Congruent Numbers, the Rank of Elliptic Curves and the Birch and Swinnerton-Dyer Conjecture. Brad Groff

Size: px
Start display at page:

Download "Congruent Numbers, the Rank of Elliptic Curves and the Birch and Swinnerton-Dyer Conjecture. Brad Groff"

Transcription

1 Congruent Numbers, the Rank of Elliptic Curves and the Birch and Swinnerton-Dyer Conjecture Brad Groff

2 Contents 1 Congruent Numbers Basic Facts and Elliptic Curves.1 Statement of Our Theorem Example of a Congruent Number Proof (1) () () (1) () (3) (3) () Rank Examples of Curves with Different Ranks Another Link Tunnell s Theorem Birch and Swinnerton-Dyer Conjecture L-Functions Orders of Zeroes Interpretation Relevant Proven Facts 10 1

3 1 Congruent Numbers... First off, I have to thank Dave Karpuk for his excellent paper on this topic. 1.1 Basic Facts Now, a congruent number is any number that can be expressed as the area of a right triangle with sides of rational length. For example, 6 is congruent, formed from the Pythagorean triple (3,, 5). Obviously, 157 is also a congruent number. I ll give someone $0 if they can figure out the lengths of the sides of such a triangle before the end of class 1. It is also interesting to notice that if any number q is a congruent number, then s q is also a congruent number by multiplying the perpendicular legs each by s. Therefore it can be observed that whether or not an integer is a congruent number depends only upon its residue in the group Q /Q. Every such residue class contains only one square-free number from which all other elements of that class can be derived, so it is a convention to only speak of square-free congruent numbers. Current progress towards a general solution of the problem of determing whether a given integer has been incomplete, though many results have been demonstrated. For example, given a prime p, if p 3mod 8 then p is not congruent, but p is. if p 5mod 8 then p is congruent. if p 7mod 8 then p and p are congruent. So why would one talk about elliptic curves and congruent numbers together?... and Elliptic Curves It turns out that we have a theorem that demonstrates a very strong connection between congruent numbers and a class of elliptic curves of a certain form. 1 so long as that person has not tried to name something after himself this semester

4 .1 Statement of Our Theorem Theorem: For a square-free positive integer n, the following statements are equivalent. 1. n is congruent : n = 1 ab, where a + b = c, a, b, c Q. There exist three rational squares r < s < t such that s r = t s = n 3. There exists a rational point on the elliptic curve C n : y = x 3 n x other than the obvious points in the set {O, ( n, 0), (0, 0), (n, 0)}.. Example of a Congruent Number Before we prove this, I m going to go right ahead and take another page out of Dave s paper and start with an example. Let s try this for n = 6. We have that 6 = (1/) 3, the area of the (3,, 5) triangle. 6 can also be written as / = / which is quite close to a perfect square, 5/ = (5/). The difference of the two is itself a perfect square, (1/). Hence, 6 = (5/) (1/) which gives us our r and our s and implies that t = (7/). We can use this to determine a non-obvious rational point on C 6 : y = x 3 36x. Simply evaluate C 6 at x = s to get y = (35/8) which gives us what we want at P = (5/, 35/8)..3 Proof.3.1 (1) () Given our success using x = s in the example, there is motivation to use the same substitution here. Furthermore, we can let x = c /. Proving that (1) () is now reduced to showing that x n and x + n are both squares. That is to say that s n = r and s + n = t. Then, ( c ) 1 x n = ab = a + b 1 ( ) ab = a + b ab a b = We can use an almost identical treatment for x + n, ( c ) 1 x + n = + ab = a + b + 1 ( ab = a + b + ab a + b = 3 )

5 These are both squares that maintain the inequalities stated..3. () (1) This is just another algebraic manipulation. If we let r = a b, t = a+b ( ) ( ) a b a + b s = + n = n ( ) ( ) a b + n = a ab + b a + b + n = = a + ab + b a ab + b + 8n = a + ab + b 8n = ab n = ab Hence, n is expressible as the area of some triangle. Now we need to show that these a and b satisfy a + b = c for some rational c to show that the triangle involved is in fact a right triangle. ( ) a + b s + n =.3.3 () (3) ( ) ( ) a + b a + b s = n = ab s = a + ab + b ab = a + b s = (s) = c = a + b To show this we must find a point on C n (Q) that is not on y = 0. First, factor C n : y = x(x n)(x + n) Now we will let x = s and y = 0 and derive a contradiction. If y = 0, then either x = 0, x n = 0 or x + n = 0. Clearly, x 0 since this would force us to violate the presupposed inequality r < s. This implies that x n = ( a b ) = 0 or x + n = ( a+b ) = 0. Now if x n = 0 then we have that a = b n is not square-free. This is again a contradiction. Similarly,,

