# Monomials with the same variables to the same powers are called like terms, If monomials are like terms only their coefficients can differ.

Save this PDF as:

Size: px
Start display at page:

Download "Monomials with the same variables to the same powers are called like terms, If monomials are like terms only their coefficients can differ."

## Transcription

1 Chapter 7.1 Introduction to Polynomials A monomial is an expression that is a number, a variable or the product of a number and one or more variables with nonnegative exponents. Monomials that are real numbers are called constants. Examples of monomials: n, -2x 2, abc, 7, 2x 2 y 3 z 4 Monomials with the same variables to the same powers are called like terms, If monomials are like terms only their coefficients can differ. A polynomial is a monomial or the sum of monomials. Each of the monomials is a term of the polynomial. To write a polynomial in simplest terms you must combine like terms. The degree of a monomial is the sum of the exponents of its variables. A term that has no variable part is called a constant term or a constant. The degree of a constant term is 0. Remember that a variable without an exponent has an exponent of 1. The degree of a polynomial is the greatest degree of any of its terms after it has been simplified. A polynomial in simplest terms can be classified by its number of terms. Monomial a polynomial with only one term Binomial a polynomial with two terms Trinomial a polynomial with three terms A polynomial in one variable can also be classified by its degree. Linear a polynomial in one variable with a degree of one. Quadratic a polynomial in one variable with a degree of two. Cubic a polynomial in one variable with a degree of three. When a polynomial in one variable is in its simplest form and its terms are written in descending order from left to right the polynomial is said to be in standard form. The coefficient of the first term of a polynomial in standard form is called the leading coefficient.

2 Chapter 7.2 Add and Subtract Polynomials To add monomials algebraically, you must combine like terms. To add polynomials, group like terms and then find the sum. You can add polynomials horizontally or vertically. To add the polynomials (3x 2 +4x-2) + (2x 2 -x+3) + (x 2 + 4) Method 1: Use a horizontal format. Group and combine like terms: (3x 2 + 2x 2 + x 2 ) + (4x x) + ( ) 6x 2 + 3x + 5 Method 2: Use a vertical format: Align like terms in columns. Add the columns separately. 3x 2 + 4x 2 2x 2 - x + 3 x x 2 + 3x + 5 To find the additive inverse of a polynomial, find the opposite, or additive inverse, of each term. Remember that the sum of a number and its additive inverse is 0. The additive inverse of -3x 3 7x 2 +4x + 2 is 3x 3 +7x 2-4x -2. To subtract monomials algebraically, add the opposite of the monomial being subtracted. To subtract polynomials algebraically, add the opposite of the polynomial being subtracted. You can subtract polynomials horizontally or vertically. Subtract (9y 2 z + 11yz 2 15z 2 ) (12y 2 z 3yz 2 + 2z 2 ) Method 1: Use the horizontal format: Group and combine like terms. (9y 2 z + 11yz 2 15z 2 ) + (-12y 2 z + 3yz 2 2z 2 ) When we subtract we add the opposite (9y 2 z 12y 2 z) + (11yz 2 + 3yz 2 ) + (-15z 2 2z 2 ) -3y 2 z + 14 yz 2-17z 2 Method 2: Use the vertical format: Align like terms in columns and subtract the columns separately. Subtract by adding the opposite. 9y 2 z + 11yz 2 15z 2 9y 2 z + 11yz 2-15z 2 -(12y 2 z 3yz 2 + 2z 2 ) -12y 2 z + 3yz 2-2z 2-3y 2 z + 14yz 2-17z 2

3 Chapter 7.3 Multiply a Polynomial by a monomial To multiply two monomials algebraically, multiply the coefficients. Then multiply the variables using the Law of Exponents for Multiplication. The Law of Exponents for Multiplication states: a m * a n = a n+m We will learn some new Laws for exponents: The Law of Exponents for Powers states (a m ) n = a m(n) The Law of Exponents for a Power of a Product states (ab) m = a m b m, where m is an integer. To multiply a polynomial by a monomial algebraically use the steps: Apply the distributive property to distribute the monomial Multiply the monomials to simplify Example: Multiply 3a 2 b 3 (-7ab 2 3a 2 b) Apply the distributive property: 3a 2 b(-7ab 2 ) + 3a 2 b 3 (-3a 2 b) Multiply: 3(-7)(a 2 )a(b 3 )b 2 + 3(-3)(a 2 )a 2 (b 3 )b -21a 3 b 5 9a 4 b 4

