Frequently Asked Questions - Satellite Related

Size: px
Start display at page:

Download "Frequently Asked Questions - Satellite Related"

Transcription

1 Frequently Asked Questions - Satellite Related 1.What is a Satellite? Circling the earth, high above our heads, satellites are messengers and observers in the sky. They relay telephones calls, watch the weather, guide ships and aircrafts and carry out tasks that are impossible on the ground. 2.What is Satellite Meteorology? Satellite Meteorology refers to the study of earth's atmosphere and oceans using data obtained from remote sensing devices flown onboard satellites orbiting the earth. Satellite make measurements indirectly by sensing electromagnetic radiations coming from the surfaces below. 3.What is Satellite Orbit? A satellite's orbit is the curved path it follows around earth. The pull of gravity is stronger closer to the earth, so a satellite in a low orbit must travel faster than one in a geostationary orbit. 4.Geostationary orbit? Satellite in a circular orbit about km above the equator move in time with earth. Satellites in this orbit are called geostationary because they are stationary with respect to the earth and appear to be fixed in sky. 5.Polar orbiting satellites? Due to the rotation of the Earth, it is possible to combine the advantages of lowaltitude orbits with global coverage, using near-polar orbiting satellites, which have an orbital plane crossing the poles. These satellites are launched into orbits at high inclinations to the Earth's rotation (at low angles with longitude lines), such that they pass across high latitudes near the poles. 6.Which satellites are being used to monitor the weather of Indian region? Kalpana-1 located at Longitude 74 E and Insat-3A located at 93.5 E both geostationary satellites are being used to monitor the weather of Indian region. For meteorological observation, INSAT-3A carries a three channel Very High Resolution Radiometer (VHRR) with 2 km resolution in the visible band and 8 km resolution in thermal infrared and water vapour bands. In addition, INSAT-3A 1

2 carries a Charge Coupled Device (CCD) camera which operates in the visible, near infra Red and short wave infrared bands providing a spatial resolution of 1 km. A Data Relay Transponder (DRT) operating in UHF band is incorporated for real-time hydro meteorological data collection from unattended platforms located on land and river basins. The data is then relayed in extended C-band to a central location. Kalpana -1 Satellite has a 3- Channel VHRR and DRT similar to INSAT -3A Satellite. 7. What is a satellite image? It is a pictorial representation measuring the electromagnetic energy recorded by a sensor, not by photography. A photograph is normally taken within a certain spectral range (visible light). Satellites take images outside this limited range. 8.What do IR and VIS mean? What do we see on IR and VIS images? IR stands for infrared. On an image, IR is usually followed by a wavelength in micrometers (e.g. 10.7). In the IR spectrum, clouds at different heights show up very well as differences in radiances (quantity of light energy detected) from ground level (radiances vary with cloud height). Radiances can then be converted into temperatures with some calculation. So what we see on an IR image is the distribution of temperatures as detected by the satellite's sensor, and the temperature in the legend corresponds to the temperature of whatever the satellite sensor "sees" (clouds at different heights, sea surface, and earth surface). VIS stands for visible. A VIS satellite image (taken in the visible spectrum) is a picture of the earth from space, just as you would see it if you were looking out the window from a spacecraft in orbit. During nighttime the picture is dark. 9.Which products are being derived from operational Indian Geostationary Meteorological Satellites? The following products are being derived from INSAT satellites Outgoing Longwave radiation (OLR) Sea surface temperature (SST) Quantitative precipitation estimate (QPE) Cloud Motion vectors (CMV) Water Vapour Wind (WVW) Cloud Top Temperature (CTT) Visible Channel Image Infrared Channel Image Colour Composite Channel Image 2

3 Water vapour Channel Image 10. Outgoing long wave radiation (OLR) Majority of meteorological sensors operate in long wave range of radiation so that: 1. They operate day and night 2. The problem of low albedo is not encountered 3. The earth radiation is maximum and thermal IR and ocean emissive is nearly unity. Keeping the above into mind the outgoing flux of long wave radiation at the top of atmosphere is an important parameter in the earth atmosphere radiation budget. This parameter can be derived by physical/statistical algorithm from the narrow band. 11.Sea Surface Temperature (SST): As we know oceans are the major storage of heat in the earth climate systems. Sea Surface Temperature (SST) is one of the key controllers of climate variability and acts as a vast thermal reservoir. SST regulates the transfer of long wave radiation to the atmosphere as well as the latent and sensible heat fluxes into the lower atmosphere. 12.Quantitative Precipitation Estimate (QPE) It is one of the key meteorological parameter. A detailed knowledge of its distribution in space and time is essential for understanding weather & climate. Information about rainfall is of great value in variety of discipline beside being control to human survival scientifically The latent heat released during the process of condensation water into cloud and rain drops is one of the significant energy source responsible for atmospheric heat engine. 13. How the CMVs generated In general, there are five steps in the derivation of Cloud Motion Vectors : 1.Registration of Triplet 2.Cloud Tracers selection 3.Tracking of Cloud Tracer in the Target image 4.CMV Computation 5.Height Assignment 6.Quality Control of Cloud Motion Vectors. INSAT-based CMVs are particularly useful in the analysis of upper winds during the monsoon season to study the formation of eddies, cross equatorial flow, approach of the two separate branches of the monsoon. 3