6 if x + n = 0 then both a and b must be non-negative as they both represent lengths. This implies that a = b = 0, but then a = b = n = 0 x = 0 s = 0 which is a contradiction of the inequality r < s. Hence, x = s 0 is a solution for which y 0. Furthermore, y Q because all three factors of y shown are squares of rational numbers. In fact, this point is (s, rst)..3. (3) () Take α, β, γ Q and consider C : y = (x α)(x β)(x γ). Also let P = (x 1, y 1 ) C(Q), P = (x, y ) C(Q). We can easily multiply this out into Weierstrass form and use Mathematica to determine x(p ), x α, x β and x γ. x(p ) = x bx 8cx + b ac x 3 + ax + bx + c We can see, via Mathematica, that (x α), (x β) and (x γ) are all squares of rational numbers. Respectively, x α = x β = x γ = [ ( )] 1 x xα + α(β + γ) βγ (x α)(x β)(x γ) [ ( )] 1 x xβ + α(β γ) + βγ (x α)(x β)(x γ) [ 1 ( )] x xγ + α(γ β) + βγ (x α)(x β)(x γ) This is true because the numerator and the denominator are both rational, (x α)(x β)(x γ) = y = y and x, α, β, γ Q. Now, we can use this form for our curve C n : y = (x 0)(x n)(x + n). This gives us α = 0, β = n, γ = n. Thus, x α = x, x β = x n and x γ = x + n. All of these are then squares, including x. Then, x (x n) = n and (x + n) x = n. This means that these have the same properties as r, s, t. QED. 5

7 . Rank It also turns out that there is a connection between the congruency of a number n and the rank of C n : y = x 3 n x. In particular, n is a congruent number if and only if the rank of C n is positive. In order to demonstrate this, we first need to show that C n (Q) torsion = {O, (0, 0), (n, 0), ( n, 0)} Consider the discriminant, D = a 3 c+a b +18abc b 3 7c. Because, a = c = 0, D = b 3. For C n, D = n 6 and by Nagell-Lutz y n 6. Thus, we take all possible solutions such that y n 3 = p e 1 1 p e...p e k k, where this is the prime factorization of n 3, y {± t p f 1 1 p f... p f k k t = 0 or 1, 0 f i e i } It turns out that none of these values satisfy our equation and so for all torsion points of C n, y = 0 or P = O which yields all of our obvious points and C n (Q) tor =. Now, for some congruent number n, we know there is a point on C n (Q) that is not a torsion point. Thus C n (Q) >. Because C n (Q) = Z Z... Z C n (Q) = Z r C n (Q) we have that r 1. Therefore, n congruent rank of C n > 0. The converse is immediate. Take the rank of C n to be strictly positive. Then C n (Q) > P C n (Q), P / C n (Q) tor By statement (3) of our theorem, this implies that n is congruent and so our bijection is complete..5 Examples of Curves with Different Ranks We can use what we ve discovered to discern rank information about curves of this form. Given the curve C : y = x 3 576x we can determine that C has positive rank. Factoring 576 gives us = ( 6). This is a congruent number in the same residue class as 6 in Q /Q. Thus the rank of this curve is positive. Given C 11 : y = x 3 11x, we can determine that this has rank zero. First, notice that 11 = 11 and 11 3(mod 8). By the result in section 1.1, this is not congruent so C n has rank zero. It follows that C has positive rank by the same proposition. 6

8 .6 Another Link Tunnell s Theorem Another general theorem linking elliptic curves to congruent numbers has been proposed. Tunnell s Theorem 1 Suppose n is an odd and square-free integer. Then L(C n, 1) = 0 if and only if #{x, y, z Z : x + y + 8z = n} = #{x, y, z Z : x + y + 3z = n} Tunnell s Theorem (Corollary) If #{x, y, z Z : x + y + 8z = n} #{x, y, z Z : x + y + 3z = n} then n is not a congruent number. Otherwise, n is a congruent number, assuming the Birch and Swinnerton-Dyer Conjecture. Clearly the correlation between this class of elliptic curves and congruent numbers is very strong, which is not surprising as we have seen similar correlations with Pythagorean triples and curves with sixteen torsion points, etc. This theorem also motivates us to investigate the Birch and Swinnerton-Dyer Conjecture. 3 Birch and Swinnerton-Dyer Conjecture The Birch and Swinnerton-Dyer Conjecture was initially motivated by the idea that as the rank of elliptic curves increases the number of solutions over finite fields should increase. In other words, the function π C (x) = p x N p p with N p = #C(F p ) will increase as the rank of C increases. Because of the way squares are distributed over finite fields, it was suspected that N p p + 1. Birch and Swinnerton-Dyer suspected that, because elliptic curves with high rank have more independent points of infinite order, they would have more points P C(F) than predicted by this estimate. Technically, π C (x) K C (log x) r C 7

9 for some constant K C where r C is the rank of C. The modern version of this conjecture states that for any elliptic curve defined over Q, ord s=1 L(C/Q, s) = r C where r C = rank of C Now, what does all of this mean? 3.1 L-Functions L-functions are generalizations of the Riemann Zeta function and Dirchlet L-series. The Riemann Zeta function is 1 ζ(s) = n s which has some recognizable characteristics, such as at s = 1 there is a pole corresponding to the divergence of the harmonic series. We can generalize this function over our finite field to produce a function connected to our elliptic curve. n=1 ζ(c/f p, s) = 1 a px + px (1 x)(1 px) with x = p s, a p = p + 1 N p a p is essentially the error term for the estimate N p p+1. From here we can get to something which directly pertains to what we are working towards, the Hasse-Weil L-function. L(C/Q, s) = p (1 a p p s + p 1 s ) 1 If we ignore some exceptions at s = 1, L(C/Q, 1) = p p N p L-functions can be expressed as a power series and it is only recently that it was shown that this power series has an analytic continuation for the L-functions of elliptic curves, as a corollary to Wiles proof of Fermat s Last Theorem. Trust me. 8