4 Chapter 7.5 Multiply Binomials There are numerous ways to set up the multiplication of two binomials. The first three methods shown here work for multiplying ALL polynomials, not just binomials. All methods, of course, give the same answer. Multiply (x + 3)(x + 2) 1. "Distributive" Method: The most universal method. Applies to all polynomial multiplications, not just to binomials. Start with the first term in the first binomial - the circled blue X. Multiply (distribute) this term times EACH of the terms in the second binomial. Now, take the second term in the first binomial - the circled red +3 (notice we take the sign also). Multiply this term times EACH of the terms in the second binomial. Add the results: x x + x x +3 2 x² + 2x +3x + 6 x² + 5x + 6 Answer Do you see the "distributive property" at work?

5 (x + 3)(x + 2) = x(x + 2) + 3(x + 2) 2. "Vertical" Method: This is a vertical "picture" of the distributive method. This style applies to all polynomial multiplications. x + 2 x + 3 x 2 + 2x 3x + 6 x 2 + 5x + 6 multiply x from bottom terms times x+2 multiply 3 from the bottom terms times x+2 add like terms For Binomial Multiplication ONLY! "FOIL" Method: multiply First Outer Inner Last The words/letters used to describe the FOIL process pertain to the distributive method for multiplying two binomials. These words/letters do not apply to other multiplications such as a binomial times a trinomial. F: (x + 3)(x + 2) O: (x + 3)(x + 2) I: (x + 3)(x + 2) L: (x + 3)(x + 2) The drawback to using the FOIL lettering is that it ONLY WORKS on binomial multiplication.

6 X 2 Chapter 7.6 Multiply Polynomials To multiply polynomials you can use the the distributive property that we learned when multipling binomials. (n 2 + 2n + 6)(2n 2 3n 3) n 2 (2n 2 3n 3) + 2n( 2n 2 3n 3) + 6( 2n 2 3n 3) n 2 (2n 2 ) + n 2 (-3n) + n 2 (-3) + 2n(2n 2 ) + 2n(-3n) + 2n(-3) + 6(2n 2 ) + 6(-3n) + 6(-3) 2n 4 3n 3 3n 2 + 4n 3-6n 2 6n +12n 2-18n -18 2n 4 + n 3 + 3n 2 24n 18 To multiply polynomials you can multiply vertically like we learned when multiplying binomials. 2n 2 3n 3 n 2 + 2n + 6 2n 4 3n 3 3n 2 4n 3-6n 2 6n 12n 2-18n -18 2n 4 + n 3 + 3n 2 24n 18 Or you can use a tabular method when multiplying polynomials. 1. Draw a table as shown below. Write the first polynomial on the left and the second polynomial above the table. 2. Multiply the monomials in rows and columns to complete the table. 3. Find the sum of the monomial products from the table by combining like terms. 4. Simplify. n 2 2n 6 2n 2 3n 3 2n 4 3n 3 3n 2 4n 3-6n 2 6n

7 12n 2-18n -18 2n 4 + ( 3n 3 + 4n 3 ) + ( 3n 2-6n n 2 ) + ( 6n -18n) -18 2n 4 + n 3 + 3n 2 24n 18 2n 4 + n 3 + 3n 2 24n 18

8 Chapter 7.7 Divide a Polynomial by a Monomial You can use the Law of Exponents for Division to simplify quotients containing monomials. The Law of Exponents for Division states: For a 0 and m and n as integers a m /a n = a m-n To divide monomials: First divide the coefficients Next divide by subtracting the exponents of the variable factors with the same base. Then multiply the quotients obtained in the above steps. To divide a polynomial by a monomial: Divide each term of the polynomial by the monomial divisor. a + b = a + b c c c The number of terms in the polynomial dividend equals the number of terms in the quotient. Dividing by a monomial is the same as multiplying by its reciprocal. You can use the definition of an exponent and the Law of Exponents for Powers to raise a quotient to a power. The Law of Exponents for a Power of a Quotient states: (a/b) m = a m /b m where b 0. ******* DO TRY THESE PROBLEMS AS A CLASS********

9 First, I set up the division: For the moment, I'll ignore the other terms and look just at the leading x of the divisor and the leading x 2 of the dividend. If I divide the leading x 2 inside by the leading x in front, what would I get? I'd get an x. So I'll put an x on top: Now I'll take that x, and multiply it through the divisor, x + 1. First, I multiply the x (on top) by the x (on the "side"), and carry the x 2 underneath: Then I'll multiply the x (on top) by the 1 (on the "side"), and carry the 1x underneath: Then I'll draw the "equals" bar, so I can do the subtraction. To subtract the polynomials, I change all the signs in the second line......and then I add down. The first term (the x 2 ) will cancel out: I need to remember to carry down that last term, the "subtract ten", from the dividend:

