a proton

### Light, Light Bulbs and the Electromagnetic Spectrum

Light, Light Bulbs and the Electromagnetic Spectrum Spectrum The different wavelengths of electromagnetic waves present in visible light correspond to what we see as different colours. Electromagnetic

### Section 1 Electromagnetic Waves

Section 1 Electromagnetic Waves What are electromagnetic waves? What do microwaves, cell phones, police radar, television, and X-rays have in common? All of them use electromagnetic waves Electromagnetic

### The Electromagnetic Spectrum

The Electromagnetic Spectrum 1 Look around you. What do you see? You might say "people, desks, and papers." What you really see is light bouncing off people, desks, and papers. You can only see objects

### LIGHT CONCEPTS. Most light is invisible to our eyes. Light is a streaming code that tells about the chemical composition of its source

ITS SECRETS REVEALED LIGHT CONCEPTS Most light is invisible to our eyes Light is a streaming code that tells about the chemical composition of its source Light from a glowing object can reveal its temperature

### Physics 221 Lab 14 Transformers & Atomic Spectra

Physics 221 Lab 14 Transformers & Atomic Spectra Transformers An application of Inductance The point of a transformer is to increase or decrease the voltage. We will investigate a simple transformer consisting

### Electromagnetic Radiation and Atomic Spectra POGIL

Name _Key AP Chemistry Electromagnetic Radiation and Atomic Spectra POGIL Electromagnetic Radiation Model 1: Characteristics of Waves The figure above represents part of a wave. The entire wave can be

### Chapter 5 Light and Matter: Reading Messages from the Cosmos

Chapter 5 Light and Matter: Reading Messages from the Cosmos Messages Interactions of Light and Matter The interactions determine everything we see, including what we observe in the Universe. What is light?

### The Greenhouse Effect

The Greenhouse Effect THE GREENHOUSE EFFECT To understand the greenhouse effect you first need to know a bit about solar radiation what it is, where it comes from and what happens when it reaches Earth.

### Electromagnetic Spectrum

Electromagnetic Spectrum Why do some things have colors? What makes color? Why do fast food restaurants use red lights to keep food warm? Why don t they use green or blue light? Why do X-rays pass through

### nm cm meters VISIBLE UVB UVA Near IR 200 300 400 500 600 700 800 900 nm

Unit 5 Chapter 13 Electrons in the Atom Electrons in the Atom (Chapter 13) & The Periodic Table/Trends (Chapter 14) Niels Bohr s Model Recall the Evolution of the Atom He had a question: Why don t the

### Announcements. Reading next class 5.7 Homework 6 due Wednesday. Exam 2 next week (Thursday) Inclusive there will be some SR.

Announcements Reading next class 5.7 Homework 6 due Wednesday. Exam 2 next week (Thursday) Inclusive there will be some SR. Modern physics Photons and PE Atomic spectra Bohr atom etc. Atoms/ Balmer/ Bohr

Electromagnetic Radiation scillating electric and magnetic fields propagate through space Virtually all energy exchange between the Earth and the rest of the Universe is by electromagnetic radiation Most

### 3-1. True or False: Different colors of light are waves with different amplitudes. a.) True b.) False X

3-1. True or False: Different colors of light are waves with different amplitudes. a.) True b.) False X 3-2. True or False: Different colors of light are waves with different wavelengths. a.) True X b.)

### COLLEGE PHYSICS. Chapter 29 INTRODUCTION TO QUANTUM PHYSICS

COLLEGE PHYSICS Chapter 29 INTRODUCTION TO QUANTUM PHYSICS Quantization: Planck s Hypothesis An ideal blackbody absorbs all incoming radiation and re-emits it in a spectrum that depends only on temperature.