10 3. Orders of Zeroes The ord function corresponds to the order of a zero of a function. It measures how much zero a function has at a certain point. This is a strong analogue to the ord function defined in our book, which determines the divisibility of a number by a prime p, its p-adic valuation. In this case, ord is measured by the exponent on the term that approaches zero. For example, 3.3 Interpretation ord x=5 (x 5) 10 = 10 ord x=0 (x ) = ord x=k (x [ k) n (x k + ) m = n ord x= k=0 (x )k+] = Now, with these tools in place we can begin to understand the Birch and Swinnerton-Dyer Conjecture. The order of the zero at s = 1 corresponds to the rank of the curve. If we look at the power series of the L-function, this corresponds to the sum s divisibility by (s 1). In other words, the order is the maximum n such that, without introducing (s 1) terms into the denominators of any terms, we can produce (s 1) n a k Therefore if the L-function is not zero when evaluated at s = 1, the elliptic curve has rank 0. This curve only has rational points which are torsion points, and so C(Q) is determined entirely by the Nagell-Lutz Theorem. If the L-function is zero at s = 1 and the first derivative of the L-function is non-zero at s = 1, then we can state that the rank of this elliptic curve is 1 and that there exists a point P of infinite order such that all rational points in C(Q) are multiples of P and some element in C(Q) tor. If the L-function is zero at s = 1 and all of its derivatives up to its n th derivative are zero at s = 1 and the n + 1 derivative is non-zero, then the rank of the curve is n, assuming Birch and Swinnerton-Dyer. Thus there are n independent points P i of infinite order and the union of these points with C(Q) tor forms a basis for C(Q). 9

11 Relevant Proven Facts Not much. Currently it has only been shown that this conjecture is valid for ord s=1 L(C/Q, s) = r C = 0 or 1 Another recent result is that the L-function has an analytic continuation for the rest of C. The pertinent L-function had previously only been shown to be analytic on Re(s) > 3/. Mathematicians had been able to treat it formally at s = 1 but without any real justification. 10

On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples

On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples Brian Hilley Boston College MT695 Honors Seminar March 3, 2006 1 Introduction 1.1 Mazur s Theorem Let C be a

More information

Applications of Fermat s Little Theorem and Congruences

Applications of Fermat s Little Theorem and Congruences Applications of Fermat s Little Theorem and Congruences Definition: Let m be a positive integer. Then integers a and b are congruent modulo m, denoted by a b mod m, if m (a b). Example: 3 1 mod 2, 6 4

More information

Congruent Number Problem

Congruent Number Problem University of Waterloo October 28th, 2015 Number Theory Number theory, can be described as the mathematics of discovering and explaining patterns in numbers. There is nothing in the world which pleases

More information

Alex, I will take congruent numbers for one million dollars please

Alex, I will take congruent numbers for one million dollars please Alex, I will take congruent numbers for one million dollars please Jim L. Brown The Ohio State University Columbus, OH 4310 jimlb@math.ohio-state.edu One of the most alluring aspectives of number theory

More information

Math 319 Problem Set #3 Solution 21 February 2002

Math 319 Problem Set #3 Solution 21 February 2002 Math 319 Problem Set #3 Solution 21 February 2002 1. ( 2.1, problem 15) Find integers a 1, a 2, a 3, a 4, a 5 such that every integer x satisfies at least one of the congruences x a 1 (mod 2), x a 2 (mod

More information

k, then n = p2α 1 1 pα k

k, then n = p2α 1 1 pα k Powers of Integers An integer n is a perfect square if n = m for some integer m. Taking into account the prime factorization, if m = p α 1 1 pα k k, then n = pα 1 1 p α k k. That is, n is a perfect square

More information

THE CONGRUENT NUMBER PROBLEM

THE CONGRUENT NUMBER PROBLEM THE CONGRUENT NUMBER PROBLEM KEITH CONRAD 1. Introduction A right triangle is called rational when its legs and hypotenuse are all rational numbers. Examples of rational right triangles include Pythagorean

More information

PYTHAGOREAN TRIPLES KEITH CONRAD

PYTHAGOREAN TRIPLES KEITH CONRAD PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient

More information

Every Positive Integer is the Sum of Four Squares! (and other exciting problems)

Every Positive Integer is the Sum of Four Squares! (and other exciting problems) Every Positive Integer is the Sum of Four Squares! (and other exciting problems) Sophex University of Texas at Austin October 18th, 00 Matilde N. Lalín 1. Lagrange s Theorem Theorem 1 Every positive integer

More information

Five fundamental operations. mathematics: addition, subtraction, multiplication, division, and modular forms

Five fundamental operations. mathematics: addition, subtraction, multiplication, division, and modular forms The five fundamental operations of mathematics: addition, subtraction, multiplication, division, and modular forms UC Berkeley Trinity University March 31, 2008 This talk is about counting, and it s about

More information

SECTION 10-2 Mathematical Induction

SECTION 10-2 Mathematical Induction 73 0 Sequences and Series 6. Approximate e 0. using the first five terms of the series. Compare this approximation with your calculator evaluation of e 0.. 6. Approximate e 0.5 using the first five terms

