Towards a Theory for Arbitrarily Shaped Sound Field Reproduction Systems

Size: px
Start display at page:

Download "Towards a Theory for Arbitrarily Shaped Sound Field Reproduction Systems"

Transcription

1 Towards a Theory for Arbitrarily Shaped Sound Field Reproduction Systems Sascha Spors, Matthias Rath and Jens Ahrens Sascha.Spors@telekom.de Acoustics 08, Paris ===!" Laboratories AG Laboratories Aim of Sound Field Reproduction Perfect reproduction of virtual wave field S(x,ω) within listening area V by loudspeakers (secondary sources) placed on border virtual source S(x, ω) V bound and simply connected domain V with smooth border no sources and objects within V Focus of this contribution: Explicit solution of underlying physical problem w.r.t. loudspeaker driving signals. ===!" Laboratories Spors et al.: Arbitrarily Shaped Sound Field Reproduction Page 1

2 Existing work boundary pressure control [Takane et al.,1999] higher-order Ambisonics (HOA), Wave Field Synthesis (WFS) operator theory for active noise control (ANC) [Loncaric et al.,2000] application of Functional Transformation Method (FTM) [Spors,2006] application of functional analysis [Fazi et al.,2007]... Aim of this contribution thorough review of the underlying physical problem, and its solution using methods from functional analysis ===!" Laboratories Spors et al.: Arbitrarily Shaped Sound Field Reproduction Page 2 Fundamentals of Sound Field Reproduction The Kirchhoff-Helmholtz integral provides the solution of the homogeneous wave equation with respect to inhomogeneous boundary conditions ( G(x x 0, ω) n P(x 0, ω) P(x 0, ω) ) n G(x x 0,ω) P(x,ω) x V 1 ds 0 = 2P(x,ω) x 0 x V n G(x x 0, ω) V P(x,ω) V x 0 x 0 ===!" Laboratories Spors et al.: Arbitrarily Shaped Sound Field Reproduction Page 3

3 Fundamentals of Sound Field Reproduction The field of a primary source S(x,ω) within the region V is given by its pressure and pressure gradient on the boundary S(x,ω) = ( G(x x 0,ω) n S(x 0,ω) S(x 0,ω) ) n G(x x 0, ω) ds 0 x V primary source n G(x x 0, ω) V P(x,ω) V S(x, ω) x 0 x 0 ===!" Laboratories Spors et al.: Arbitrarily Shaped Sound Field Reproduction Page 3 Fundamentals of Sound Field Reproduction The Green s function and its gradient can be interpreted as sources (secondary sources) that generate the desired virtual wave field S(x,ω) inside the listening area V S(x,ω) = ( G(x x 0,ω) n S(x 0,ω) S(x 0,ω) ) n G(x x 0, ω) ds 0 x V virtual source n G(x x 0, ω) V P(x,ω) V S(x, ω) x 0 x 0 ===!" Laboratories Spors et al.: Arbitrarily Shaped Sound Field Reproduction Page 3

4 Fundamentals of Sound Field Reproduction The theoretical basis of sound field reproduction is given by the Kirchhoff-Helmholtz integral S(x,ω) = ( G(x x 0,ω) n S(x 0, ω) S(x 0, ω) ) n G(x x 0, ω) ds 0 x V The explicit form of the Green s function depends on the dimensionality of the problem: Reproduction in a volume (3D) G 0,3D (x x 0,ω) = 1 e jω c x x 0 4π x x 0 secondary point sources Reproduction in a plane (2D) G 0,2D (x x 0,ω) = j 4 H(2) 0 (ω c x x 0 ) secondary line sources G(x x 0, ω) monopole secondary source n G(x x 0, ω) dipole secondary source ===!" Laboratories Spors et al.: Arbitrarily Shaped Sound Field Reproduction Page 3 Elimination of Dipole Secondary Sources There exist various approaches to eliminate the dipole secondary sources, e.g. 1. Modification of Green s function used in the Kirchhoff-Helmholtz integral assumption of a Neumann Green s function secondary sources may be hard to realize for complex geometries basis of Wave Field Synthesis (WFS) 2. The Simple Source Approach provides formulation for monopole only reproduction driving function is given by considering a disjunct interior/exterior problem solution known to be not unique [Copley, 1967] 3. Assume monopole only reproduction ===!" Laboratories Spors et al.: Arbitrarily Shaped Sound Field Reproduction Page 4

5 Reproduction Equation The problem of sound field reproduction can be formulated by a boundary integral equation for x S(x,ω) = D(x 0,ω) G(x x 0, ω) ds 0 that has to be solved w.r.t. the driving function D(x,ω). Analogy to acoustic scattering (Dirichlet boundary condition) incidence wave field equals wave field of virtual source scattered wave field equals wave field in V ===!" Laboratories Spors et al.: Arbitrarily Shaped Sound Field Reproduction Page 5 Theory of Fredholm Operators The boundary integral equation can be interpreted as an operator (AD)(x) = D(x 0,ω) G(x x 0, ω) ds 0 A is a Fredholm operator (acting on a Sobolev space) if its range is closed kernel is finite dimensional cokernel is finite dimensional From the equivalent scattering problem it is known [Giroire, 1982] that A is a Fredholm operator of zero index is an isomorphism iff ω 0 is not an eigenvalue of the interior Dirichlet problem A is a compact operator! ===!" Laboratories Spors et al.: Arbitrarily Shaped Sound Field Reproduction Page 6