4 Three levels of the INSAT CMV are: Low Level CMV 1000 hpa 700 hpa. Medium Level CMV 700 hpa 300 hpa High Level CMV 300 hpa and above. 14.What is a sector? To study the weather condition of a particular region, we can select that area which is known as sector. We are interested in the weather of India, so we select that area. 15.What is a Geostationary Satellite? Geostationary satellites are positioned at an height above the earth about Km. At this height they rotate around the earth at the same speed as the earth rotates around its axis, so in effect remaining stationary above a point on the earth (normally directly overhead the equator). As they remain stationary they are ideal for use as communications satellites and also for remote imaging as they can repeatedly scan the same points on the earth beneath them. Polar Orbiting satellites by comparison have a much lower orbit, moving around the earth fairly rapidly, and scanning different areas of the earth at relatively infrequent periods. 16.What are the advantages / disadvantages of Geostationary Satellites for remote imaging? As they are positioned at such a high altitude the spatial resolution (i.e. amount of detail shown) of their images (typically 2.5 Km per pixel) tends to be not as good as some polar orbiting satellites (typically 1 Km to 50m per pixel), which are much closer to the earth. However the advantage of their great height is that they can view the whole earth disk below them, rather than a small subsection, and they can scan the same area very frequently (typically every 30 minutes). This makes them ideal for meteorological applications. One big problem with Geostationary satellites is that since they are always positioned above the equator they can't see the north or south poles and are of limited use for latitudes greater than degrees north or south. The farther from the equator the lower the spatial resolution of each pixel and the greater the 4

5 possibility of being hidden by the earth's curvature. 17.What are Image Channels? The satellites typically scan the earth using different wave lengths (channels). Current INSAT geostationary meteorological satellites have 3 channel imager with the following channels: i) VISIBLE wavelengths ( um) (reflected solar radiation). ii) IR (thermal infra-red) ( um). (emission channel. Each point on the earth emits radiation in proportion to its hotness/coldness. So this channel gives a thermal image of the earth) iii) WV (water-vapour) ( um). (This is also an emission band. The image shows differences in water vapour absorption in the atmosphere). 18.Why are some images missing? There are times when there are glitches in our system, but a more likely explanation is the problem in reception or dissemination of the image. The problems in reception include, an artifact effect in the images, patch temperature variation, or satellite maintenance problems. However, these are relatively rare. 19.How are water vapor satellite images used? Basically, water vapor images and loops/movies show how moist or dry the middle and upper atmosphere is. They also show the air circulation in the middle and upper atmosphere. 20.What is GMT or UTC? GMT stands for Greenwich Mean Time, now called UTC (Universal Coordinated Time), and is the local time at Greenwich-England, which is at 0 longitude. Weather observations, including satellite images, are recorded in GMT as a way of solving the problem of trying to use weather data from different time zones. 21.Why are meteorological satellites needed? Meteorological satellites provide important information to be used in more accurate weather forecasts and global climate monitoring. 22.What is the difference between geostationary and polar orbiting satellites? 5

6 A geostationary satellite is positioned above the Equator and orbits the Earth at the same rotation speed as the Earth itself, making it appear stationary from the point of view of an observer on the Earth s surface. It flies very high above the surface of the Earth (altitude almost kilometers), and thus is able to capture the whole Earth disc at once. A polar orbiting satellite circles the Earth at a near-polar inclination, meaning that it always passes almost exactly above the poles. The satellite passes the equator and each latitude at the same local solar time each day, meaning the satellite passes overhead at essentially the same solar time throughout all seasons of the year. The low Earth orbit ( kilometers) is much closer to Earth than a geostationary orbit, and thus can see a smaller part of the Earth below than a geostationary satellite, but in finer detail. 23.What is validation? In order to check the validity of the satellite measurements, it has to be compared against ground measurements (balloon soundings, lidar measurements, UV measurements etc.). This process is called validation. 24.What are the new geostationary satellites that will be launched by India? INSAT 3D meteorological geostationary satellite will be launched in the latter half of 2009 by ISRO. 25.What is special about the INSAT 3D satellite? It will have two payloads- a 6-channel Imager and a 19 channel Sounder almost similar to GOES satellites of USA. It will also have a Data Relay Transponder (DRT) similar to Kalpana-1 and INSAT-3A. Unlike previous geostationary meteorological satellites launched by India, this satellite will permit programmable scanning of a special sector, with defined N-S and E-W coordinates. Scanning will also be faster and the data will be at a higher resolution as compared to the currently operational satellites. So the geophysical products derived during the scanning will be more accurate and of higher resolution. 26.What are the specifications of the INSAT 3D satellite imager channels? Spectral Band Wave length(um) Ground Resolution Quantization bits IGFOV (urad) VIS Km SWIR Km MIR Km WVP Km TIR Km TIR Km