10 Now I look at the x from the divisor and the new leading term, the 10x, in the bottom line of the division. If I divide the 10x by the x, I would end up with a 10, so I'll put that on top: Now I'll multiply the 10 (on top) by the leading x (on the "side"), and carry the 10x to the bottom:...and I'll multiply the 10 (on top) by the 1 (on the "side"), and carry the 10 to the bottom: I draw the equals bar, and change the signs on all the terms in the bottom row: Then I add down: Then the solution to this division is: x 10 Since the remainder on this division was zero, the division came out "even". When you do regular division with numbers and the division comes out even, it means that the number you divided by is a factor of the number you're dividing. For instance, if you divide 50 by 10, the answer will be a nice neat "5" with a zero remainder, because 10 is a factor of 50. In the case of the above polynomial division, the zero remainder tells us that x + 1 is a factor of x 2 9x 10, which you can confirm by factoring the original quadratic dividend, x 2 9x 10.

11 Chapter 7.8 Divide Polynomials Using Long Division You can use long division to divide a polynomial by a binomial: To find the first term of the quotient, divide the first term of the dividend by the first term of the divisor. To find the next term of the quotient, divide the first term of the partial dividend by the first term of the divisor. When using long division it is very important that you align terms with the same degree before you subtract. The dividend must contain every possible power of the variable. If one is missing, you need to insert place holders for any missing variables (terms) in the dividend by using 0 as the coefficient. For example: (y ) / (y 5) You would have to rewrite the dividend as y 3 + 0y 2 + 0y + 15) before you could divide. Before dividing you must make sure all polynomials are in standard form. This means that the exponents for the variable must be listed in decreasing order. That is (16y + 12y 2 + 5) / (5 + 6y) should be rewritten as (12y y + 5) / (6y + 5) When you divide a polynomial by a binomial and you do not have a remainder then you know that the binomial you divided by is a factor of the polynomial.

12

### Unit 3 Polynomials Study Guide

Unit Polynomials Study Guide 7-5 Polynomials Part 1: Classifying Polynomials by Terms Some polynomials have specific names based upon the number of terms they have: # of Terms Name 1 Monomial Binomial

### Self-Directed Course: Transitional Math Module 5: Polynomials

Lesson #1: Properties of Exponents 1) Multiplying Powers with the Same Base - When multiplying powers that have the same base, add the exponents and keep the base the same. - For example: 3 2 x 3 3 = (

### Mth 95 Module 2 Spring 2014

Mth 95 Module Spring 014 Section 5.3 Polynomials and Polynomial Functions Vocabulary of Polynomials A term is a number, a variable, or a product of numbers and variables raised to powers. Terms in an expression

### Pre-Calculus II Factoring and Operations on Polynomials

Factoring... 1 Polynomials...1 Addition of Polynomials... 1 Subtraction of Polynomials...1 Multiplication of Polynomials... Multiplying a monomial by a monomial... Multiplying a monomial by a polynomial...

### expression is written horizontally. The Last terms ((2)( 4)) because they are the last terms of the two polynomials. This is called the FOIL method.

A polynomial of degree n (in one variable, with real coefficients) is an expression of the form: a n x n + a n 1 x n 1 + a n 2 x n 2 + + a 2 x 2 + a 1 x + a 0 where a n, a n 1, a n 2, a 2, a 1, a 0 are

### x n = 1 x n In other words, taking a negative expoenent is the same is taking the reciprocal of the positive expoenent.

Rules of Exponents: If n > 0, m > 0 are positive integers and x, y are any real numbers, then: x m x n = x m+n x m x n = xm n, if m n (x m ) n = x mn (xy) n = x n y n ( x y ) n = xn y n 1 Can we make sense

### Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III

Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III Name Date Adding and Subtracting Polynomials Algebra Standard 10.0 A polynomial is a sum of one ore more monomials. Polynomial

### A.4 Polynomial Division; Synthetic Division

SECTION A.4 Polynomial Division; Synthetic Division 977 A.4 Polynomial Division; Synthetic Division OBJECTIVES 1 Divide Polynomials Using Long Division 2 Divide Polynomials Using Synthetic Division 1 Divide

### Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.