6 Solution by Expansion of Operator Each compact (Fredholm) operator can be expanded into a series (A D)(x) = N n=1 G(n, ω) ψ n (x),d(x,ω) ψ n (x) with 1 N. G(n, ω) eigenvalues of operator ψ n is a orthogonal and normalized set in that fulfils the wave equation ψ n (x 0 ) ψ m (x 0 )ds 0 = δ nm n ψ n (x)ψ n (x 0 ) = δ(x x 0 ) typical Green s functions are symmetric, hence ψ n (x) = ψ n(x) ===!" Laboratories Spors et al.: Arbitrarily Shaped Sound Field Reproduction Page 7 Solution by Expansion of Operator II Projection of the driving signal onto basis functions D(n, ω) = ψ n (x),d(x,ω) = D(x,ω) ψ n (x) ds Solution is derived by expanding the desired virtual wave field S(x,ω) w.r.t. the ψ n (x) comparison of coefficients Resulting loudspeaker driving function with the expansion coefficients N D(x,ω) = n=1 D(n, ω) ψ n (x) D(n, ω) = S(n, ω) G(n, ω) ===!" Laboratories Spors et al.: Arbitrarily Shaped Sound Field Reproduction Page 8

7 Interpretation of Solution basis functions ψ n (x) are typically termed as acoustic modes non-uniqueness problem at eigenfrequencies of interior Dirichlet problem solutions given by null-space of operator A reported as less severe problem [Copley,1967], [Giroire,1982] ill-conditioning problem small eigenvalues values G(n, ω) may give rise to ill-conditioning modes with zero eigenvalues cannot be controlled solution: apply regularization or discard uncontrollable modes interpretation of transformation diagonalization of operator by expansion into acoustic modes basis of Wave-Domain Adaptive Filtering [Spors et al.,2004], [Buchner et al.,2004] Problem: Derivation of basis functions for a given geometry ===!" Laboratories Spors et al.: Arbitrarily Shaped Sound Field Reproduction Page 9 Basis Functions for Regular Geometries Suitable basis functions are known for a variety of regular geometries e.g. [Morse,Feshbach,1953]. Examples two dimensional reproduction circular boundary exponential functions (Fourier series) 2D higher order Ambisonics elliptical boundary Mathieu functions three dimensional reproduction spherical boundary spherical harmonics oblate/prolate spheroidal boundary oblate/prolate spheroidal harmonics 3D higher order Ambisonics ===!" Laboratories Spors et al.: Arbitrarily Shaped Sound Field Reproduction Page 10

8 Example: Two-Dimensional Higher Order Ambisonics expansion of wave fields on in terms of Fourier series using shift-theorem of Hankel functions and Jacobi-Anger expansion f pw = 1000 Hz f pw = 2000 Hz [R = 1.50 m, N = 56, θ pw = 90 o ] ===!" Laboratories Spors et al.: Arbitrarily Shaped Sound Field Reproduction Page 11 Spatial Sampling In practice, the secondary source distribution is spatially sampled virtual source S(x, ω) V sampling has large impact for reproduction with audio-signal bandwidth on typical systems sampling may degrade the reproduction of the desired wave field sampling has to be considered in a generalized theory ===!" Laboratories Spors et al.: Arbitrarily Shaped Sound Field Reproduction Page 12

9 Spatial Sampling of Driving Function Typical approach: model sampling of secondary sources by sampling of driving function D(x 0,ω) D S (x 0,ω) P S (x,ω) G 0 (x,ω) n x spatial sampling Sampling for linear/circular boundaries [Spors et al.,2006] repetitions (and overlap) of spatial spectrum of driving function band-limitation of spatial spectrum improves sampling artifacts Open questions for a generalized sampling theory applicability of existing approaches (scattering, boundary element method)? does sampling influence the non-uniqueness problem? formulation as discrete system more promising? ===!" Laboratories Spors et al.: Arbitrarily Shaped Sound Field Reproduction Page /2D Reproduction Typical systems aim at correct reproduction in a plane using secondary point sources Mismatch of secondary source types! The large-argument (far-field) approximation of the Hankel function G 0,2D (x x 0,ω) G 0,2 1/2D(x x 0, ω) = 2π jk x x0 e jk x x 0 4π x x 0 states that secondary line sources can be exchanged by point sources when applying a geometry independent spectral correction, and an amplitude correction with respect to a reference position/line Application to sound field reproduction: expansion of 2 1 /2D Green s function required, e.g. [Ahrens et al.,2008] ===!" Laboratories Spors et al.: Arbitrarily Shaped Sound Field Reproduction Page 14

10 Conclusions This talk summarized the physical foundations of sound field reproduction and presented the outline of a generalized theory based on functional analysis. Benefits closed form solution for driving function provides insights into the underlying physics Drawbacks derivation of suitable basis functions for a given geometry non-uniqueness and ill-conditioning of the problem very limited description due to secondary source sampling Open Question: Is physically motivated sound field reproduction by the explicit solution of the (continuous) reproduction equation a promising concept? ===!" Laboratories Spors et al.: Arbitrarily Shaped Sound Field Reproduction Page 15

ANALOGIES AND DIFFERENCES BETWEEN THREE METHODS FOR SOUND FIELD REPRODUCTION

ANALOGIES AND DIFFERENCES BETWEEN THREE METHODS FOR SOUND FIELD REPRODUCTION AMBISONICS SYMPOSIUM 2009 June 25-27, Graz ANALOGIES AND DIFFERENCES BETWEEN THREE METHODS FOR SOUND FIELD REPRODUCTION Filippo M. Fazi 1, Philip A. Nelson 1 and Roland Potthast 2 1 Institute of Sound

More information

Efficient Massive Multichannel Active Noise Control using Wave-Domain Adaptive Filtering

Efficient Massive Multichannel Active Noise Control using Wave-Domain Adaptive Filtering Efficient assive ultichannel Active Noise Control using Wave-Domain Adaptive Filtering Sascha Spors and Herbert Buchner Deutsche Telekom Laboratories, Technische Universität Berlin Ernst-Reuter-Platz 7,

More information

FIELDS-MITACS Conference. on the Mathematics of Medical Imaging. Photoacoustic and Thermoacoustic Tomography with a variable sound speed