More information

Doug Ravenel. October 15, 2008

Doug Ravenel. October 15, 2008 Doug Ravenel University of Rochester October 15, 2008 s about Euclid s Some s about primes that every mathematician should know (Euclid, 300 BC) There are infinitely numbers. is very elementary, and we

More information

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5. PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include

More information

OSTROWSKI FOR NUMBER FIELDS

OSTROWSKI FOR NUMBER FIELDS OSTROWSKI FOR NUMBER FIELDS KEITH CONRAD Ostrowski classified the nontrivial absolute values on Q: up to equivalence, they are the usual (archimedean) absolute value and the p-adic absolute values for

More information

3 0 + 4 + 3 1 + 1 + 3 9 + 6 + 3 0 + 1 + 3 0 + 1 + 3 2 mod 10 = 4 + 3 + 1 + 27 + 6 + 1 + 1 + 6 mod 10 = 49 mod 10 = 9.

3 0 + 4 + 3 1 + 1 + 3 9 + 6 + 3 0 + 1 + 3 0 + 1 + 3 2 mod 10 = 4 + 3 + 1 + 27 + 6 + 1 + 1 + 6 mod 10 = 49 mod 10 = 9. SOLUTIONS TO HOMEWORK 2 - MATH 170, SUMMER SESSION I (2012) (1) (Exercise 11, Page 107) Which of the following is the correct UPC for Progresso minestrone soup? Show why the other numbers are not valid

More information

THE BIRCH AND SWINNERTON-DYER CONJECTURE

THE BIRCH AND SWINNERTON-DYER CONJECTURE THE BIRCH AND SWINNERTON-DYER CONJECTURE ANDREW WILES A polynomial relation f(x, y) = 0 in two variables defines a curve C 0. If the coefficients of the polynomial are rational numbers, then one can ask

More information

SOLVING POLYNOMIAL EQUATIONS

SOLVING POLYNOMIAL EQUATIONS C SOLVING POLYNOMIAL EQUATIONS We will assume in this appendix that you know how to divide polynomials using long division and synthetic division. If you need to review those techniques, refer to an algebra

More information

Integer roots of quadratic and cubic polynomials with integer coefficients

Integer roots of quadratic and cubic polynomials with integer coefficients Integer roots of quadratic and cubic polynomials with integer coefficients Konstantine Zelator Mathematics, Computer Science and Statistics 212 Ben Franklin Hall Bloomsburg University 400 East Second Street

More information

V55.0106 Quantitative Reasoning: Computers, Number Theory and Cryptography

V55.0106 Quantitative Reasoning: Computers, Number Theory and Cryptography V55.0106 Quantitative Reasoning: Computers, Number Theory and Cryptography 3 Congruence Congruences are an important and useful tool for the study of divisibility. As we shall see, they are also critical

More information

Revised Version of Chapter 23. We learned long ago how to solve linear congruences. ax c (mod m)

Revised Version of Chapter 23. We learned long ago how to solve linear congruences. ax c (mod m) Chapter 23 Squares Modulo p Revised Version of Chapter 23 We learned long ago how to solve linear congruences ax c (mod m) (see Chapter 8). It s now time to take the plunge and move on to quadratic equations.

More information

MOP 2007 Black Group Integer Polynomials Yufei Zhao. Integer Polynomials. June 29, 2007 Yufei Zhao yufeiz@mit.edu

MOP 2007 Black Group Integer Polynomials Yufei Zhao. Integer Polynomials. June 29, 2007 Yufei Zhao yufeiz@mit.edu Integer Polynomials June 9, 007 Yufei Zhao yufeiz@mit.edu We will use Z[x] to denote the ring of polynomials with integer coefficients. We begin by summarizing some of the common approaches used in dealing

More information

Homework until Test #2

Homework until Test #2 MATH31: Number Theory Homework until Test # Philipp BRAUN Section 3.1 page 43, 1. It has been conjectured that there are infinitely many primes of the form n. Exhibit five such primes. Solution. Five such

More information

MATH10040 Chapter 2: Prime and relatively prime numbers

MATH10040 Chapter 2: Prime and relatively prime numbers MATH10040 Chapter 2: Prime and relatively prime numbers Recall the basic definition: 1. Prime numbers Definition 1.1. Recall that a positive integer is said to be prime if it has precisely two positive

More information

Math 4310 Handout - Quotient Vector Spaces

Math 4310 Handout - Quotient Vector Spaces Math 4310 Handout - Quotient Vector Spaces Dan Collins The textbook defines a subspace of a vector space in Chapter 4, but it avoids ever discussing the notion of a quotient space. This is understandable

More information

FACTORING IN QUADRATIC FIELDS. 1. Introduction. This is called a quadratic field and it has degree 2 over Q. Similarly, set

FACTORING IN QUADRATIC FIELDS. 1. Introduction. This is called a quadratic field and it has degree 2 over Q. Similarly, set FACTORING IN QUADRATIC FIELDS KEITH CONRAD For a squarefree integer d other than 1, let 1. Introduction K = Q[ d] = {x + y d : x, y Q}. This is called a quadratic field and it has degree 2 over Q. Similarly,