### UNIT: Electromagnetic Radiation and Photometric Equipment

UNIT: Electromagnetic Radiation and Photometric Equipment 3photo.wpd Task Instrumentation I To review the theory of electromagnetic radiation and the principle and use of common laboratory instruments

### Emission and absorption spectra

Emission and absorption spectra Emission spectra You have learnt previously about the structure of an atom. The electrons surrounding the atomic nucleus are arranged in a series of levels of increasing

Investigating electromagnetic radiation Announcements: First midterm is 7:30pm on 2/17/09 Problem solving sessions M3-5 and T3-4,5-6. Homework due at 12:50pm on Wednesday. We are covering Chapter 4 this

Chapter 2 Electromagnetic Radiation Bohr demonstrated that information about the structure of hydrogen could be gained by observing the interaction between thermal energy (heat) and the atom. Many analytical

### The Electromagnetic Spectrum

INTRODUCTION The Electromagnetic Spectrum I. What is electromagnetic radiation and the electromagnetic spectrum? What do light, X-rays, heat radiation, microwaves, radio waves, and gamma radiation have

### Introduction to Spectroscopy.

Introduction to Spectroscopy. ARCHIMEJ TECHNOLOGY The SPECTROSCOPY 2.0 Company To understand what the core of our project is about, you need to grasp some basic notions of optical spectroscopy. This lesson

WAVES AND ELECTROMAGNETIC RADIATION All waves are characterized by their wavelength, frequency and speed. Wavelength (lambda, ): the distance between any 2 successive crests or troughs. Frequency (nu,):

### Description: Vocabulary: Objectives: Materials: Safety:

Title: Spectral Analysis with DVDs and CDs Author: Brendan Noon Date Created: Summer 2011 Subject: Physics/Chemistry/Earth Science Grade Level: 9-12 Standards: Standard 1: Analysis, Inquiry, and Design

### How Matter Emits Light: 1. the Blackbody Radiation

How Matter Emits Light: 1. the Blackbody Radiation Announcements n Quiz # 3 will take place on Thursday, October 20 th ; more infos in the link `quizzes of the website: Please, remember to bring a pencil.

### The Electromagnetic Spectrum and Observing for Educators

YAAYS course: The Electromagnetic Spectrum and Observing for Educators February 19, 2008 Rich Kron from last week: visible light, radio, infrared, X-rays etc. are all electromagnetic radiation, differing

### Chapter 25 Electromagnetic Waves

Chapter 25 Electromagnetic Waves Units of Chapter 25 The Production of Electromagnetic Waves The Propagation of Electromagnetic Waves The Electromagnetic Spectrum Energy and Momentum in Electromagnetic

### Thermal Energy. Thermal Energy. Chemical Bonds. Chemical Bonds. Chemical Bonds. Chemical Bonds. Ordered motion doesn t contribute to thermal energy

Disordered Kinetic and potential energies of individual atoms Presence of thermal energy gives an object temperature Ordered motion doesn t contribute to thermal energy total kinetic energy - whole object

### Lecture 2: Radiation/Heat in the atmosphere

Lecture 2: Radiation/Heat in the atmosphere TEMPERATURE is a measure of the internal heat energy of a substance. The molecules that make up all matter are in constant motion. By internal heat energy, we

### 3. What are electromagnetic waves? Electromagnetic waves are transverse waves that have some electrical properties and some magnetic properties.

CHAPTER 3 - THE ELECTROMAGNETIC SPECTRUM 3-1 The Nature of Electromagnetic Waves 1. What do all mechanical waves such as sound waves have in common? All mechanical waves such as sound waves transfer energy

### Electron Energy and Light

Why? Electron Energy and Light How does light reveal the behavior of electrons in an atom? From fireworks to stars, the color of light is useful in finding out what s in matter. The emission of light by

Lecture 8: Radiation Spectrum The information contained in the light we receive is unaffected by distance The information remains intact so long as the light doesn t run into something along the way Since

Activity 17 Electromagnetic Radiation Why? Electromagnetic radiation, which also is called light, is an amazing phenomenon. It carries energy and has characteristics of both particles and waves. We can

### The Cosmic Perspective Seventh Edition. Light and Matter: Reading Messages from the Cosmos. Chapter 5 Reading Quiz Clickers

Reading Quiz Clickers The Cosmic Perspective Seventh Edition Light and Matter: Reading Messages from the Cosmos 5.1 Light in Everyday Life How do we experience light? How do light and matter interact?