FIELDS-MITACS Conference. on the Mathematics of Medical Imaging. Photoacoustic and Thermoacoustic Tomography with a variable sound speed FIELDS-MITACS Conference on the Mathematics of Medical Imaging Photoacoustic and Thermoacoustic Tomography with a variable sound speed Gunther Uhlmann UC Irvine & University of Washington Toronto, Canada,

More information

WAVES AND FIELDS IN INHOMOGENEOUS MEDIA

WAVES AND FIELDS IN INHOMOGENEOUS MEDIA WAVES AND FIELDS IN INHOMOGENEOUS MEDIA WENG CHO CHEW UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN IEEE PRESS Series on Electromagnetic Waves Donald G. Dudley, Series Editor IEEE Antennas and Propagation Society,

More information

EECS 556 Image Processing W 09. Interpolation. Interpolation techniques B splines

EECS 556 Image Processing W 09. Interpolation. Interpolation techniques B splines EECS 556 Image Processing W 09 Interpolation Interpolation techniques B splines What is image processing? Image processing is the application of 2D signal processing methods to images Image representation

More information

Development and optimization of a hybrid passive/active liner for flow duct applications

Development and optimization of a hybrid passive/active liner for flow duct applications Development and optimization of a hybrid passive/active liner for flow duct applications 1 INTRODUCTION Design of an acoustic liner effective throughout the entire frequency range inherent in aeronautic

More information

arxiv:1201.6059v2 [physics.class-ph] 27 Aug 2012

arxiv:1201.6059v2 [physics.class-ph] 27 Aug 2012 Green s functions for Neumann boundary conditions Jerrold Franklin Department of Physics, Temple University, Philadelphia, PA 19122-682 arxiv:121.659v2 [physics.class-ph] 27 Aug 212 (Dated: August 28,

More information

Spatial soundfield reproduction with zones of quiet

Spatial soundfield reproduction with zones of quiet Audio Engineering Society Convention Paper 7887 Presented at the 7th Convention 9 October 9 New York NY, USA The papers at this Convention have been selected on the basis of a submitted abstract and extended

More information

EXIT TIME PROBLEMS AND ESCAPE FROM A POTENTIAL WELL

EXIT TIME PROBLEMS AND ESCAPE FROM A POTENTIAL WELL EXIT TIME PROBLEMS AND ESCAPE FROM A POTENTIAL WELL Exit Time problems and Escape from a Potential Well Escape From a Potential Well There are many systems in physics, chemistry and biology that exist

More information

Lecture 14. Point Spread Function (PSF)

Lecture 14. Point Spread Function (PSF) Lecture 14 Point Spread Function (PSF), Modulation Transfer Function (MTF), Signal-to-noise Ratio (SNR), Contrast-to-noise Ratio (CNR), and Receiver Operating Curves (ROC) Point Spread Function (PSF) Recollect

More information

Calculation of Eigenmodes in Superconducting Cavities

Calculation of Eigenmodes in Superconducting Cavities Calculation of Eigenmodes in Superconducting Cavities W. Ackermann, C. Liu, W.F.O. Müller, T. Weiland Institut für Theorie Elektromagnetischer Felder, Technische Universität Darmstadt Status Meeting December

More information

Finite Element Analysis for Acoustic Behavior of a Refrigeration Compressor

Finite Element Analysis for Acoustic Behavior of a Refrigeration Compressor Finite Element Analysis for Acoustic Behavior of a Refrigeration Compressor Swapan Kumar Nandi Tata Consultancy Services GEDC, 185 LR, Chennai 600086, India Abstract When structures in contact with a fluid

More information

Introduction to the Finite Element Method

Introduction to the Finite Element Method Introduction to the Finite Element Method 09.06.2009 Outline Motivation Partial Differential Equations (PDEs) Finite Difference Method (FDM) Finite Element Method (FEM) References Motivation Figure: cross

More information

Reference: Introduction to Partial Differential Equations by G. Folland, 1995, Chap. 3.

Reference: Introduction to Partial Differential Equations by G. Folland, 1995, Chap. 3. 5 Potential Theory Reference: Introduction to Partial Differential Equations by G. Folland, 995, Chap. 3. 5. Problems of Interest. In what follows, we consider Ω an open, bounded subset of R n with C 2

More information

Computational Foundations of Cognitive Science

Computational Foundations of Cognitive Science Computational Foundations of Cognitive Science Lecture 15: Convolutions and Kernels Frank Keller School of Informatics University of Edinburgh keller@inf.ed.ac.uk February 23, 2010 Frank Keller Computational

More information

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 10

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 10 Lecture Notes to Accompany Scientific Computing An Introductory Survey Second Edition by Michael T. Heath Chapter 10 Boundary Value Problems for Ordinary Differential Equations Copyright c 2001. Reproduction

More information

Wavelet analysis. Wavelet requirements. Example signals. Stationary signal 2 Hz + 10 Hz + 20Hz. Zero mean, oscillatory (wave) Fast decay (let)

Wavelet analysis. Wavelet requirements. Example signals. Stationary signal 2 Hz + 10 Hz + 20Hz. Zero mean, oscillatory (wave) Fast decay (let) Wavelet analysis In the case of Fourier series, the orthonormal basis is generated by integral dilation of a single function e jx Every 2π-periodic square-integrable function is generated by a superposition

More information

7. DYNAMIC LIGHT SCATTERING 7.1 First order temporal autocorrelation function.

7. DYNAMIC LIGHT SCATTERING 7.1 First order temporal autocorrelation function. 7. DYNAMIC LIGHT SCATTERING 7. First order temporal autocorrelation function. Dynamic light scattering (DLS) studies the properties of inhomogeneous and dynamic media. A generic situation is illustrated

More information

Effects of microphone arrangement on the accuracy of a spherical microphone array (SENZI) in acquiring high-definition 3D sound space information