More information

Solving Quadratic Equations

Solving Quadratic Equations 9.3 Solving Quadratic Equations by Using the Quadratic Formula 9.3 OBJECTIVES 1. Solve a quadratic equation by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation

More information

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2 CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2 Proofs Intuitively, the concept of proof should already be familiar We all like to assert things, and few of us

More information

Introduction. Appendix D Mathematical Induction D1

Introduction. Appendix D Mathematical Induction D1 Appendix D Mathematical Induction D D Mathematical Induction Use mathematical induction to prove a formula. Find a sum of powers of integers. Find a formula for a finite sum. Use finite differences to

More information

Prime numbers and prime polynomials. Paul Pollack Dartmouth College

Prime numbers and prime polynomials. Paul Pollack Dartmouth College Prime numbers and prime polynomials Paul Pollack Dartmouth College May 1, 2008 Analogies everywhere! Analogies in elementary number theory (continued fractions, quadratic reciprocity, Fermat s last theorem)

More information

3 1. Note that all cubes solve it; therefore, there are no more

3 1. Note that all cubes solve it; therefore, there are no more Math 13 Problem set 5 Artin 11.4.7 Factor the following polynomials into irreducible factors in Q[x]: (a) x 3 3x (b) x 3 3x + (c) x 9 6x 6 + 9x 3 3 Solution: The first two polynomials are cubics, so if

More information

DigitalCommons@University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln MAT Exam Expository Papers Math in the Middle Institute Partnership 7-1-007 Pythagorean Triples Diane Swartzlander University

More information

Tim Kerins. Leaving Certificate Honours Maths - Algebra. Tim Kerins. the date

Tim Kerins. Leaving Certificate Honours Maths - Algebra. Tim Kerins. the date Leaving Certificate Honours Maths - Algebra the date Chapter 1 Algebra This is an important portion of the course. As well as generally accounting for 2 3 questions in examination it is the basis for many

More information

a 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4)

a 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4) ROOTS OF POLYNOMIAL EQUATIONS In this unit we discuss polynomial equations. A polynomial in x of degree n, where n 0 is an integer, is an expression of the form P n (x) =a n x n + a n 1 x n 1 + + a 1 x

More information

On the largest prime factor of x 2 1

On the largest prime factor of x 2 1 On the largest prime factor of x 2 1 Florian Luca and Filip Najman Abstract In this paper, we find all integers x such that x 2 1 has only prime factors smaller than 100. This gives some interesting numerical

More information

WRITING PROOFS. Christopher Heil Georgia Institute of Technology

WRITING PROOFS. Christopher Heil Georgia Institute of Technology WRITING PROOFS Christopher Heil Georgia Institute of Technology A theorem is just a statement of fact A proof of the theorem is a logical explanation of why the theorem is true Many theorems have this

More information

2010 Solutions. a + b. a + b 1. (a + b)2 + (b a) 2. (b2 + a 2 ) 2 (a 2 b 2 ) 2

2010 Solutions. a + b. a + b 1. (a + b)2 + (b a) 2. (b2 + a 2 ) 2 (a 2 b 2 ) 2 00 Problem If a and b are nonzero real numbers such that a b, compute the value of the expression ( ) ( b a + a a + b b b a + b a ) ( + ) a b b a + b a +. b a a b Answer: 8. Solution: Let s simplify the

More information

Solution to Exercise 2.2. Both m and n are divisible by d, som = dk and n = dk. Thus m ± n = dk ± dk = d(k ± k ),som + n and m n are divisible by d.

Solution to Exercise 2.2. Both m and n are divisible by d, som = dk and n = dk. Thus m ± n = dk ± dk = d(k ± k ),som + n and m n are divisible by d. [Chap. ] Pythagorean Triples 6 (b) The table suggests that in every primitive Pythagorean triple, exactly one of a, b,orc is a multiple of 5. To verify this, we use the Pythagorean Triples Theorem to write

More information

The last three chapters introduced three major proof techniques: direct,

The last three chapters introduced three major proof techniques: direct, CHAPTER 7 Proving Non-Conditional Statements The last three chapters introduced three major proof techniques: direct, contrapositive and contradiction. These three techniques are used to prove statements

More information

How To Prove The Dirichlet Unit Theorem

How To Prove The Dirichlet Unit Theorem Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if

More information

PROOFS BY DESCENT KEITH CONRAD

PROOFS BY DESCENT KEITH CONRAD PROOFS BY DESCENT KEITH CONRAD As ordinary methods, such as are found in the books, are inadequate to proving such difficult propositions, I discovered at last a most singular method... that I called the

More information

Algebraic and Transcendental Numbers

Algebraic and Transcendental Numbers Pondicherry University July 2000 Algebraic and Transcendental Numbers Stéphane Fischler This text is meant to be an introduction to algebraic and transcendental numbers. For a detailed (though elementary)

More information

The Prime Numbers. Definition. A prime number is a positive integer with exactly two positive divisors.