7 27.What are the specifications of the INSAT 3D satellite sounder channels? ChannelNo Central Wavelength(υm) Bandwidth(υm) Principalabsorbingconstituents CO CO CO CO CO Water Vapour Water Vapour Window Ozone Water Vapour Water Vapour Water Vapour N2O N2O CO CO Window Window Visible N.B. All bands have spatial resolution of 10 km. All bands have radiometric resolution of 12 bits/sample 28.What products will be derived from INSAT 3D imager payload? 1. Outgoing Long wave Radiation (OLR) using TIR -1, TIR -2, WV channels 2. Quantitative Precipitation Estimation ( QPE) using TIR -1, TIR -2, WV channels 3. Sea Surface Temperature (SST) using SWIR,TIR -1, TIR -2, MIR channels 4. Snow Cover using VIS, SWIR, TIR -1, TIR 2 channels 5. Snow Depth using VIS, SWIR, TIR -1, TIR 2 channels 6. Fire using MIR, TIR -1 channels 7. Smoke using VIS, TIR -1, TIR -2, MIR channels 8. Aerosol using VIS, TIR -1, TIR 2 channels 9. Cloud Motion Vector (CMV) using VIS, TIR -1, TIR 2 channels 10. Water Vapor Wind (WVW) using WV, TIR -1, TIR 2 channels 11. Upper Tropospheric Humidity (UTH) using WV, TIR -1, TIR 2 channels 12. FOG using SWIR, MIR, TIR -1, TIR 2 channels 13. Normalized Difference Vegetation Index using CCD payload channels 14. Flash Flood Analyzer using TIR -1, TIR -2, VIS channels 15. HSCAS using VIS channels 16. Tropical Cyclone-intensity /position by AODT technique using TIR-1,TIR-2 7

8 29.What products will be derived from INSAT 3D sounder payload? 1. Temperature and Humidity profile using Brightness temperatures for 18 Sounder Channel and grey count for channel Geo-potential Height using Sounder retrieved temperature and humidity profiles at 40 pressure levels 3. Layer Perceptible Water using Retrieved humidity at standard pressure levels 4. Total Perceptible Water using Retrieved humidity at standard pressure levels 5. Lifted Index using Sounder retrieved temperature and humidity profiles at standard pressure levels 6. Dry Microburst Index using Sounder retrieved temperature and humidity profiles at standard pressure levels 7. Maximum Vertical Theta-E Differential using Sounder retrieved temperature and humidity profiles at standard pressure levels 8. Wind Index using Geo- potential Height and retrieved temperature and humidity profiles at standard pressure levels 9. Ozone using Brightness temperatures for 18 Sounder Channel and grey count for channel 19 8

9 Frequently asked questions GPS Related 1. What is GPS? The Global Positioning System (GPS) is a satellite-based navigation system made up of a network of 24 satellites placed into orbit in six orbital planes at an altitude of Km above the earth surface with an orbital period of 12 hrs by the U.S. Department of Defense. GPS works in any weather conditions, anywhere in the world, 24 hours a day. 2. What is GPS signal? Each GPS satellites carries onboard atomic clocks and transmits low power radio signals at L1= MHz and L2 = MHz. A GPS signal contains three different bits of information a pseudorandom code, ephemeris data and almanac data. 3. How does GPS receivers determine its 3D position from GPS signal? The GPS receiver compares the time a signal was transmitted by a GPS satellite with the time it was received. The time difference tells the GPS receiver how far away the satellite is. Now, with distance measurements from a few more satellites, the receiver can determine the user's position by triangulation. Precise location of interest to geophysists required correction of position errors due to atmospheric delays. 9

10 4. What are the errors involved in the GPS signal measurements? Satellite clock error Orbital error, Receiver errors Atmospheric/ionospheric error and Selective Availability etc., 5. What is GPS Meteorology? A technique which uses the atmospheric delay error of the GPS signals to determine the amount of Integrated Precipitable Water Vapour (IPWV) in the troposphere. 6. What is Integrated Precipitable Water Vapour (IPWV)? The amount of atmospheric water vapour (in kilogram) overlying per unit area of the earth surface. Its unit is kg/m What is Precipitable Water Vapour and how it is related with IPWV? PWV is defined as the height (mm) of liquid water that would result from condensing all the water vapour in a column from the surface to the top of the atmosphere. In other words PWV = IWV/ρ, where ρ is the density of water in kg/m What are the two types of atmospheric Delay? And how it can be removed? The atmospheric delay can be divided into two parts, Ionospheric delay and neutral atmospheric delay (or Tropospheric delay). Both Ionosphere and neutral atmosphere introduce propagation delays into the GPS signals. The ionospheric delay can be determined and removed by measuring the time of flight between two RF signals (L1 and L2) that travel along similar paths using 10

11 dual frequency receiver and exploiting the known dispersion relations for the ionosphere. The troposphere, which contains most of the water vapour delays both the L1 and L2 signal equally. Signal delays in this region are due to changes in pressure, temperature and water vapour. Therefore tropospheric delay cannot be minimized by using the dual frequency receiver since the electrically neutral atmosphere is nondispersive below 30 GHz. However this can be removed by using special geodetic algorithms. 9. What are the components of Tropospheric delay? And how it can be calculated? Tropospheric delay has two components: Hydrostatic and Wet delay. The Hydrostatic delay is due to the total mass of the atmosphere which can be determined by accurate measurement of surface pressure and wet delay is due to total amount of water vapor along the GPS signal path and can be calculated by subtracting hydrostatic delay from the tropospheric delay. 10. What is Mapping function? And how IPWV derived from the wet delay? Mapping function relates the Zenith path delay to delays along paths with arbitrary elevation angle. Depending on the mapping function used, the hydrostatic and wet components can be incorporated together or treated separately. The IPWV derived from wet delay by multiplying with some constants, which is function of mean temperature of the atmosphere and the specific gas constant for water vapour. 11. How Accurate is the GPS derived IPWV? GPS data can be reliably used to estimate PWV with 1-2 mm accuracy and 30 minute temporal resolution. 11