Effects of microphone arrangement on the accuracy of a spherical microphone array (SENZI) in acquiring high-definition 3D sound space information November 1, 21 1:3 1 Effects of microphone arrangement on the accuracy of a spherical microphone array (SENZI) in acquiring high-definition 3D sound space information Shuichi Sakamoto 1, Jun ichi Kodama

More information

The Heat Equation. Lectures INF2320 p. 1/88

The Heat Equation. Lectures INF2320 p. 1/88 The Heat Equation Lectures INF232 p. 1/88 Lectures INF232 p. 2/88 The Heat Equation We study the heat equation: u t = u xx for x (,1), t >, (1) u(,t) = u(1,t) = for t >, (2) u(x,) = f(x) for x (,1), (3)

More information

Linköping University Electronic Press

Linköping University Electronic Press Linköping University Electronic Press Report Well-posed boundary conditions for the shallow water equations Sarmad Ghader and Jan Nordström Series: LiTH-MAT-R, 0348-960, No. 4 Available at: Linköping University

More information

Convention Paper Presented at the 127th Convention 2009 October 9 12 New York NY, USA

Convention Paper Presented at the 127th Convention 2009 October 9 12 New York NY, USA Audio Engineering Society Convention Paper Presented at the 127th Convention 29 October 9 12 New York NY, USA 7857 The papers at this Convention have been selected on the basis of a submitted abstract

More information

System Identification for Acoustic Comms.:

System Identification for Acoustic Comms.: System Identification for Acoustic Comms.: New Insights and Approaches for Tracking Sparse and Rapidly Fluctuating Channels Weichang Li and James Preisig Woods Hole Oceanographic Institution The demodulation

More information

How To Prove The Dirichlet Unit Theorem

How To Prove The Dirichlet Unit Theorem Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if

More information

Theory of Sobolev Multipliers

Theory of Sobolev Multipliers Vladimir G. Maz'ya Tatyana O. Shaposhnikova Theory of Sobolev Multipliers With Applications to Differential and Integral Operators ^ Springer Introduction Part I Description and Properties of Multipliers

More information

GPR Polarization Simulation with 3D HO FDTD

GPR Polarization Simulation with 3D HO FDTD Progress In Electromagnetics Research Symposium Proceedings, Xi an, China, March 6, 00 999 GPR Polarization Simulation with 3D HO FDTD Jing Li, Zhao-Fa Zeng,, Ling Huang, and Fengshan Liu College of Geoexploration

More information

Inner Product Spaces

Inner Product Spaces Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and

More information

Vekua approximations and applications to soundeld sampling and source localisation

Vekua approximations and applications to soundeld sampling and source localisation 1/50 Vekua approximations and applications to soundeld sampling and source localisation Gilles Chardon Acoustics Research Institute, Vienna, Austria 2/50 Introduction Context Joint work with Laurent Daudet

More information

ON THE DEGREES OF FREEDOM OF SIGNALS ON GRAPHS. Mikhail Tsitsvero and Sergio Barbarossa

ON THE DEGREES OF FREEDOM OF SIGNALS ON GRAPHS. Mikhail Tsitsvero and Sergio Barbarossa ON THE DEGREES OF FREEDOM OF SIGNALS ON GRAPHS Mikhail Tsitsvero and Sergio Barbarossa Sapienza Univ. of Rome, DIET Dept., Via Eudossiana 18, 00184 Rome, Italy E-mail: tsitsvero@gmail.com, sergio.barbarossa@uniroma1.it

More information

Aliasing, Image Sampling and Reconstruction

Aliasing, Image Sampling and Reconstruction Aliasing, Image Sampling and Reconstruction Recall: a pixel is a point It is NOT a box, disc or teeny wee light It has no dimension It occupies no area It can have a coordinate More than a point, it is

More information

Preface Acknowledgments Acronyms

Preface Acknowledgments Acronyms Contents Preface Acknowledgments Acronyms xi xiii xv 1 Introduction 1 1.1 The history of Antennas and Antenna Analysis 1 1.2 Antenna Synthesis 5 1.3 Approximate Antenna Modeling 7 1.4 Organization of the

More information

DAAD: A New Software for Architectural Acoustic Design

DAAD: A New Software for Architectural Acoustic Design The 33 rd International Congress and Exposition on Noise Control Engineering DAAD: A New Software for Architectural Acoustic Design Enis Ozgur a, Feridun Ozis b, Adil Alpkocak a a Dokuz Eylul University,

More information

Mean value theorem, Taylors Theorem, Maxima and Minima.

Mean value theorem, Taylors Theorem, Maxima and Minima. MA 001 Preparatory Mathematics I. Complex numbers as ordered pairs. Argand s diagram. Triangle inequality. De Moivre s Theorem. Algebra: Quadratic equations and express-ions. Permutations and Combinations.

More information

1 Completeness of a Set of Eigenfunctions. Lecturer: Naoki Saito Scribe: Alexander Sheynis/Allen Xue. May 3, 2007. 1.1 The Neumann Boundary Condition

1 Completeness of a Set of Eigenfunctions. Lecturer: Naoki Saito Scribe: Alexander Sheynis/Allen Xue. May 3, 2007. 1.1 The Neumann Boundary Condition MAT 280: Laplacian Eigenfunctions: Theory, Applications, and Computations Lecture 11: Laplacian Eigenvalue Problems for General Domains III. Completeness of a Set of Eigenfunctions and the Justification

More information

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. Title Transcription of polyphonic signals using fast filter bank( Accepted version ) Author(s) Foo, Say Wei;

More information

Short-time FFT, Multi-taper analysis & Filtering in SPM12

Short-time FFT, Multi-taper analysis & Filtering in SPM12 Short-time FFT, Multi-taper analysis & Filtering in SPM12 Computational Psychiatry Seminar, FS 2015 Daniel Renz, Translational Neuromodeling Unit, ETHZ & UZH 20.03.2015 Overview Refresher Short-time Fourier