### Astronomy 103: First Exam

Name: Astronomy 103: First Exam Stephen Lepp October 25, 2010 Each question is worth 2 points. Write your name on this exam and on the scantron. 1 Short Answer A. What is the largest of the terrestrial

### Astronomy 110 Homework #05 Assigned: 02/13/2007 Due: 02/20/2007. Name: (Answer Key)

Astronomy 110 Homework #05 Assigned: 02/13/2007 Due: 02/20/2007 Name: (Answer Key) Directions: Listed below are twenty (20) multiple-choice questions based on the material covered by the lectures thus

### Amplitude Y is the maximum value of the wave variable ( displacement in this case ).

NATURE OF VISIBLE LIGHT: Our current knowledge is that light exhibits a dual nature or behavior. It behaves as electromagnetic ( EM for short ) waves or as a particles ( photons ). General description

### Today. Kirchoff s Laws. Emission and Absorption. Stellar Spectra & Composition

Today Kirchoff s Laws Emission and Absorption Stellar Spectra & Composition 1 Three basic types of spectra Continuous Spectrum Intensity Emission Line Spectrum Absorption Line Spectrum Wavelength Spectra

### Atomic Emission Spectra

Atomic Emission Spectra Objectives The objectives of this laboratory are as follows: To build and calibrate a simple box spectroscope capable of measuring wavelengths of visible light. To use this spectroscope

### After a wave passes through a medium, how does the position of that medium compare to its original position?

Light Waves Test Question Bank Standard/Advanced Name: Question 1 (1 point) The electromagnetic waves with the highest frequencies are called A. radio waves. B. gamma rays. C. X-rays. D. visible light.

### Overview. What is EMR? Electromagnetic Radiation (EMR) LA502 Special Studies Remote Sensing

LA502 Special Studies Remote Sensing Electromagnetic Radiation (EMR) Dr. Ragab Khalil Department of Landscape Architecture Faculty of Environmental Design King AbdulAziz University Room 103 Overview What

### Electromagnetic Radiation (including visible light)

An expert is a man who has made all the mistakes, which can be made in a narrow field. Neils Bohr Electromagnetic Radiation (including visible light) Behaves like a particle. light particles are called

### Heating the Atmosphere. Dr. Michael J Passow

Heating the Atmosphere Dr. Michael J Passow Heat vs. Temperature Heat refers to energy transferred from one object to another Temperature measures the average kinetic energy in a substance. When heat energy

### Name Date Class ELECTRONS IN ATOMS. Standard Curriculum Core content Extension topics

13 ELECTRONS IN ATOMS Conceptual Curriculum Concrete concepts More abstract concepts or math/problem-solving Standard Curriculum Core content Extension topics Honors Curriculum Core honors content Options

### Farbe. Physics of Color

Farbe Physics of Color Light Basic Properties visible light is electromagnetic radiation in a particular region of the entire spectrum distinguishing criterion: its frequency ~780 380 nm 380 780 THz AM

### Chapter 6 Electromagnetic Radiation and the Electronic Structure of the Atom

Chapter 6 In This Chapter Physical and chemical properties of compounds are influenced by the structure of the molecules that they consist of. Chemical structure depends, in turn, on how electrons are

### Example: Water wave. Water just moves up and down Wave travels and can transmit energy (tsunami)

Waves R Us What are Waves? Waves: moving disturbances that transmit energy without the physical transport of material - waves in a pool or waves in a wheat field or waves of people in a football field.

### AZ State Standards. Concept 3: Conservation of Energy and Increase in Disorder Understand ways that energy is conserved, stored, and transferred.