12 12. What is the use of GPS derived IPWV? Nowcasting (for example Fog forecast, Flash flood monitoring, Thunderstorm etc) NWP model for short term forecast between 6-12 hours Climate studies IPWV comparison with other independent method 12

Studying cloud properties from space using sounder data: A preparatory study for INSAT-3D

Studying cloud properties from space using sounder data: A preparatory study for INSAT-3D Studying cloud properties from space using sounder data: A preparatory study for INSAT-3D Munn V. Shukla and P. K. Thapliyal Atmospheric Sciences Division Atmospheric and Oceanic Sciences Group Space Applications

More information

Current status and Future Prospects of Indian Satellite

Current status and Future Prospects of Indian Satellite Current status and Future Prospects of Indian Satellite Devendra singh and Sanjiv Nair Ministry of science and Technology Department of Science and technology Technology Bhawan,New Mehrauli Road, New Delhi-110016

More information

CHAPTER 2 Energy and Earth

CHAPTER 2 Energy and Earth CHAPTER 2 Energy and Earth This chapter is concerned with the nature of energy and how it interacts with Earth. At this stage we are looking at energy in an abstract form though relate it to how it affect

More information

ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation

ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation Reading: Meteorology Today, Chapters 2 and 3 EARTH-SUN GEOMETRY The Earth has an elliptical orbit around the sun The average Earth-Sun

More information

Clouds and the Energy Cycle

Clouds and the Energy Cycle August 1999 NF-207 The Earth Science Enterprise Series These articles discuss Earth's many dynamic processes and their interactions Clouds and the Energy Cycle he study of clouds, where they occur, and

More information

Joint Polar Satellite System (JPSS)

Joint Polar Satellite System (JPSS) Joint Polar Satellite System (JPSS) John Furgerson, User Liaison Joint Polar Satellite System National Environmental Satellite, Data, and Information Service National Oceanic and Atmospheric Administration

More information

Overview of the IR channels and their applications

Overview of the IR channels and their applications Ján Kaňák Slovak Hydrometeorological Institute Jan.kanak@shmu.sk Overview of the IR channels and their applications EUMeTrain, 14 June 2011 Ján Kaňák, SHMÚ 1 Basics in satellite Infrared image interpretation

More information

16 th IOCCG Committee annual meeting. Plymouth, UK 15 17 February 2011. mission: Present status and near future

16 th IOCCG Committee annual meeting. Plymouth, UK 15 17 February 2011. mission: Present status and near future 16 th IOCCG Committee annual meeting Plymouth, UK 15 17 February 2011 The Meteor 3M Mt satellite mission: Present status and near future plans MISSION AIMS Satellites of the series METEOR M M are purposed

More information

Fundamentals of Climate Change (PCC 587): Water Vapor

Fundamentals of Climate Change (PCC 587): Water Vapor Fundamentals of Climate Change (PCC 587): Water Vapor DARGAN M. W. FRIERSON UNIVERSITY OF WASHINGTON, DEPARTMENT OF ATMOSPHERIC SCIENCES DAY 2: 9/30/13 Water Water is a remarkable molecule Water vapor

More information

Hyperspectral Satellite Imaging Planning a Mission

Hyperspectral Satellite Imaging Planning a Mission Hyperspectral Satellite Imaging Planning a Mission Victor Gardner University of Maryland 2007 AIAA Region 1 Mid-Atlantic Student Conference National Institute of Aerospace, Langley, VA Outline Objective

More information

SIXTH GRADE WEATHER 1 WEEK LESSON PLANS AND ACTIVITIES

SIXTH GRADE WEATHER 1 WEEK LESSON PLANS AND ACTIVITIES SIXTH GRADE WEATHER 1 WEEK LESSON PLANS AND ACTIVITIES WATER CYCLE OVERVIEW OF SIXTH GRADE WATER WEEK 1. PRE: Evaluating components of the water cycle. LAB: Experimenting with porosity and permeability.

More information

Status Report on current and future Geostationary Indian Satellites

Status Report on current and future Geostationary Indian Satellites Status Report on current and future Geostationary Indian Satellites By Dr. Devendra Singh Director Satellite Meteorology India Meteorological Department New Delhi-110003 SATELLITE METEOROLOGY DIVISION

More information

RS platforms. Fabio Dell Acqua - Gruppo di Telerilevamento

RS platforms. Fabio Dell Acqua - Gruppo di Telerilevamento RS platforms Platform vs. instrument Sensor Platform Instrument The remote sensor can be ideally represented as an instrument carried by a platform Platforms Remote Sensing: Ground-based air-borne space-borne

More information

Chapter Overview. Seasons. Earth s Seasons. Distribution of Solar Energy. Solar Energy on Earth. CHAPTER 6 Air-Sea Interaction

Chapter Overview. Seasons. Earth s Seasons. Distribution of Solar Energy. Solar Energy on Earth. CHAPTER 6 Air-Sea Interaction Chapter Overview CHAPTER 6 Air-Sea Interaction The atmosphere and the ocean are one independent system. Earth has seasons because of the tilt on its axis. There are three major wind belts in each hemisphere.