The Prime Numbers. Definition. A prime number is a positive integer with exactly two positive divisors. The Prime Numbers Before starting our study of primes, we record the following important lemma. Recall that integers a, b are said to be relatively prime if gcd(a, b) = 1. Lemma (Euclid s Lemma). If gcd(a,

More information

SUM OF TWO SQUARES JAHNAVI BHASKAR

SUM OF TWO SQUARES JAHNAVI BHASKAR SUM OF TWO SQUARES JAHNAVI BHASKAR Abstract. I will investigate which numbers can be written as the sum of two squares and in how many ways, providing enough basic number theory so even the unacquainted

More information

11 Ideals. 11.1 Revisiting Z

11 Ideals. 11.1 Revisiting Z 11 Ideals The presentation here is somewhat different than the text. In particular, the sections do not match up. We have seen issues with the failure of unique factorization already, e.g., Z[ 5] = O Q(

More information

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

More information

Number Theory Hungarian Style. Cameron Byerley s interpretation of Csaba Szabó s lectures

Number Theory Hungarian Style. Cameron Byerley s interpretation of Csaba Szabó s lectures Number Theory Hungarian Style Cameron Byerley s interpretation of Csaba Szabó s lectures August 20, 2005 2 0.1 introduction Number theory is a beautiful subject and even cooler when you learn about it

More information

Basic Proof Techniques

Basic Proof Techniques Basic Proof Techniques David Ferry dsf43@truman.edu September 13, 010 1 Four Fundamental Proof Techniques When one wishes to prove the statement P Q there are four fundamental approaches. This document

More information

Number Theory. Proof. Suppose otherwise. Then there would be a finite number n of primes, which we may

Number Theory. Proof. Suppose otherwise. Then there would be a finite number n of primes, which we may Number Theory Divisibility and Primes Definition. If a and b are integers and there is some integer c such that a = b c, then we say that b divides a or is a factor or divisor of a and write b a. Definition

More information

Solutions Manual for How to Read and Do Proofs

Solutions Manual for How to Read and Do Proofs Solutions Manual for How to Read and Do Proofs An Introduction to Mathematical Thought Processes Sixth Edition Daniel Solow Department of Operations Weatherhead School of Management Case Western Reserve

More information

Some practice problems for midterm 2

Some practice problems for midterm 2 Some practice problems for midterm 2 Kiumars Kaveh November 15, 2011 Problem: What is the remainder of 6 2000 when divided by 11? Solution: This is a long-winded way of asking for the value of 6 2000 mod

More information

HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)!

HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)! Math 7 Fall 205 HOMEWORK 5 SOLUTIONS Problem. 2008 B2 Let F 0 x = ln x. For n 0 and x > 0, let F n+ x = 0 F ntdt. Evaluate n!f n lim n ln n. By directly computing F n x for small n s, we obtain the following

More information

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called

More information

Elementary Number Theory and Methods of Proof. CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.

Elementary Number Theory and Methods of Proof. CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook. Elementary Number Theory and Methods of Proof CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.edu/~cse215 1 Number theory Properties: 2 Properties of integers (whole

More information

8 Primes and Modular Arithmetic

8 Primes and Modular Arithmetic 8 Primes and Modular Arithmetic 8.1 Primes and Factors Over two millennia ago already, people all over the world were considering the properties of numbers. One of the simplest concepts is prime numbers.

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

More information

CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12

CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12 CONTINUED FRACTIONS AND PELL S EQUATION SEUNG HYUN YANG Abstract. In this REU paper, I will use some important characteristics of continued fractions to give the complete set of solutions to Pell s equation.

More information

4.2 Euclid s Classification of Pythagorean Triples

4.2 Euclid s Classification of Pythagorean Triples 178 4. Number Theory: Fermat s Last Theorem Exercise 4.7: A primitive Pythagorean triple is one in which any two of the three numbers are relatively prime. Show that every multiple of a Pythagorean triple

More information

MATH 289 PROBLEM SET 4: NUMBER THEORY

MATH 289 PROBLEM SET 4: NUMBER THEORY MATH 289 PROBLEM SET 4: NUMBER THEORY 1. The greatest common divisor If d and n are integers, then we say that d divides n if and only if there exists an integer q such that n = qd. Notice that if d divides

More information

Section 4.1 Rules of Exponents

Section 4.1 Rules of Exponents Section 4.1 Rules of Exponents THE MEANING OF THE EXPONENT The exponent is an abbreviation for repeated multiplication. The repeated number is called a factor. x n means n factors of x. The exponent tells

More information

Lecture 13 - Basic Number Theory.

Lecture 13 - Basic Number Theory. Lecture 13 - Basic Number Theory. Boaz Barak March 22, 2010 Divisibility and primes Unless mentioned otherwise throughout this lecture all numbers are non-negative integers. We say that A divides B, denoted

More information

Winter Camp 2011 Polynomials Alexander Remorov. Polynomials. Alexander Remorov alexanderrem@gmail.com

Winter Camp 2011 Polynomials Alexander Remorov. Polynomials. Alexander Remorov alexanderrem@gmail.com Polynomials Alexander Remorov alexanderrem@gmail.com Warm-up Problem 1: Let f(x) be a quadratic polynomial. Prove that there exist quadratic polynomials g(x) and h(x) such that f(x)f(x + 1) = g(h(x)).