More information

Analysis/resynthesis with the short time Fourier transform

Analysis/resynthesis with the short time Fourier transform Analysis/resynthesis with the short time Fourier transform summer 2006 lecture on analysis, modeling and transformation of audio signals Axel Röbel Institute of communication science TU-Berlin IRCAM Analysis/Synthesis

More information

An Introduction to Partial Differential Equations

An Introduction to Partial Differential Equations An Introduction to Partial Differential Equations Andrew J. Bernoff LECTURE 2 Cooling of a Hot Bar: The Diffusion Equation 2.1. Outline of Lecture An Introduction to Heat Flow Derivation of the Diffusion

More information

Determination of source parameters from seismic spectra

Determination of source parameters from seismic spectra Topic Determination of source parameters from seismic spectra Authors Michael Baumbach, and Peter Bormann (formerly GeoForschungsZentrum Potsdam, Telegrafenberg, D-14473 Potsdam, Germany); E-mail: pb65@gmx.net

More information

Bandwidth analysis of multimode fiber passive optical networks (PONs)

Bandwidth analysis of multimode fiber passive optical networks (PONs) Optica Applicata, Vol. XXXIX, No. 2, 2009 Bandwidth analysis of multimode fiber passive optical networks (PONs) GRZEGORZ STEPNIAK *, LUKASZ MAKSYMIUK, JERZY SIUZDAK Institute of Telecommunications, Warsaw

More information

FINITE DIFFERENCE METHODS

FINITE DIFFERENCE METHODS FINITE DIFFERENCE METHODS LONG CHEN Te best known metods, finite difference, consists of replacing eac derivative by a difference quotient in te classic formulation. It is simple to code and economic to

More information

Section 5.0 : Horn Physics. By Martin J. King, 6/29/08 Copyright 2008 by Martin J. King. All Rights Reserved.

Section 5.0 : Horn Physics. By Martin J. King, 6/29/08 Copyright 2008 by Martin J. King. All Rights Reserved. Section 5. : Horn Physics Section 5. : Horn Physics By Martin J. King, 6/29/8 Copyright 28 by Martin J. King. All Rights Reserved. Before discussing the design of a horn loaded loudspeaker system, it is

More information

Asymptotic Analysis of Fields in Multi-Structures

Asymptotic Analysis of Fields in Multi-Structures Asymptotic Analysis of Fields in Multi-Structures VLADIMIR KOZLOV Department of Mathematics, Linkoeping University, Sweden VLADIMIR MAZ'YA Department of Mathematics, Linkoeping University, Sweden ALEXANDER

More information

BANACH AND HILBERT SPACE REVIEW

BANACH AND HILBERT SPACE REVIEW BANACH AND HILBET SPACE EVIEW CHISTOPHE HEIL These notes will briefly review some basic concepts related to the theory of Banach and Hilbert spaces. We are not trying to give a complete development, but

More information

Lecture 1-6: Noise and Filters

Lecture 1-6: Noise and Filters Lecture 1-6: Noise and Filters Overview 1. Periodic and Aperiodic Signals Review: by periodic signals, we mean signals that have a waveform shape that repeats. The time taken for the waveform to repeat

More information

Introduction to spectral methods

Introduction to spectral methods Introduction to spectral methods Eric Gourgoulhon Laboratoire de l Univers et de ses Théories (LUTH) CNRS / Observatoire de Paris Meudon, France Based on a collaboration with Silvano Bonazzola, Philippe

More information

Computational Optical Imaging - Optique Numerique. -- Deconvolution --

Computational Optical Imaging - Optique Numerique. -- Deconvolution -- Computational Optical Imaging - Optique Numerique -- Deconvolution -- Winter 2014 Ivo Ihrke Deconvolution Ivo Ihrke Outline Deconvolution Theory example 1D deconvolution Fourier method Algebraic method

More information

CONTROLLABILITY. Chapter 2. 2.1 Reachable Set and Controllability. Suppose we have a linear system described by the state equation

CONTROLLABILITY. Chapter 2. 2.1 Reachable Set and Controllability. Suppose we have a linear system described by the state equation Chapter 2 CONTROLLABILITY 2 Reachable Set and Controllability Suppose we have a linear system described by the state equation ẋ Ax + Bu (2) x() x Consider the following problem For a given vector x in

More information

Spherical Beam Volume Holograms Recorded in Reflection Geometry for Diffuse Source Spectroscopy

Spherical Beam Volume Holograms Recorded in Reflection Geometry for Diffuse Source Spectroscopy Spherical Beam Volume Holograms Recorded in Reflection Geometry for Diffuse Source Spectroscopy Sundeep Jolly A Proposal Presented to the Academic Faculty in Partial Fulfillment of the Requirements for

More information

6 J - vector electric current density (A/m2 )

6 J - vector electric current density (A/m2 ) Determination of Antenna Radiation Fields Using Potential Functions Sources of Antenna Radiation Fields 6 J - vector electric current density (A/m2 ) M - vector magnetic current density (V/m 2 ) Some problems

More information

PHOTON mapping is a practical approach for computing global illumination within complex

PHOTON mapping is a practical approach for computing global illumination within complex 7 The Photon Mapping Method I get by with a little help from my friends. John Lennon, 1940 1980 PHOTON mapping is a practical approach for computing global illumination within complex environments. Much

More information

Linear Threshold Units

Linear Threshold Units Linear Threshold Units w x hx (... w n x n w We assume that each feature x j and each weight w j is a real number (we will relax this later) We will study three different algorithms for learning linear

More information

TCOM 370 NOTES 99-4 BANDWIDTH, FREQUENCY RESPONSE, AND CAPACITY OF COMMUNICATION LINKS

TCOM 370 NOTES 99-4 BANDWIDTH, FREQUENCY RESPONSE, AND CAPACITY OF COMMUNICATION LINKS TCOM 370 NOTES 99-4 BANDWIDTH, FREQUENCY RESPONSE, AND CAPACITY OF COMMUNICATION LINKS 1. Bandwidth: The bandwidth of a communication link, or in general any system, was loosely defined as the width of