Forms of Energy AZ State Standards Concept 3: Conservation of Energy and Increase in Disorder Understand ways that energy is conserved, stored, and transferred. PO 1. Describe the following ways in which

### ABC Math Student Copy

Page 1 of 8 Line Spectra Physics Week 15(Sem. 2) Name The Atom Chapter Summary From the last section, we know that all objects emit electromagnetic waves. For a solid object, such as the filament of a

### MAKING SENSE OF ENERGY Electromagnetic Waves

Adapted from State of Delaware TOE Unit MAKING SENSE OF ENERGY Electromagnetic Waves GOALS: In this Part of the unit you will Learn about electromagnetic waves, how they are grouped, and how each group

### Light and Spectra. COLOR λ, nm COLOR λ, nm violet 405 yellow 579 blue 436 orange 623 green 492 red 689

Light and Spectra INTRODUCTION Light and color have intrigued humans since antiquity. In this experiment, you will consider several aspects of light including: a. The visible spectrum of colors (red to

Chapter 2: Electromagnetic Radiation Radiant Energy I Goals of Period 2 Section 2.1: To introduce electromagnetic radiation Section 2.2: To discuss the wave model of radiant energy Section 2.3: To describe

### Light, Color, and the Greenhouse Effect

IDS 101 Light, Color, and the Greenhouse Effect Imagine that you have a light source and some way to detect the intensity of light at various distances. If you increase the distance of the detector from

### I. C O N T E N T S T A N D A R D S

Introductory Physics, High School Learning Standards for a Full First-Year Course I. C O N T E N T S T A N D A R D S 4. Waves Central Concept: Waves carry energy from place to place without the transfer

### Atomic Emission Spectra

EXPERIMENT Atomic Emission Spectra 0 Prepared by Zach Gray and Edward L. Brown, Lee University Students will observe the emission spectra of various atoms both visually and with a direct reading spectroscope.

### Emission Series and Emitting Quantum States: Visible H Atom Emission Spectrum

Emission Series and Emitting Quantum States: Visible H Atom Emission Spectrum Experiment 6 Goal: #6 Emission Series and Emitting Quantum States: Visible H Atom Emission Spectrum To determine information

### A It is halved. B It is doubled. C It is quadrupled. D It remains the same.

WAVES UNIT REVIEW EN: CALIFORNIA STATE QUESTIONS: 1. A sound wave is produced in a metal cylinder by striking one end. Which of the following occurs as the wave travels along the cylinder? A Its amplitude

### How is E-M Radiation Produced?

How is E-M Radiation Produced? 1. Accelerate charged particle back and forth like they do at the radio station. 2. All solids or liquids with temperature above Absolute Zero emit E-M radiation. Absolute

### Disturbance Sources for IR Receiver Modules

Disturbance Sources for IR Receiver Modules Receivers in remote control systems have high sensitivity and are ready to receive a signal all the time This makes it susceptible also for different kinds of

### Objectives. What are X-rays? X. Julian Moger 1. PAM1014 Introduction to Radiation Physics. Electromagnetic Radiation. Electromagnetic Radiation

PM1014 Introduction to Radiation Physics Objectives Electromagnetic Waves Properties of Electromagnetic Spectrum Inverse Square Law What are s? X Radio & TV Microwave Visible UV s γ-rays 10 1 10-1 10-2

### Light bulbs. How does a light bulb work? Light bulbs. The goal of this class: Making sense of waves. Midterm 2 results. Ave: 31.8/40.

Light bulbs Midterm 2 results Number of people Ave: 31.8/40 Score out of 40 Lecture 17 : Incandescent light bulbs How they work Why they are inefficient Reminders: No HW was due yesterday HW for next week,

### 4.5 Orbits, Tides, and the Acceleration of Gravity

4.5 Orbits, Tides, and the Acceleration of Gravity Our goals for learning: How do gravity and energy together allow us to understand orbits? How does gravity cause tides? Why do all objects fall at the

### 11/15/2016. Electromagnetic (EM) waves are waves caused by oscillations occurring simultaneously in electric and magnetic fields

Electromagnetic (EM) waves are waves caused by oscillations occurring simultaneously in electric and magnetic fields A 2D transverse wave The EM and Visible Spectra They DO NOT require any medium in order