More information

Inner Product Spaces

Inner Product Spaces Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and

More information

How To Solve Factoring Problems

How To Solve Factoring Problems 05-W4801-AM1.qxd 8/19/08 8:45 PM Page 241 Factoring, Solving Equations, and Problem Solving 5 5.1 Factoring by Using the Distributive Property 5.2 Factoring the Difference of Two Squares 5.3 Factoring

More information

Factoring Algorithms

Factoring Algorithms Factoring Algorithms The p 1 Method and Quadratic Sieve November 17, 2008 () Factoring Algorithms November 17, 2008 1 / 12 Fermat s factoring method Fermat made the observation that if n has two factors

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +

More information

Continued Fractions. Darren C. Collins

Continued Fractions. Darren C. Collins Continued Fractions Darren C Collins Abstract In this paper, we discuss continued fractions First, we discuss the definition and notation Second, we discuss the development of the subject throughout history

More information

RECURSIVE ENUMERATION OF PYTHAGOREAN TRIPLES

RECURSIVE ENUMERATION OF PYTHAGOREAN TRIPLES RECURSIVE ENUMERATION OF PYTHAGOREAN TRIPLES DARRYL MCCULLOUGH AND ELIZABETH WADE In [9], P. W. Wade and W. R. Wade (no relation to the second author gave a recursion formula that produces Pythagorean

More information

Just the Factors, Ma am

Just the Factors, Ma am 1 Introduction Just the Factors, Ma am The purpose of this note is to find and study a method for determining and counting all the positive integer divisors of a positive integer Let N be a given positive

More information

Answer Key for California State Standards: Algebra I

Answer Key for California State Standards: Algebra I Algebra I: Symbolic reasoning and calculations with symbols are central in algebra. Through the study of algebra, a student develops an understanding of the symbolic language of mathematics and the sciences.

More information

CHAPTER 3. Methods of Proofs. 1. Logical Arguments and Formal Proofs

CHAPTER 3. Methods of Proofs. 1. Logical Arguments and Formal Proofs CHAPTER 3 Methods of Proofs 1. Logical Arguments and Formal Proofs 1.1. Basic Terminology. An axiom is a statement that is given to be true. A rule of inference is a logical rule that is used to deduce

More information

MATH 537 (Number Theory) FALL 2016 TENTATIVE SYLLABUS

MATH 537 (Number Theory) FALL 2016 TENTATIVE SYLLABUS MATH 537 (Number Theory) FALL 2016 TENTATIVE SYLLABUS Class Meetings: MW 2:00-3:15 pm in Physics 144, September 7 to December 14 [Thanksgiving break November 23 27; final exam December 21] Instructor:

More information

MATH 10034 Fundamental Mathematics IV

MATH 10034 Fundamental Mathematics IV MATH 0034 Fundamental Mathematics IV http://www.math.kent.edu/ebooks/0034/funmath4.pdf Department of Mathematical Sciences Kent State University January 2, 2009 ii Contents To the Instructor v Polynomials.

More information

Factoring and Applications

Factoring and Applications Factoring and Applications What is a factor? The Greatest Common Factor (GCF) To factor a number means to write it as a product (multiplication). Therefore, in the problem 48 3, 4 and 8 are called the

More information

Primality - Factorization

Primality - Factorization Primality - Factorization Christophe Ritzenthaler November 9, 2009 1 Prime and factorization Definition 1.1. An integer p > 1 is called a prime number (nombre premier) if it has only 1 and p as divisors.

More information

SYSTEMS OF PYTHAGOREAN TRIPLES. Acknowledgements. I would like to thank Professor Laura Schueller for advising and guiding me

SYSTEMS OF PYTHAGOREAN TRIPLES. Acknowledgements. I would like to thank Professor Laura Schueller for advising and guiding me SYSTEMS OF PYTHAGOREAN TRIPLES CHRISTOPHER TOBIN-CAMPBELL Abstract. This paper explores systems of Pythagorean triples. It describes the generating formulas for primitive Pythagorean triples, determines

More information

CHAPTER 5. Number Theory. 1. Integers and Division. Discussion

CHAPTER 5. Number Theory. 1. Integers and Division. Discussion CHAPTER 5 Number Theory 1. Integers and Division 1.1. Divisibility. Definition 1.1.1. Given two integers a and b we say a divides b if there is an integer c such that b = ac. If a divides b, we write a

More information

Real Roots of Univariate Polynomials with Real Coefficients

Real Roots of Univariate Polynomials with Real Coefficients Real Roots of Univariate Polynomials with Real Coefficients mostly written by Christina Hewitt March 22, 2012 1 Introduction Polynomial equations are used throughout mathematics. When solving polynomials

More information

CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY

CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY January 10, 2010 CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY The set of polynomials over a field F is a ring, whose structure shares with the ring of integers many characteristics.

More information

2 When is a 2-Digit Number the Sum of the Squares of its Digits?

2 When is a 2-Digit Number the Sum of the Squares of its Digits? When Does a Number Equal the Sum of the Squares or Cubes of its Digits? An Exposition and a Call for a More elegant Proof 1 Introduction We will look at theorems of the following form: by William Gasarch

More information

Partial Fractions Examples

Partial Fractions Examples Partial Fractions Examples Partial fractions is the name given to a technique of integration that may be used to integrate any ratio of polynomials. A ratio of polynomials is called a rational function.