More information

A. Ricci, E. Giuri. Materials and Microsystems Laboratory

A. Ricci, E. Giuri. Materials and Microsystems Laboratory Presented at the COMSOL Conference 2009 Milan FSI Analysis of Microcantilevers Vibrating in Fluid Environment Materials and Microsystems Laboratory Politecnico di Torino Outline Brief Presentation of Materials

More information

SOUND GENERATION. Table 1. Category Phenomenon Examples 1 Volume fluctuating displacing injecting

SOUND GENERATION. Table 1. Category Phenomenon Examples 1 Volume fluctuating displacing injecting SOUND GENERATION 1. Introduction For the engineering acoustics practice and in particular that of noise and vibration control, the physical mechanisms generating sound are of vital importance. It is hence

More information

A CFD-BEM coupling technique for low Mach number flow induced noise

A CFD-BEM coupling technique for low Mach number flow induced noise Proceedings of Acoustics 2013 - Victor Harbor 17-20 November 2013, Victor Harbor, Australia A CFD-BEM coupling technique for low Mach number flow induced noise P. Croaker (1), N. Kessissoglou (1), S. Marburg

More information

The Calculation of G rms

The Calculation of G rms The Calculation of G rms QualMark Corp. Neill Doertenbach The metric of G rms is typically used to specify and compare the energy in repetitive shock vibration systems. However, the method of arriving

More information

TMA4213/4215 Matematikk 4M/N Vår 2013

TMA4213/4215 Matematikk 4M/N Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA43/45 Matematikk 4M/N Vår 3 Løsningsforslag Øving a) The Fourier series of the signal is f(x) =.4 cos ( 4 L x) +cos ( 5 L

More information

A gentle introduction to the Finite Element Method. Francisco Javier Sayas

A gentle introduction to the Finite Element Method. Francisco Javier Sayas A gentle introduction to the Finite Element Method Francisco Javier Sayas 2008 An introduction If you haven t been hiding under a stone during your studies of engineering, mathematics or physics, it is

More information

CHAPTER 3 MODAL ANALYSIS OF A PRINTED CIRCUIT BOARD

CHAPTER 3 MODAL ANALYSIS OF A PRINTED CIRCUIT BOARD 45 CHAPTER 3 MODAL ANALYSIS OF A PRINTED CIRCUIT BOARD 3.1 INTRODUCTION This chapter describes the methodology for performing the modal analysis of a printed circuit board used in a hand held electronic

More information

AN-007 APPLICATION NOTE MEASURING MAXIMUM SUBWOOFER OUTPUT ACCORDING ANSI/CEA-2010 STANDARD INTRODUCTION CEA-2010 (ANSI) TEST PROCEDURE

AN-007 APPLICATION NOTE MEASURING MAXIMUM SUBWOOFER OUTPUT ACCORDING ANSI/CEA-2010 STANDARD INTRODUCTION CEA-2010 (ANSI) TEST PROCEDURE AUDIOMATICA AN-007 APPLICATION NOTE MEASURING MAXIMUM SUBWOOFER OUTPUT ACCORDING ANSI/CEA-2010 STANDARD by Daniele Ponteggia - dp@audiomatica.com INTRODUCTION The Consumer Electronics Association (CEA),

More information

Final Year Project Progress Report. Frequency-Domain Adaptive Filtering. Myles Friel. Supervisor: Dr.Edward Jones

Final Year Project Progress Report. Frequency-Domain Adaptive Filtering. Myles Friel. Supervisor: Dr.Edward Jones Final Year Project Progress Report Frequency-Domain Adaptive Filtering Myles Friel 01510401 Supervisor: Dr.Edward Jones Abstract The Final Year Project is an important part of the final year of the Electronic

More information

A constructive solution to the inverse scattering problem of the wave equation at one frequency and plane wave irradiation

A constructive solution to the inverse scattering problem of the wave equation at one frequency and plane wave irradiation A constructive solution to the inverse scattering problem of the wave equation at one frequency and plane wave irradiation F. Natterer August 1989 Summary: This is a tutorial paper reporting essentially

More information

3-D WAVEGUIDE MODELING AND SIMULATION USING SBFEM

3-D WAVEGUIDE MODELING AND SIMULATION USING SBFEM 3-D WAVEGUIDE MODELING AND SIMULATION USING SBFEM Fabian Krome, Hauke Gravenkamp BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin, Germany email: Fabian.Krome@BAM.de

More information

Convolution. 1D Formula: 2D Formula: Example on the web: http://www.jhu.edu/~signals/convolve/

Convolution. 1D Formula: 2D Formula: Example on the web: http://www.jhu.edu/~signals/convolve/ Basic Filters (7) Convolution/correlation/Linear filtering Gaussian filters Smoothing and noise reduction First derivatives of Gaussian Second derivative of Gaussian: Laplacian Oriented Gaussian filters

More information

Resolution Enhancement of Photogrammetric Digital Images

Resolution Enhancement of Photogrammetric Digital Images DICTA2002: Digital Image Computing Techniques and Applications, 21--22 January 2002, Melbourne, Australia 1 Resolution Enhancement of Photogrammetric Digital Images John G. FRYER and Gabriele SCARMANA

More information

Some stability results of parameter identification in a jump diffusion model

Some stability results of parameter identification in a jump diffusion model Some stability results of parameter identification in a jump diffusion model D. Düvelmeyer Technische Universität Chemnitz, Fakultät für Mathematik, 09107 Chemnitz, Germany Abstract In this paper we discuss

More information

The two dimensional heat equation

The two dimensional heat equation The two dimensional heat equation Ryan C. Trinity University Partial Differential Equations March 6, 2012 Physical motivation Consider a thin rectangular plate made of some thermally conductive material.