### Lecture Outline: Spectroscopy (Ch ) [Lectures 2/6 and 2/9]

Lecture Outline: Spectroscopy (Ch. 3.5 + 4) [Lectures 2/6 and 2/9] We will cover nearly all of the material in the textbook, but in a somewhat different order. First, we consider a property of wave motion,

### Lecture 7: Light Waves. Newton s Laws of Motion (1666) Newton s First Law of Motion

Lecture 7: Light Waves Isaac Newton (1643-1727) was born in the year Galileo died He discovered the Law of Gravitation in 1665 He developed the Laws of Mechanics that govern all motions In order to solve

### Emission Spectra of Elements

Fall 2003 Emission Spectra of Elements Purpose: To compare and contrast the emission spectra of various gases. Investigate quantitatively the emission spectrum of hydrogen and relate it to Bohr's theory

### The transitions labeled b, c, and a.

EXAM #3. ANSWERS ASTR 1101-001, Spring 2008 Refer to Figure 1 when answering the first 7 questions of this exam. 1. Which series of electron transitions in the energy-level diagram for Hydrogen produce

### Chapter Test B. Chapter: Arrangement of Electrons in Atoms. possible angular momentum quantum numbers? energy level? a. 4 b. 8 c. 16 d.

Assessment Chapter Test B Chapter: Arrangement of Electrons in Atoms PART I In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question

### NATS 101 Section 13: Lecture 6. The Greenhouse Effect and Earth-Atmosphere Energy Balance

NATS 101 Section 13: Lecture 6 The Greenhouse Effect and Earth-Atmosphere Energy Balance FOUR POSSIBLE FATES OF RADIATION: 1.Transmitted 2. Reflected 3. Scattered 4. Absorbed The atmosphere does ALL of

### Lightbulbs. How does a lightbulb work? Lightbulbs. Electromagnetic radiation. End of semester grade policy. Electric Current

Pressure Lecture 17 : Incandescent lightbulbs How they work Why they are inefficient Lightbulbs How many scientists does it take to change a lightbulb? Undergraduates: None Bright light - hurts... must

### Grade 8 Science Chapter 4 Notes

Grade 8 Science Chapter 4 Notes Optics the science that deals with the properties of light. Light a form of energy that can be detected by the human eye. The History of Optics (3 Scientists): 1. Pythagoras

### Astronomy 153 Lab 3: The Light Spectrum

Astronomy 153 Lab 3: The Light Spectrum Solar Radiation Incident on the Earth Intensity v. Wavelength Image By: http://wiki.naturalfrequency.com/wiki/solar_radiation Astronomers use the light, or radiation,

LIGHT AND ELECTROMAGNETIC RADIATION Light is a Wave Light is a wave motion of radiation energy in space. We can characterize a wave by three numbers: - wavelength - frequency - speed Shown here is precisely

### Chapter 7: The Quantum-Mechanical Model of the Atom

C h e m i s t r y 1 A : C h a p t e r 7 P a g e 1 Chapter 7: The Quantum-Mechanical Model of the Atom Homework: Read Chapter 7. Work out sample/practice exercises Suggested Chapter 7 Problems: 37, 39,

### Experiment 13 ~ Diffraction, Wavelength, and Atomic Line Spectra

Experiment 13 ~ Diffraction, Wavelength, and Atomic Line Spectra Part 1 1.1. Atomic Line Spectra. In this experiment, we will look at the diffraction of light, and how wavelengths can be calculated from

### #1 Electromagnetic Spectrum Intro

Go here for text on each section http://missionscience.nasa.gov/ems/index.html #1 Electromagnetic Spectrum Intro Go here for the video http://missionscience.nasa.gov/ems/emsvideo_01intro.html a. How are

### Planetary Energy Balance

Planetary Energy Balance Electromagnetic Spectrum Different types of radiation enter the Earth s atmosphere and they re all a part of the electromagnetic spectrum. One end of the electromagnetic (EM) spectrum

### Planck s constant. The value of Planck s constant is

852 CHAPTER 25. Electromagnetic Induction and Electromagnetic Waves Increasing light intensity The photo at very low light levels shows individual points, as if particles are arriving at the detector.