More information

8.5 Comparing Canadian Climates (Lab)

8.5 Comparing Canadian Climates (Lab) These 3 climate graphs and tables of data show average temperatures and precipitation for each month in Victoria, Winnipeg and Whitehorse: Figure 1.1 Month J F M A M J J A S O N D Year Precipitation 139

More information

Solar Flux and Flux Density. Lecture 3: Global Energy Cycle. Solar Energy Incident On the Earth. Solar Flux Density Reaching Earth

Solar Flux and Flux Density. Lecture 3: Global Energy Cycle. Solar Energy Incident On the Earth. Solar Flux Density Reaching Earth Lecture 3: Global Energy Cycle Solar Flux and Flux Density Planetary energy balance Greenhouse Effect Vertical energy balance Latitudinal energy balance Seasonal and diurnal cycles Solar Luminosity (L)

More information

ATMOSPHERIC STRUCTURE. The vertical distribution of temperature, pressure,

ATMOSPHERIC STRUCTURE. The vertical distribution of temperature, pressure, ATMOSPHERIC STRUCTURE. The vertical distribution of temperature, pressure, density, and composition of the atmosphere constitutes atmospheric structure. These quantities also vary with season and location

More information

2.3 Spatial Resolution, Pixel Size, and Scale

2.3 Spatial Resolution, Pixel Size, and Scale Section 2.3 Spatial Resolution, Pixel Size, and Scale Page 39 2.3 Spatial Resolution, Pixel Size, and Scale For some remote sensing instruments, the distance between the target being imaged and the platform,

More information

Chapter 2: Solar Radiation and Seasons

Chapter 2: Solar Radiation and Seasons Chapter 2: Solar Radiation and Seasons Spectrum of Radiation Intensity and Peak Wavelength of Radiation Solar (shortwave) Radiation Terrestrial (longwave) Radiations How to Change Air Temperature? Add

More information

Assessing Cloud Spatial and Vertical Distribution with Infrared Cloud Analyzer

Assessing Cloud Spatial and Vertical Distribution with Infrared Cloud Analyzer Assessing Cloud Spatial and Vertical Distribution with Infrared Cloud Analyzer I. Genkova and C. N. Long Pacific Northwest National Laboratory Richland, Washington T. Besnard ATMOS SARL Le Mans, France

More information

SATELLITE COMMUNICATION

SATELLITE COMMUNICATION SATELLITE COMMUNICATION By Gaurish Kumar Tripathi. 1.0 INTRODUCTION: The use of satellite in communication system is very much a fact of everyday in life. This is evidence by the many homes, which are

More information

What Causes Climate? Use Target Reading Skills

What Causes Climate? Use Target Reading Skills Climate and Climate Change Name Date Class Climate and Climate Change Guided Reading and Study What Causes Climate? This section describes factors that determine climate, or the average weather conditions

More information

Review 1. Multiple Choice Identify the choice that best completes the statement or answers the question.

Review 1. Multiple Choice Identify the choice that best completes the statement or answers the question. Review 1 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. When hydrogen nuclei fuse into helium nuclei a. the nuclei die. c. particles collide. b. energy

More information

Newton s Law of Gravity

Newton s Law of Gravity Gravitational Potential Energy On Earth, depends on: object s mass (m) strength of gravity (g) distance object could potentially fall Gravitational Potential Energy In space, an object or gas cloud has

More information

NCDC s SATELLITE DATA, PRODUCTS, and SERVICES

NCDC s SATELLITE DATA, PRODUCTS, and SERVICES **** NCDC s SATELLITE DATA, PRODUCTS, and SERVICES Satellite data and derived products from NOAA s satellite systems are available through the National Climatic Data Center. The two primary systems are

More information

Best practices for RGB compositing of multi-spectral imagery

Best practices for RGB compositing of multi-spectral imagery Best practices for RGB compositing of multi-spectral imagery User Service Division, EUMETSAT Introduction Until recently imagers on geostationary satellites were limited to 2-3 spectral channels, i.e.

More information

The Ideal Gas Law. Gas Constant. Applications of the Gas law. P = ρ R T. Lecture 2: Atmospheric Thermodynamics

The Ideal Gas Law. Gas Constant. Applications of the Gas law. P = ρ R T. Lecture 2: Atmospheric Thermodynamics Lecture 2: Atmospheric Thermodynamics Ideal Gas Law (Equation of State) Hydrostatic Balance Heat and Temperature Conduction, Convection, Radiation Latent Heating Adiabatic Process Lapse Rate and Stability

More information

ATM S 111, Global Warming: Understanding the Forecast

ATM S 111, Global Warming: Understanding the Forecast ATM S 111, Global Warming: Understanding the Forecast DARGAN M. W. FRIERSON DEPARTMENT OF ATMOSPHERIC SCIENCES DAY 1: OCTOBER 1, 2015 Outline How exactly the Sun heats the Earth How strong? Important concept

More information

Synthetic Sensing: Proximity / Distance Sensors

Synthetic Sensing: Proximity / Distance Sensors Synthetic Sensing: Proximity / Distance Sensors MediaRobotics Lab, February 2010 Proximity detection is dependent on the object of interest. One size does not fit all For non-contact distance measurement,

More information

Estimating Firn Emissivity, from 1994 to1998, at the Ski Hi Automatic Weather Station on the West Antarctic Ice Sheet Using Passive Microwave Data

Estimating Firn Emissivity, from 1994 to1998, at the Ski Hi Automatic Weather Station on the West Antarctic Ice Sheet Using Passive Microwave Data Estimating Firn Emissivity, from 1994 to1998, at the Ski Hi Automatic Weather Station on the West Antarctic Ice Sheet Using Passive Microwave Data Mentor: Dr. Malcolm LeCompte Elizabeth City State University

More information

Motion & The Global Positioning System (GPS)

Motion & The Global Positioning System (GPS) Grade Level: K - 8 Subject: Motion Prep Time: < 10 minutes Duration: 30 minutes Objective: To learn how to analyze GPS data in order to track an object and derive its velocity from positions and times.