More information

How To Understand The Nyquist Sampling Theorem

How To Understand The Nyquist Sampling Theorem Nyquist Sampling Theorem By: Arnold Evia Table of Contents What is the Nyquist Sampling Theorem? Bandwidth Sampling Impulse Response Train Fourier Transform of Impulse Response Train Sampling in the Fourier

More information

Numerical Methods For Image Restoration

Numerical Methods For Image Restoration Numerical Methods For Image Restoration CIRAM Alessandro Lanza University of Bologna, Italy Faculty of Engineering CIRAM Outline 1. Image Restoration as an inverse problem 2. Image degradation models:

More information

Statistics of the Zeta zeros: Mesoscopic and macroscopic phenomena

Statistics of the Zeta zeros: Mesoscopic and macroscopic phenomena Statistics of the Zeta zeros: Mesoscopic and macroscopic phenomena Department of Mathematics UCLA Fall 2012 he Riemann Zeta function Non-trivial zeros: those with real part in (0, 1). First few: 1 2 +

More information

Extremal equilibria for reaction diffusion equations in bounded domains and applications.

Extremal equilibria for reaction diffusion equations in bounded domains and applications. Extremal equilibria for reaction diffusion equations in bounded domains and applications. Aníbal Rodríguez-Bernal Alejandro Vidal-López Departamento de Matemática Aplicada Universidad Complutense de Madrid,

More information

Moving Least Squares Approximation

Moving Least Squares Approximation Chapter 7 Moving Least Squares Approimation An alternative to radial basis function interpolation and approimation is the so-called moving least squares method. As we will see below, in this method the

More information

Mean Value Coordinates

Mean Value Coordinates Mean Value Coordinates Michael S. Floater Abstract: We derive a generalization of barycentric coordinates which allows a vertex in a planar triangulation to be expressed as a convex combination of its

More information

L9: Cepstral analysis

L9: Cepstral analysis L9: Cepstral analysis The cepstrum Homomorphic filtering The cepstrum and voicing/pitch detection Linear prediction cepstral coefficients Mel frequency cepstral coefficients This lecture is based on [Taylor,

More information

Parabolic Equations. Chapter 5. Contents. 5.1.2 Well-Posed Initial-Boundary Value Problem. 5.1.3 Time Irreversibility of the Heat Equation

Parabolic Equations. Chapter 5. Contents. 5.1.2 Well-Posed Initial-Boundary Value Problem. 5.1.3 Time Irreversibility of the Heat Equation 7 5.1 Definitions Properties Chapter 5 Parabolic Equations Note that we require the solution u(, t bounded in R n for all t. In particular we assume that the boundedness of the smooth function u at infinity

More information

LINEAR ALGEBRA W W L CHEN

LINEAR ALGEBRA W W L CHEN LINEAR ALGEBRA W W L CHEN c W W L Chen, 1997, 2008 This chapter is available free to all individuals, on understanding that it is not to be used for financial gain, and may be downloaded and/or photocopied,

More information

UNIVERSITY OF MIAMI WAVE FIELD SYNTHESIS IN THREE DIMENSIONS BY MULTIPLE LINE ARRAYS. Matthew N. Montag A THESIS PROJECT

UNIVERSITY OF MIAMI WAVE FIELD SYNTHESIS IN THREE DIMENSIONS BY MULTIPLE LINE ARRAYS. Matthew N. Montag A THESIS PROJECT UNIVERSITY OF MIAMI WAVE FIELD SYNTHESIS IN THREE DIMENSIONS BY MULTIPLE LINE ARRAYS By Matthew N. Montag A THESIS PROJECT Submitted to the Faculty of the University of Miami in partial fulfillment of

More information

Introduction to acoustic imaging

Introduction to acoustic imaging Introduction to acoustic imaging Contents 1 Propagation of acoustic waves 3 1.1 Wave types.......................................... 3 1.2 Mathematical formulation.................................. 4 1.3

More information

Robert Collins CSE598G. More on Mean-shift. R.Collins, CSE, PSU CSE598G Spring 2006

Robert Collins CSE598G. More on Mean-shift. R.Collins, CSE, PSU CSE598G Spring 2006 More on Mean-shift R.Collins, CSE, PSU Spring 2006 Recall: Kernel Density Estimation Given a set of data samples x i ; i=1...n Convolve with a kernel function H to generate a smooth function f(x) Equivalent

More information

The University of Calgary - Focal Plane Field Calculator (UC-FPFC) and Its Applications

The University of Calgary - Focal Plane Field Calculator (UC-FPFC) and Its Applications The University of Calgary - Focal Plane Field Calculator (UC-FPFC) and Its Applications Thushara Gunaratne & Dr. Len Bruton MDSP Group Department of Electrical and Computer Engineering Shulich School of

More information

A subgrid-scale model for the scalar dissipation rate in nonpremixed combustion

A subgrid-scale model for the scalar dissipation rate in nonpremixed combustion Center for Turbulence Research Proceedings of the Summer Program 1998 11 A subgrid-scale model for the scalar dissipation rate in nonpremixed combustion By A. W. Cook 1 AND W. K. Bushe A subgrid-scale

More information

Agilent PN 89400-13 Extending Vector Signal Analysis to 26.5 GHz with 20 MHz Information Bandwidth

Agilent PN 89400-13 Extending Vector Signal Analysis to 26.5 GHz with 20 MHz Information Bandwidth Agilent PN 89400-13 Extending Vector Signal Analysis to 26.5 GHz with 20 MHz Information Bandwidth Product Note The Agilent Technologies 89400 series vector signal analyzers provide unmatched signal analysis

More information

Doppler. Doppler. Doppler shift. Doppler Frequency. Doppler shift. Doppler shift. Chapter 19

Doppler. Doppler. Doppler shift. Doppler Frequency. Doppler shift. Doppler shift. Chapter 19 Doppler Doppler Chapter 19 A moving train with a trumpet player holding the same tone for a very long time travels from your left to your right. The tone changes relative the motion of you (receiver) and

More information

MODULE VII LARGE BODY WAVE DIFFRACTION

MODULE VII LARGE BODY WAVE DIFFRACTION MODULE VII LARGE BODY WAVE DIFFRACTION 1.0 INTRODUCTION In the wave-structure interaction problems, it is classical to divide into two major classification: slender body interaction and large body interaction.