Algebra 2 - Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers - {1,2,3,4,...}

### 3. Power of a Product: Separate letters, distribute to the exponents and the bases

Chapter 5 : Polynomials and Polynomial Functions 5.1 Properties of Exponents Rules: 1. Product of Powers: Add the exponents, base stays the same 2. Power of Power: Multiply exponents, bases stay the same

### Operations with Algebraic Expressions: Multiplication of Polynomials

Operations with Algebraic Expressions: Multiplication of Polynomials The product of a monomial x monomial To multiply a monomial times a monomial, multiply the coefficients and add the on powers with the

### Unit 1: Polynomials. Expressions: - mathematical sentences with no equal sign. Example: 3x + 2

Pure Math 0 Notes Unit : Polynomials Unit : Polynomials -: Reviewing Polynomials Epressions: - mathematical sentences with no equal sign. Eample: Equations: - mathematical sentences that are equated with

### 1.3 Polynomials and Factoring

1.3 Polynomials and Factoring Polynomials Constant: a number, such as 5 or 27 Variable: a letter or symbol that represents a value. Term: a constant, variable, or the product or a constant and variable.

5.3 Multiplying Polynomials: Special Products Copyright Cengage Learning. All rights reserved. 1 What You Will Learn Find products with monomial multipliers Multiplying binomials using the Distributive

### Chapter 5 - Polynomials and Polynomial Functions

Math 233 - Spring 2009 Chapter 5 - Polynomials and Polynomial Functions 5.1 Addition and Subtraction of Polynomials Definition 1. A polynomial is a finite sum of terms in which all variables have whole

### Determinants can be used to solve a linear system of equations using Cramer s Rule.

2.6.2 Cramer s Rule Determinants can be used to solve a linear system of equations using Cramer s Rule. Cramer s Rule for Two Equations in Two Variables Given the system This system has the unique solution

### CLASS NOTES. We bring down (copy) the leading coefficient below the line in the same column.

SYNTHETIC DIVISION CLASS NOTES When factoring or evaluating polynomials we often find that it is convenient to divide a polynomial by a linear (first degree) binomial of the form x k where k is a real

### 7-8 Multiplying Polynomials

7-8 Multiplying Polynomials California Standards 10.0 Students add, subtract, multiply, and divide monomials and polynomials. Students solve multistep problems, including word problems, by using these

### LESSON 6.2 POLYNOMIAL OPERATIONS I

LESSON 6.2 POLYNOMIAL OPERATIONS I Overview In business, people use algebra everyday to find unknown quantities. For example, a manufacturer may use algebra to determine a product s selling price in order

### Polynomial Expression

DETAILED SOLUTIONS AND CONCEPTS - POLYNOMIAL EXPRESSIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you! PLEASE NOTE

### Sect 3.2 Synthetic Division

94 Objective 1: Sect 3.2 Synthetic Division Division Algorithm Recall that when dividing two numbers, we can check our answer by the whole number (quotient) times the divisor plus the remainder. This should

### Vocabulary Words and Definitions for Algebra

Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms

### NSM100 Introduction to Algebra Chapter 5 Notes Factoring

Section 5.1 Greatest Common Factor (GCF) and Factoring by Grouping Greatest Common Factor for a polynomial is the largest monomial that divides (is a factor of) each term of the polynomial. GCF is the

### (2 4 + 9)+( 7 4) + 4 + 2

5.2 Polynomial Operations At times we ll need to perform operations with polynomials. At this level we ll just be adding, subtracting, or multiplying polynomials. Dividing polynomials will happen in future

### Chapter 3. Algebra. 3.1 Rational expressions BAa1: Reduce to lowest terms

Contents 3 Algebra 3 3.1 Rational expressions................................ 3 3.1.1 BAa1: Reduce to lowest terms...................... 3 3.1. BAa: Add, subtract, multiply, and divide............... 5

### STUDY GUIDE FOR SOME BASIC INTERMEDIATE ALGEBRA SKILLS

STUDY GUIDE FOR SOME BASIC INTERMEDIATE ALGEBRA SKILLS The intermediate algebra skills illustrated here will be used extensively and regularly throughout the semester Thus, mastering these skills is an

### Polynomials. Key Terms. quadratic equation parabola conjugates trinomial. polynomial coefficient degree monomial binomial GCF

Polynomials 5 5.1 Addition and Subtraction of Polynomials and Polynomial Functions 5.2 Multiplication of Polynomials 5.3 Division of Polynomials Problem Recognition Exercises Operations on Polynomials

### SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS

(Section 0.6: Polynomial, Rational, and Algebraic Expressions) 0.6.1 SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS LEARNING OBJECTIVES Be able to identify polynomial, rational, and algebraic

### Operations on Decimals

Operations on Decimals Addition and subtraction of decimals To add decimals, write the numbers so that the decimal points are on a vertical line. Add as you would with whole numbers. Then write the decimal

### CD 1 Real Numbers, Variables, and Algebraic Expressions

CD 1 Real Numbers, Variables, and Algebraic Expressions The Algebra I Interactive Series is designed to incorporate all modalities of learning into one easy to use learning tool; thereby reinforcing learning

### A.1 Radicals and Rational Exponents

APPENDIX A. Radicals and Rational Eponents 779 Appendies Overview This section contains a review of some basic algebraic skills. (You should read Section P. before reading this appendi.) Radical and rational

Table of Contents Sequence List 368-102215 Level 1 Level 5 1 A1 Numbers 0-10 63 H1 Algebraic Expressions 2 A2 Comparing Numbers 0-10 64 H2 Operations and Properties 3 A3 Addition 0-10 65 H3 Evaluating

### Monomial. 5 1 x A sum is not a monomial. 2 A monomial cannot have a. x 21. degree. 2x 3 1 x 2 2 5x Rewrite a polynomial

9.1 Add and Subtract Polynomials Before You added and subtracted integers. Now You will add and subtract polynomials. Why? So you can model trends in recreation, as in Ex. 37. Key Vocabulary monomial degree

### Algebra Tiles Activity 1: Adding Integers

Algebra Tiles Activity 1: Adding Integers NY Standards: 7/8.PS.6,7; 7/8.CN.1; 7/8.R.1; 7.N.13 We are going to use positive (yellow) and negative (red) tiles to discover the rules for adding and subtracting

### Date: Section P.2: Exponents and Radicals. Properties of Exponents: Example #1: Simplify. a.) 3 4. b.) 2. c.) 3 4. d.) Example #2: Simplify. b.) a.

Properties of Exponents: Section P.2: Exponents and Radicals Date: Example #1: Simplify. a.) 3 4 b.) 2 c.) 34 d.) Example #2: Simplify. a.) b.) c.) d.) 1 Square Root: Principal n th Root: Example #3: Simplify.

### Dividing Polynomials; Remainder and Factor Theorems

Dividing Polynomials; Remainder and Factor Theorems In this section we will learn how to divide polynomials, an important tool needed in factoring them. This will begin our algebraic study of polynomials.

### 1. Use Properties of Exponents

A. Polynomials Polynomials are one of the most fundamental types of functions used in mathematics. They are very simple to use, primarily because they are formed entirely by multiplication (exponents are

### 1.3 Algebraic Expressions

1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,

### ModuMath Algebra Lessons

ModuMath Algebra Lessons Program Title 1 Getting Acquainted With Algebra 2 Order of Operations 3 Adding & Subtracting Algebraic Expressions 4 Multiplying Polynomials 5 Laws of Algebra 6 Solving Equations

### Chapter 4 Fractions and Mixed Numbers

Chapter 4 Fractions and Mixed Numbers 4.1 Introduction to Fractions and Mixed Numbers Parts of a Fraction Whole numbers are used to count whole things. To refer to a part of a whole, fractions are used.

### MATH 65 NOTEBOOK CERTIFICATIONS

MATH 65 NOTEBOOK CERTIFICATIONS Review Material from Math 60 2.5 4.3 4.4a Chapter #8: Systems of Linear Equations 8.1 8.2 8.3 Chapter #5: Exponents and Polynomials 5.1 5.2a 5.2b 5.3 5.4 5.5 5.6a 5.7a 1

### Unit: Polynomials and Factoring

Name Unit: Polynomials: Multiplying and Factoring Specific Outcome 10I.A.1 Demonstrate an understanding of factors of whole numbers by determining: Prime factors Greatest common factor Least common multiple

### FACTORING POLYNOMIALS

296 (5-40) Chapter 5 Exponents and Polynomials where a 2 is the area of the square base, b 2 is the area of the square top, and H is the distance from the base to the top. Find the volume of a truncated

### Algebra 2 PreAP. Name Period

Algebra 2 PreAP Name Period IMPORTANT INSTRUCTIONS FOR STUDENTS!!! We understand that students come to Algebra II with different strengths and needs. For this reason, students have options for completing

### When factoring, we look for greatest common factor of each term and reverse the distributive property and take out the GCF.