More information

CHAPTER 5 Lectures 10 & 11 Air Temperature and Air Temperature Cycles

CHAPTER 5 Lectures 10 & 11 Air Temperature and Air Temperature Cycles CHAPTER 5 Lectures 10 & 11 Air Temperature and Air Temperature Cycles I. Air Temperature: Five important factors influence air temperature: A. Insolation B. Latitude C. Surface types D. Coastal vs. interior

More information

Seasonal & Daily Temperatures. Seasons & Sun's Distance. Solstice & Equinox. Seasons & Solar Intensity

Seasonal & Daily Temperatures. Seasons & Sun's Distance. Solstice & Equinox. Seasons & Solar Intensity Seasonal & Daily Temperatures Seasons & Sun's Distance The role of Earth's tilt, revolution, & rotation in causing spatial, seasonal, & daily temperature variations Please read Chapter 3 in Ahrens Figure

More information

7613-1 - Page 1. Weather Unit Exam Pre-Test Questions

7613-1 - Page 1. Weather Unit Exam Pre-Test Questions Weather Unit Exam Pre-Test Questions 7613-1 - Page 1 Name: 1) Equal quantities of water are placed in four uncovered containers with different shapes and left on a table at room temperature. From which

More information

2. Orbits. FER-Zagreb, Satellite communication systems 2011/12

2. Orbits. FER-Zagreb, Satellite communication systems 2011/12 2. Orbits Topics Orbit types Kepler and Newton laws Coverage area Influence of Earth 1 Orbit types According to inclination angle Equatorial Polar Inclinational orbit According to shape Circular orbit

More information

Volcanic Ash Monitoring: Product Guide

Volcanic Ash Monitoring: Product Guide Doc.No. Issue : : EUM/TSS/MAN/15/802120 v1a EUMETSAT Eumetsat-Allee 1, D-64295 Darmstadt, Germany Tel: +49 6151 807-7 Fax: +49 6151 807 555 Date : 2 June 2015 http://www.eumetsat.int WBS/DBS : EUMETSAT

More information

Weather Radar Basics

Weather Radar Basics Weather Radar Basics RADAR: Radio Detection And Ranging Developed during World War II as a method to detect the presence of ships and aircraft (the military considered weather targets as noise) Since WW

More information

An Introduction to the MTG-IRS Mission

An Introduction to the MTG-IRS Mission An Introduction to the MTG-IRS Mission Stefano Gigli, EUMETSAT IRS-NWC Workshop, Eumetsat HQ, 25-0713 Summary 1. Products and Performance 2. Design Overview 3. L1 Data Organisation 2 Part 1 1. Products

More information

Clear Sky Radiance (CSR) Product from MTSAT-1R. UESAWA Daisaku* Abstract

Clear Sky Radiance (CSR) Product from MTSAT-1R. UESAWA Daisaku* Abstract Clear Sky Radiance (CSR) Product from MTSAT-1R UESAWA Daisaku* Abstract The Meteorological Satellite Center (MSC) has developed a Clear Sky Radiance (CSR) product from MTSAT-1R and has been disseminating

More information

Precipitation Remote Sensing

Precipitation Remote Sensing Precipitation Remote Sensing Huade Guan Prepared for Remote Sensing class Earth & Environmental Science University of Texas at San Antonio November 14, 2005 Outline Background Remote sensing technique

More information

USING THE GOES 3.9 µm SHORTWAVE INFRARED CHANNEL TO TRACK LOW-LEVEL CLOUD-DRIFT WINDS ABSTRACT

USING THE GOES 3.9 µm SHORTWAVE INFRARED CHANNEL TO TRACK LOW-LEVEL CLOUD-DRIFT WINDS ABSTRACT USING THE GOES 3.9 µm SHORTWAVE INFRARED CHANNEL TO TRACK LOW-LEVEL CLOUD-DRIFT WINDS Jason P. Dunion 1 and Christopher S. Velden 2 1 NOAA/AOML/Hurricane Research Division, 2 UW/CIMSS ABSTRACT Low-level

More information

The Sentinel-4/UVN instrument on-board MTG-S

The Sentinel-4/UVN instrument on-board MTG-S The Sentinel-4/UVN instrument on-board MTG-S Grégory Bazalgette Courrèges-Lacoste; Berit Ahlers; Benedikt Guldimann; Alex Short; Ben Veihelmann, Hendrik Stark ESA ESTEC European Space Technology & Research

More information

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs

More information

Electromagnetic Radiation (EMR) and Remote Sensing

Electromagnetic Radiation (EMR) and Remote Sensing Electromagnetic Radiation (EMR) and Remote Sensing 1 Atmosphere Anything missing in between? Electromagnetic Radiation (EMR) is radiated by atomic particles at the source (the Sun), propagates through