### Chemistry 102 Summary June 24 th. Properties of Light

Chemistry 102 Summary June 24 th Properties of Light - Energy travels through space in the form of electromagnetic radiation (EMR). - Examples of types of EMR: radio waves, x-rays, microwaves, visible

### Ch 6: Light and Telescope. Wave and Wavelength. Wavelength, Frequency and Speed. v f

Ch 6: Light and Telescope Wave and Wavelength..\..\aTeach\PhET\wave-on-a-string_en.jar Wavelength, Frequency and Speed Wave and Wavelength A wave is a disturbance that moves through a medium or through

### Spectra in the Lab ATOMS AND PHOTONS

Spectra in the Lab Every chemical element has a unique ``signature'' which can be revealed by analyzing the light it gives off. This is done by spreading the light out into a rainbow of color. It may seem

### Chapter 16 Heat Transfer. Topics: Conduction Convection Radiation Greenhouse Effect/Global Warming

Chapter 16 Heat Transfer Topics: Conduction Convection Radiation Greenhouse Effect/Global Warming Radiation Every object at a temperature above absolute zero is an emitted of electromagnetic radiation

### Physics Open House. Faraday's Law and EM Waves Change in the magnetic field strength in coils generates a current. Electromagnetic Radiation

Electromagnetic Radiation (How we get most of our information about the cosmos) Examples of electromagnetic radiation: Light Infrared Ultraviolet Microwaves AM radio FM radio TV signals Cell phone signals

### Production of X-rays. Radiation Safety Training for Analytical X-Ray Devices Module 9

Module 9 This module presents information on what X-rays are and how they are produced. Introduction Module 9, Page 2 X-rays are a type of electromagnetic radiation. Other types of electromagnetic radiation

### Things That Glow In The Dark Classroom Activities That Explore Spectra and Fluorescence

Things That Glow In The Dark Classroom Activities That Explore Spectra and Fluorescence Linda Shore lindas@exploratorium.edu Hot Topics: Research Revelations from the Biotech Revolution Saturday, April

### Chapter 11 Modern Atomic Theory

Chapter 11 Modern Atomic Theory Rutherford s Atom The concept of a nuclear atom (charged electrons moving around the nucleus) resulted from Ernest Rutherford s experiments. Question left unanswered: how

### The Nature of Electromagnetic Radiation

II The Nature of Electromagnetic Radiation The Sun s energy has traveled across space as electromagnetic radiation, and that is the form in which it arrives on Earth. It is this radiation that determines

### Arrange the following forms of radiation from shortest wavelength to longest. optical gamma ray infrared x-ray ultraviolet radio

Arrange the following forms of radiation from shortest wavelength to longest. optical gamma ray infrared x-ray ultraviolet radio Which of the wavelength regions can completely penetrate the Earth s atmosphere?

### Energy. Mechanical Energy

Principles of Imaging Science I (RAD119) Electromagnetic Radiation Energy Definition of energy Ability to do work Physicist s definition of work Work = force x distance Force acting upon object over distance

### Atoms and Spectra. Relativity and Astrophysics Lecture 11 Terry Herter

Atoms and Spectra Relativity and Astrophysics Lecture 11 Terry Herter Outline Bohr Model of the Atom Electronic Transitions Hydrogen Atom Other elements Spectral signatures 1-cm Hydrogen line My office

### Light as a Wave. The Nature of Light. EM Radiation Spectrum. EM Radiation Spectrum. Electromagnetic Radiation

The Nature of Light Light and other forms of radiation carry information to us from distance astronomical objects Visible light is a subset of a huge spectrum of electromagnetic radiation Maxwell pioneered

### 5. The Nature of Light. Does Light Travel Infinitely Fast? EMR Travels At Finite Speed. EMR: Electric & Magnetic Waves

5. The Nature of Light Light travels in vacuum at 3.0. 10 8 m/s Light is one form of electromagnetic radiation Continuous radiation: Based on temperature Wien s Law & the Stefan-Boltzmann Law Light has