Factoring: reversing the distributive property. The distributive property allows us to do the following: When factoring, we look for greatest common factor of each term and reverse the distributive property

### Chapter 4. Polynomials

4.1. Add and Subtract Polynomials KYOTE Standards: CR 8; CA 2 Chapter 4. Polynomials Polynomials in one variable are algebraic expressions such as 3x 2 7x 4. In this example, the polynomial consists of

### Name Intro to Algebra 2. Unit 1: Polynomials and Factoring

Name Intro to Algebra 2 Unit 1: Polynomials and Factoring Date Page Topic Homework 9/3 2 Polynomial Vocabulary No Homework 9/4 x In Class assignment None 9/5 3 Adding and Subtracting Polynomials Pg. 332

### Math 10C. Course: Polynomial Products and Factors. Unit of Study: Step 1: Identify the Outcomes to Address. Guiding Questions:

Course: Unit of Study: Math 10C Polynomial Products and Factors Step 1: Identify the Outcomes to Address Guiding Questions: What do I want my students to learn? What can they currently understand and do?

### Factoring. Factoring Monomials Monomials can often be factored in more than one way.

Factoring Factoring is the reverse of multiplying. When we multiplied monomials or polynomials together, we got a new monomial or a string of monomials that were added (or subtracted) together. For example,

### Polynomials and Factoring

7.6 Polynomials and Factoring Basic Terminology A term, or monomial, is defined to be a number, a variable, or a product of numbers and variables. A polynomial is a term or a finite sum or difference of

### CAHSEE on Target UC Davis, School and University Partnerships

UC Davis, School and University Partnerships CAHSEE on Target Mathematics Curriculum Published by The University of California, Davis, School/University Partnerships Program 006 Director Sarah R. Martinez,

### 2.1 Algebraic Expressions and Combining like Terms

2.1 Algebraic Expressions and Combining like Terms Evaluate the following algebraic expressions for the given values of the variables. 3 3 3 Simplify the following algebraic expressions by combining like

### Summer Mathematics Packet Say Hello to Algebra 2. For Students Entering Algebra 2

Summer Math Packet Student Name: Say Hello to Algebra 2 For Students Entering Algebra 2 This summer math booklet was developed to provide students in middle school an opportunity to review grade level

### Polynomials - Multiplying

5.5 Polynomials - Multiplying Multiplying polynomials can take several different forms based on what we are multiplying. We will first look at multiplying monomials, then monomials by polynomials and finish

### A. Factoring out the Greatest Common Factor.

DETAILED SOLUTIONS AND CONCEPTS - FACTORING POLYNOMIAL EXPRESSIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you!

### Chapter 3 Section 6 Lesson Polynomials

Chapter Section 6 Lesson Polynomials Introduction This lesson introduces polynomials and like terms. As we learned earlier, a monomial is a constant, a variable, or the product of constants and variables.

### Chapter 13: Polynomials

Chapter 13: Polynomials We will not cover all there is to know about polynomials for the math competency exam. We will go over the addition, subtraction, and multiplication of polynomials. We will not

### 6.1 The Greatest Common Factor; Factoring by Grouping

386 CHAPTER 6 Factoring and Applications 6.1 The Greatest Common Factor; Factoring by Grouping OBJECTIVES 1 Find the greatest common factor of a list of terms. 2 Factor out the greatest common factor.

### Definitions 1. A factor of integer is an integer that will divide the given integer evenly (with no remainder).

Math 50, Chapter 8 (Page 1 of 20) 8.1 Common Factors Definitions 1. A factor of integer is an integer that will divide the given integer evenly (with no remainder). Find all the factors of a. 44 b. 32

### Answers to Basic Algebra Review

Answers to Basic Algebra Review 1. -1.1 Follow the sign rules when adding and subtracting: If the numbers have the same sign, add them together and keep the sign. If the numbers have different signs, subtract

### Polynomials. Solving Equations by Using the Zero Product Rule

mil23264_ch05_303-396 9:21:05 06:16 PM Page 303 Polynomials 5.1 Addition and Subtraction of Polynomials and Polynomial Functions 5.2 Multiplication of Polynomials 5.3 Division of Polynomials 5.4 Greatest

### Dividing Polynomials

4.3 Dividing Polynomials Essential Question Essential Question How can you use the factors of a cubic polynomial to solve a division problem involving the polynomial? Dividing Polynomials Work with a partner.