More information

Practice with Proofs

Practice with Proofs Practice with Proofs October 6, 2014 Recall the following Definition 0.1. A function f is increasing if for every x, y in the domain of f, x < y = f(x) < f(y) 1. Prove that h(x) = x 3 is increasing, using

More information

Combinatorial Proofs

Combinatorial Proofs Combinatorial Proofs Two Counting Principles Some proofs concerning finite sets involve counting the number of elements of the sets, so we will look at the basics of counting. Addition Principle: If A

More information

Math Workshop October 2010 Fractions and Repeating Decimals

Math Workshop October 2010 Fractions and Repeating Decimals Math Workshop October 2010 Fractions and Repeating Decimals This evening we will investigate the patterns that arise when converting fractions to decimals. As an example of what we will be looking at,

More information

Contents. 6 Continued Fractions and Diophantine Equations. 6.1 Linear Diophantine Equations

Contents. 6 Continued Fractions and Diophantine Equations. 6.1 Linear Diophantine Equations Number Theory (part 6): Continued Fractions and Diophantine Equations (by Evan Dummit, 04, v 00) Contents 6 Continued Fractions and Diophantine Equations 6 Linear Diophantine Equations 6 The Frobenius

More information

it is easy to see that α = a

it is easy to see that α = a 21. Polynomial rings Let us now turn out attention to determining the prime elements of a polynomial ring, where the coefficient ring is a field. We already know that such a polynomial ring is a UF. Therefore

More information

The Method of Partial Fractions Math 121 Calculus II Spring 2015

The Method of Partial Fractions Math 121 Calculus II Spring 2015 Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method

More information

SOLVING QUADRATIC EQUATIONS - COMPARE THE FACTORING ac METHOD AND THE NEW DIAGONAL SUM METHOD By Nghi H. Nguyen

SOLVING QUADRATIC EQUATIONS - COMPARE THE FACTORING ac METHOD AND THE NEW DIAGONAL SUM METHOD By Nghi H. Nguyen SOLVING QUADRATIC EQUATIONS - COMPARE THE FACTORING ac METHOD AND THE NEW DIAGONAL SUM METHOD By Nghi H. Nguyen A. GENERALITIES. When a given quadratic equation can be factored, there are 2 best methods

More information

Lectures on Number Theory. Lars-Åke Lindahl

Lectures on Number Theory. Lars-Åke Lindahl Lectures on Number Theory Lars-Åke Lindahl 2002 Contents 1 Divisibility 1 2 Prime Numbers 7 3 The Linear Diophantine Equation ax+by=c 12 4 Congruences 15 5 Linear Congruences 19 6 The Chinese Remainder

More information

Quotient Rings and Field Extensions

Quotient Rings and Field Extensions Chapter 5 Quotient Rings and Field Extensions In this chapter we describe a method for producing field extension of a given field. If F is a field, then a field extension is a field K that contains F.

More information

3. INNER PRODUCT SPACES

3. INNER PRODUCT SPACES . INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.

More information

If n is odd, then 3n + 7 is even.

If n is odd, then 3n + 7 is even. Proof: Proof: We suppose... that 3n + 7 is even. that 3n + 7 is even. Since n is odd, there exists an integer k so that n = 2k + 1. that 3n + 7 is even. Since n is odd, there exists an integer k so that

More information

Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test

Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important

More information

ELLIPTIC CURVES AND LENSTRA S FACTORIZATION ALGORITHM

ELLIPTIC CURVES AND LENSTRA S FACTORIZATION ALGORITHM ELLIPTIC CURVES AND LENSTRA S FACTORIZATION ALGORITHM DANIEL PARKER Abstract. This paper provides a foundation for understanding Lenstra s Elliptic Curve Algorithm for factoring large numbers. We give

More information

Factoring Polynomials

Factoring Polynomials Factoring Polynomials Sue Geller June 19, 2006 Factoring polynomials over the rational numbers, real numbers, and complex numbers has long been a standard topic of high school algebra. With the advent

More information

Pythagorean Triples and Rational Points on the Unit Circle

Pythagorean Triples and Rational Points on the Unit Circle Pythagorean Triles and Rational Points on the Unit Circle Solutions Below are samle solutions to the roblems osed. You may find that your solutions are different in form and you may have found atterns

More information

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1. MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column

More information

Primes in Sequences. Lee 1. By: Jae Young Lee. Project for MA 341 (Number Theory) Boston University Summer Term I 2009 Instructor: Kalin Kostadinov

Primes in Sequences. Lee 1. By: Jae Young Lee. Project for MA 341 (Number Theory) Boston University Summer Term I 2009 Instructor: Kalin Kostadinov Lee 1 Primes in Sequences By: Jae Young Lee Project for MA 341 (Number Theory) Boston University Summer Term I 2009 Instructor: Kalin Kostadinov Lee 2 Jae Young Lee MA341 Number Theory PRIMES IN SEQUENCES

More information

Linear Algebra Notes for Marsden and Tromba Vector Calculus

Linear Algebra Notes for Marsden and Tromba Vector Calculus Linear Algebra Notes for Marsden and Tromba Vector Calculus n-dimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of

More information

So let us begin our quest to find the holy grail of real analysis.

So let us begin our quest to find the holy grail of real analysis. 1 Section 5.2 The Complete Ordered Field: Purpose of Section We present an axiomatic description of the real numbers as a complete ordered field. The axioms which describe the arithmetic of the real numbers

More information

Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.

Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. Algebra 2 - Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers - {1,2,3,4,...}

More information