More information

Passive Remote Sensing of Clouds from Airborne Platforms

Passive Remote Sensing of Clouds from Airborne Platforms Passive Remote Sensing of Clouds from Airborne Platforms Why airborne measurements? My instrument: the Solar Spectral Flux Radiometer (SSFR) Some spectrometry/radiometry basics How can we infer cloud properties

More information

CALCULATION OF CLOUD MOTION WIND WITH GMS-5 IMAGES IN CHINA. Satellite Meteorological Center Beijing 100081, China ABSTRACT

CALCULATION OF CLOUD MOTION WIND WITH GMS-5 IMAGES IN CHINA. Satellite Meteorological Center Beijing 100081, China ABSTRACT CALCULATION OF CLOUD MOTION WIND WITH GMS-5 IMAGES IN CHINA Xu Jianmin Zhang Qisong Satellite Meteorological Center Beijing 100081, China ABSTRACT With GMS-5 images, cloud motion wind was calculated. For

More information

CGC1D1: Interactions in the Physical Environment Factors that Affect Climate

CGC1D1: Interactions in the Physical Environment Factors that Affect Climate Name: Date: Day/Period: CGC1D1: Interactions in the Physical Environment Factors that Affect Climate Chapter 12 in the Making Connections textbook deals with Climate Connections. Use pages 127-144 to fill

More information

High Resolution Information from Seven Years of ASTER Data

High Resolution Information from Seven Years of ASTER Data High Resolution Information from Seven Years of ASTER Data Anna Colvin Michigan Technological University Department of Geological and Mining Engineering and Sciences Outline Part I ASTER mission Terra

More information

How does snow melt? Principles of snow melt. Energy balance. GEO4430 snow hydrology 21.03.2006. Energy flux onto a unit surface:

How does snow melt? Principles of snow melt. Energy balance. GEO4430 snow hydrology 21.03.2006. Energy flux onto a unit surface: Principles of snow melt How does snow melt? We need energy to melt snow/ ice. GEO443 snow hydrology 21.3.26 E = m L h we s K = ρ h = w w we f E ρ L L f f Thomas V. Schuler t.v.schuler@geo.uio.no E energy

More information

6 th Grade Science Assessment: Weather & Water Select the best answer on the answer sheet. Please do not make any marks on this test.

6 th Grade Science Assessment: Weather & Water Select the best answer on the answer sheet. Please do not make any marks on this test. Select the be answer on the answer sheet. Please do not make any marks on this te. 1. Weather is be defined as the A. changes that occur in cloud formations from day to day. B. amount of rain or snow that

More information

8.1 Radio Emission from Solar System objects

8.1 Radio Emission from Solar System objects 8.1 Radio Emission from Solar System objects 8.1.1 Moon and Terrestrial planets At visible wavelengths all the emission seen from these objects is due to light reflected from the sun. However at radio

More information

Active and Passive Microwave Remote Sensing

Active and Passive Microwave Remote Sensing Active and Passive Microwave Remote Sensing Passive remote sensing system record EMR that was reflected (e.g., blue, green, red, and near IR) or emitted (e.g., thermal IR) from the surface of the Earth.

More information

Teaching Time: One-to-two 50-minute periods

Teaching Time: One-to-two 50-minute periods Lesson Summary Students create a planet using a computer game and change features of the planet to increase or decrease the planet s temperature. Students will explore some of the same principles scientists

More information

Treasure Hunt. Lecture 2 How does Light Interact with the Environment? EMR Principles and Properties. EMR and Remote Sensing

Treasure Hunt. Lecture 2 How does Light Interact with the Environment? EMR Principles and Properties. EMR and Remote Sensing Lecture 2 How does Light Interact with the Environment? Treasure Hunt Find and scan all 11 QR codes Choose one to watch / read in detail Post the key points as a reaction to http://www.scoop.it/t/env202-502-w2

More information

SAMPLE MIDTERM QUESTIONS

SAMPLE MIDTERM QUESTIONS Geography 309 Sample MidTerm Questions Page 1 SAMPLE MIDTERM QUESTIONS Textbook Questions Chapter 1 Questions 4, 5, 6, Chapter 2 Questions 4, 7, 10 Chapter 4 Questions 8, 9 Chapter 10 Questions 1, 4, 7

More information

Lecture 1: A Brief Survey of the Atmosphere

Lecture 1: A Brief Survey of the Atmosphere Lecture 1: A Brief Survey of the Atmosphere Origins of the atmosphere Vertical structures of the atmosphere Weather maps Thickness of the Atmosphere (from Meteorology Today) 70% The thickness of the atmosphere

More information

Cloud detection and clearing for the MOPITT instrument

Cloud detection and clearing for the MOPITT instrument Cloud detection and clearing for the MOPITT instrument Juying Warner, John Gille, David P. Edwards and Paul Bailey National Center for Atmospheric Research, Boulder, Colorado ABSTRACT The Measurement Of

More information

Lecture 4: Pressure and Wind

Lecture 4: Pressure and Wind Lecture 4: Pressure and Wind Pressure, Measurement, Distribution Forces Affect Wind Geostrophic Balance Winds in Upper Atmosphere Near-Surface Winds Hydrostatic Balance (why the sky isn t falling!) Thermal

More information

Examination Space Missions and Applications I (AE2103) Faculty of Aerospace Engineering Delft University of Technology SAMPLE EXAM