### 3.1. RATIONAL EXPRESSIONS

3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers

### Polynomials - Multiplying Polynomials

5.5 Polynomials - Multiplying Polynomials Objective: Multiply polynomials. Multiplying polynomials can take several different forms based on what we are multiplying. We will first look at multiplying monomials,

### Name Date Block. Algebra 1 Laws of Exponents/Polynomials Test STUDY GUIDE

Name Date Block Know how to Algebra 1 Laws of Eponents/Polynomials Test STUDY GUIDE Evaluate epressions with eponents using the laws of eponents: o a m a n = a m+n : Add eponents when multiplying powers

### PRECALCULUS Semester I Exam Review Sheet

PRECALCULUS Semester I Exam Review Sheet Chapter Topic P.1 Real Numbers {1, 2, 3, 4, } Natural (aka Counting) Numbers {0, 1, 2, 3, 4, } Whole Numbers {, -3, -2, -2, 0, 1, 2, 3, } Integers Can be expressed

### Algebra 1CP Final. Name: Class: Date:

Name: lass: ate: I: lgebra 1P Final Multiple hoice Identify the choice that best completes the statement or answers the question. Ï 3x 3y 27 1. Tell whether the ordered pair ( 4, 5) is a solution of the

### Algebra Cheat Sheets

Sheets Algebra Cheat Sheets provide you with a tool for teaching your students note-taking, problem-solving, and organizational skills in the context of algebra lessons. These sheets teach the concepts

### A Systematic Approach to Factoring

A Systematic Approach to Factoring Step 1 Count the number of terms. (Remember****Knowing the number of terms will allow you to eliminate unnecessary tools.) Step 2 Is there a greatest common factor? Tool

### Portable Assisted Study Sequence ALGEBRA IIA

SCOPE This course is divided into two semesters of study (A & B) comprised of five units each. Each unit teaches concepts and strategies recommended for intermediate algebra students. The first half of

### Polynomial Identification and Properties of Exponents

2 MODULE 4. INTEGER EXPONENTS AND POLYNOMIALS 4a Polynomial Identification and Properties of Exponents Polynomials We begin with the definition of a term. Term. A term is either a single number (called

### FACTORING ax 2 bx c. Factoring Trinomials with Leading Coefficient 1

5.7 Factoring ax 2 bx c (5-49) 305 5.7 FACTORING ax 2 bx c In this section In Section 5.5 you learned to factor certain special polynomials. In this section you will learn to factor general quadratic polynomials.

### 6.1 Add & Subtract Polynomial Expression & Functions

6.1 Add & Subtract Polynomial Expression & Functions Objectives 1. Know the meaning of the words term, monomial, binomial, trinomial, polynomial, degree, coefficient, like terms, polynomial funciton, quardrtic

1 Decimals Adding and Subtracting Decimals are a group of digits, which express numbers or measurements in units, tens, and multiples of 10. The digits for units and multiples of 10 are followed by a decimal

### Greatest Common Factor (GCF) Factoring

Section 4 4: Greatest Common Factor (GCF) Factoring The last chapter introduced the distributive process. The distributive process takes a product of a monomial and a polynomial and changes the multiplication

### 15.1 Factoring Polynomials

LESSON 15.1 Factoring Polynomials Use the structure of an expression to identify ways to rewrite it. Also A.SSE.3? ESSENTIAL QUESTION How can you use the greatest common factor to factor polynomials? EXPLORE

### CHAPTER 2: POLYNOMIAL AND RATIONAL FUNCTIONS

CHAPTER 2: POLYNOMIAL AND RATIONAL FUNCTIONS 2.01 SECTION 2.1: QUADRATIC FUNCTIONS (AND PARABOLAS) PART A: BASICS If a, b, and c are real numbers, then the graph of f x = ax2 + bx + c is a parabola, provided

### COGNITIVE TUTOR ALGEBRA

COGNITIVE TUTOR ALGEBRA Numbers and Operations Standard: Understands and applies concepts of numbers and operations Power 1: Understands numbers, ways of representing numbers, relationships among numbers,

### P.E.R.T. Math Study Guide

A guide to help you prepare for the Math subtest of Florida s Postsecondary Education Readiness Test or P.E.R.T. P.E.R.T. Math Study Guide www.perttest.com PERT - A Math Study Guide 1. Linear Equations

### Addition and Multiplication of Polynomials

LESSON 0 addition and multiplication of polynomials LESSON 0 Addition and Multiplication of Polynomials Base 0 and Base - Recall the factors of each of the pieces in base 0. The unit block (green) is x.