More information

Time series analysis Matlab tutorial. Joachim Gross

Time series analysis Matlab tutorial. Joachim Gross Time series analysis Matlab tutorial Joachim Gross Outline Terminology Sampling theorem Plotting Baseline correction Detrending Smoothing Filtering Decimation Remarks Focus on practical aspects, exercises,

More information

Aeroacoustic Analogy for the Computation of Aeroacoustic Fields in Partially Closed Domains

Aeroacoustic Analogy for the Computation of Aeroacoustic Fields in Partially Closed Domains INSTITUT FÜR MECHANIK UND MECHATRONIK Messtechnik und Aktorik Aeroacoustic Analogy for the Computation of Aeroacoustic Fields in Partially Closed Domains A. Hüppe 1, M. Kaltenbacher 1, A. Reppenhagen 2,

More information

DOKUZ EYLUL UNIVERSITY GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES DIRECTORATE COURSE / MODULE / BLOCK DETAILS ACADEMIC YEAR / SEMESTER

DOKUZ EYLUL UNIVERSITY GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES DIRECTORATE COURSE / MODULE / BLOCK DETAILS ACADEMIC YEAR / SEMESTER Offered by: Fen Bilimleri Enstitüsü Course Title: Applied Mathematics Course Org. Title: Applied Mathematics Course Level: Lisansüstü Course Code: MAT 5001 Language of Instruction: İngilizce Form Submitting/Renewal

More information

16.3 Fredholm Operators

16.3 Fredholm Operators Lectures 16 and 17 16.3 Fredholm Operators A nice way to think about compact operators is to show that set of compact operators is the closure of the set of finite rank operator in operator norm. In this

More information

Point Lattices in Computer Graphics and Visualization how signal processing may help computer graphics

Point Lattices in Computer Graphics and Visualization how signal processing may help computer graphics Point Lattices in Computer Graphics and Visualization how signal processing may help computer graphics Dimitri Van De Ville Ecole Polytechnique Fédérale de Lausanne Biomedical Imaging Group dimitri.vandeville@epfl.ch

More information

Advanced Signal Processing and Digital Noise Reduction

Advanced Signal Processing and Digital Noise Reduction Advanced Signal Processing and Digital Noise Reduction Saeed V. Vaseghi Queen's University of Belfast UK WILEY HTEUBNER A Partnership between John Wiley & Sons and B. G. Teubner Publishers Chichester New

More information

INTEGRAL METHODS IN LOW-FREQUENCY ELECTROMAGNETICS

INTEGRAL METHODS IN LOW-FREQUENCY ELECTROMAGNETICS INTEGRAL METHODS IN LOW-FREQUENCY ELECTROMAGNETICS I. Dolezel Czech Technical University, Praha, Czech Republic P. Karban University of West Bohemia, Plzeft, Czech Republic P. Solin University of Nevada,

More information

EEG COHERENCE AND PHASE DELAYS: COMPARISONS BETWEEN SINGLE REFERENCE, AVERAGE REFERENCE AND CURRENT SOURCE DENSITY

EEG COHERENCE AND PHASE DELAYS: COMPARISONS BETWEEN SINGLE REFERENCE, AVERAGE REFERENCE AND CURRENT SOURCE DENSITY Version 1, June 13, 2004 Rough Draft form We apologize while we prepare the manuscript for publication but the data are valid and the conclusions are fundamental EEG COHERENCE AND PHASE DELAYS: COMPARISONS

More information

Canyon Geometry Effects on Seismic SH-Wave scattering using three dimensional BEM

Canyon Geometry Effects on Seismic SH-Wave scattering using three dimensional BEM Proceedings of the rd IASME / WSEAS International Conference on GEOLOGY and SEISMOLOGY (GES'9) Canyon Geometry Effects on Seismic SH-Wave scattering using three dimensional BEM REZA TARINEJAD* and MOHAMMAD

More information

Cortical Source Localization of Human Scalp EEG. Kaushik Majumdar Indian Statistical Institute Bangalore Center

Cortical Source Localization of Human Scalp EEG. Kaushik Majumdar Indian Statistical Institute Bangalore Center Cortical Source Localization of Human Scalp EEG Kaushik Majumdar Indian Statistical Institute Bangalore Center Cortical Basis of Scalp EEG Baillet et al, IEEE Sig Proc Mag, Nov 2001, p 16 Mountcastle,

More information

Transmission Line and Back Loaded Horn Physics

Transmission Line and Back Loaded Horn Physics Introduction By Martin J. King, 3/29/3 Copyright 23 by Martin J. King. All Rights Reserved. In order to differentiate between a transmission line and a back loaded horn, it is really important to understand

More information

SIGNAL PROCESSING & SIMULATION NEWSLETTER

SIGNAL PROCESSING & SIMULATION NEWSLETTER 1 of 10 1/25/2008 3:38 AM SIGNAL PROCESSING & SIMULATION NEWSLETTER Note: This is not a particularly interesting topic for anyone other than those who ar e involved in simulation. So if you have difficulty

More information

Second Order Linear Partial Differential Equations. Part I

Second Order Linear Partial Differential Equations. Part I Second Order Linear Partial Differential Equations Part I Second linear partial differential equations; Separation of Variables; - point boundary value problems; Eigenvalues and Eigenfunctions Introduction

More information