### DIVISION OF POLYNOMIALS

5.5 Division of Polynomials (5-33) 89 5.5 DIVISION OF POLYNOMIALS In this section Dividing a Polynomial by a Monomial Dividing a Polynomial by a Binomial Synthetic Division Division and Factoring We began

### (- 7) + 4 = (-9) = - 3 (- 3) + 7 = ( -3) = 2

WORKING WITH INTEGERS: 1. Adding Rules: Positive + Positive = Positive: 5 + 4 = 9 Negative + Negative = Negative: (- 7) + (- 2) = - 9 The sum of a negative and a positive number: First subtract: The answer

### Polynomial Degree and Finite Differences

CONDENSED LESSON 7.1 Polynomial Degree and Finite Differences In this lesson you will learn the terminology associated with polynomials use the finite differences method to determine the degree of a polynomial

### Exponents and Polynomials

CHAPTER 6 Exponents and Polynomials Solutions Key are you ready?. F 2. B. C 4. D 5. E 6. 4 7 7. 5 2 8. ( -0) 4 9. x 0. k 5. 9 2. 4 = = 8. -2 2 = -(2 2) = -44 5. 2 5 = 2 2 2 2 2 = 2 7. ( -) 6 = (-)(-)(-)(-)(-)(-)

### Polynomials and Rational Functions

Polynomials and Rational Functions CK-12 Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive

### Mathematics Placement

Mathematics Placement The ACT COMPASS math test is a self-adaptive test, which potentially tests students within four different levels of math including pre-algebra, algebra, college algebra, and trigonometry.

### Polynomial Equations and Factoring

7 Polynomial Equations and Factoring 7.1 Adding and Subtracting Polynomials 7.2 Multiplying Polynomials 7.3 Special Products of Polynomials 7.4 Dividing Polynomials 7.5 Solving Polynomial Equations in

### SYNTHETIC DIVISION AND THE FACTOR THEOREM

628 (11 48) Chapter 11 Functions In this section Synthetic Division The Factor Theorem Solving Polynomial Equations 11.6 SYNTHETIC DIVISION AND THE FACTOR THEOREM In this section we study functions defined

### Placement Test Review Materials for

Placement Test Review Materials for 1 To The Student This workbook will provide a review of some of the skills tested on the COMPASS placement test. Skills covered in this workbook will be used on the

### Algebra I Vocabulary Cards

Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression

### Factoring Trinomials of the Form x 2 bx c

4.2 Factoring Trinomials of the Form x 2 bx c 4.2 OBJECTIVES 1. Factor a trinomial of the form x 2 bx c 2. Factor a trinomial containing a common factor NOTE The process used to factor here is frequently

### Section R.2. Fractions

Section R.2 Fractions Learning objectives Fraction properties of 0 and 1 Writing equivalent fractions Writing fractions in simplest form Multiplying and dividing fractions Adding and subtracting fractions

### POLYNOMIAL FUNCTIONS

POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a

### Section 5.0A Factoring Part 1

Section 5.0A Factoring Part 1 I. Work Together A. Multiply the following binomials into trinomials. (Write the final result in descending order, i.e., a + b + c ). ( 7)( + 5) ( + 7)( + ) ( + 7)( + 5) (

### CAHSEE on Target UC Davis, School and University Partnerships

UC Davis, School and University Partnerships CAHSEE on Target Mathematics Curriculum Published by The University of California, Davis, School/University Partnerships Program 006 Director Sarah R. Martinez,

### 6 1 Integer Exponents

CHAPTER 6 EXPONENTS AND POLYNOMIALS LESSONS 6 1 6 2 6 2 II 6 3 6 4 6 5 6 5 II 6 6 WARM UPS 6 1 6 2 6 2 II 6 3 6 4 6 5 6 5 II 6 6 HOMEWORK 6 1 6 2 6 2 II 6 3 6 4 6 5 6 5 II 6 6 6 1 Integer Exponents Objectives

### By reversing the rules for multiplication of binomials from Section 4.6, we get rules for factoring polynomials in certain forms.

SECTION 5.4 Special Factoring Techniques 317 5.4 Special Factoring Techniques OBJECTIVES 1 Factor a difference of squares. 2 Factor a perfect square trinomial. 3 Factor a difference of cubes. 4 Factor