Examination Space Missions and Applications I (AE2103) Faculty of Aerospace Engineering Delft University of Technology SAMPLE EXAM Examination Space Missions and Applications I AE2103 Faculty of Aerospace Engineering Delft University of Technology SAMPLE EXAM Please read these instructions first: This are a series of multiple-choice

More information

Energy Pathways in Earth s Atmosphere

Energy Pathways in Earth s Atmosphere BRSP - 10 Page 1 Solar radiation reaching Earth s atmosphere includes a wide spectrum of wavelengths. In addition to visible light there is radiation of higher energy and shorter wavelength called ultraviolet

More information

VIIRS-CrIS mapping. NWP SAF AAPP VIIRS-CrIS Mapping

VIIRS-CrIS mapping. NWP SAF AAPP VIIRS-CrIS Mapping NWP SAF AAPP VIIRS-CrIS Mapping This documentation was developed within the context of the EUMETSAT Satellite Application Facility on Numerical Weather Prediction (NWP SAF), under the Cooperation Agreement

More information

a) species of plants that require a relatively cool, moist environment tend to grow on poleward-facing slopes.

a) species of plants that require a relatively cool, moist environment tend to grow on poleward-facing slopes. J.D. McAlpine ATMS 611 HMWK #8 a) species of plants that require a relatively cool, moist environment tend to grow on poleward-facing slopes. These sides of the slopes will tend to have less average solar

More information

EXPLANATION OF WEATHER ELEMENTS AND VARIABLES FOR THE DAVIS VANTAGE PRO 2 MIDSTREAM WEATHER STATION

EXPLANATION OF WEATHER ELEMENTS AND VARIABLES FOR THE DAVIS VANTAGE PRO 2 MIDSTREAM WEATHER STATION EXPLANATION OF WEATHER ELEMENTS AND VARIABLES FOR THE DAVIS VANTAGE PRO 2 MIDSTREAM WEATHER STATION The Weather Envoy consists of two parts: the Davis Vantage Pro 2 Integrated Sensor Suite (ISS) and the

More information

The Earth s Atmosphere

The Earth s Atmosphere THE SUN-EARTH SYSTEM III The Earth s Atmosphere Composition and Distribution of the Atmosphere The composition of the atmosphere and the way its gases interact with electromagnetic radiation determine

More information

Humidity, Condensation, Clouds, and Fog. Water in the Atmosphere

Humidity, Condensation, Clouds, and Fog. Water in the Atmosphere Humidity, Condensation, Clouds, and Fog or Water in the Atmosphere The Hydrologic Cycle Where the Water Exists on Earth Evaporation From the Oceans and Land The Source of Water Vapor for the Atmosphere

More information

Obtaining and Processing MODIS Data

Obtaining and Processing MODIS Data Obtaining and Processing MODIS Data MODIS is an extensive program using sensors on two satellites that each provide complete daily coverage of the earth. The data have a variety of resolutions; spectral,

More information

RESULTS FROM A SIMPLE INFRARED CLOUD DETECTOR

RESULTS FROM A SIMPLE INFRARED CLOUD DETECTOR RESULTS FROM A SIMPLE INFRARED CLOUD DETECTOR A. Maghrabi 1 and R. Clay 2 1 Institute of Astronomical and Geophysical Research, King Abdulaziz City For Science and Technology, P.O. Box 6086 Riyadh 11442,

More information

RPG MWR PRO TN03 2012 09 Page 1 / 12 www.radiometer physics.de Radiometer Physics GmbH +49 2225 99981 0

RPG MWR PRO TN03 2012 09 Page 1 / 12 www.radiometer physics.de Radiometer Physics GmbH +49 2225 99981 0 Applications Tropospheric profiling of temperature, humidity and liquid water High resolution boundary layer temperature profiles, better resolution than balloons Input for weather and climate models (data

More information

Monsoon Variability and Extreme Weather Events

Monsoon Variability and Extreme Weather Events Monsoon Variability and Extreme Weather Events M Rajeevan National Climate Centre India Meteorological Department Pune 411 005 rajeevan@imdpune.gov.in Outline of the presentation Monsoon rainfall Variability

More information

Blackbody radiation. Main Laws. Brightness temperature. 1. Concepts of a blackbody and thermodynamical equilibrium.

Blackbody radiation. Main Laws. Brightness temperature. 1. Concepts of a blackbody and thermodynamical equilibrium. Lecture 4 lackbody radiation. Main Laws. rightness temperature. Objectives: 1. Concepts of a blackbody, thermodynamical equilibrium, and local thermodynamical equilibrium.. Main laws: lackbody emission:

More information

Name Period 4 th Six Weeks Notes 2015 Weather

Name Period 4 th Six Weeks Notes 2015 Weather Name Period 4 th Six Weeks Notes 2015 Weather Radiation Convection Currents Winds Jet Streams Energy from the Sun reaches Earth as electromagnetic waves This energy fuels all life on Earth including the

More information

1. Theoretical background

1. Theoretical background 1. Theoretical background We consider the energy budget at the soil surface (equation 1). Energy flux components absorbed or emitted by the soil surface are: net radiation, latent heat flux, sensible heat

More information

How Landsat Images are Made

How Landsat Images are Made How Landsat Images are Made Presentation by: NASA s Landsat Education and Public Outreach team June 2006 1 More than just a pretty picture Landsat makes pretty weird looking maps, and it isn t always easy

More information

What s better than a milliondollar

What s better than a milliondollar F o r k i d s o f a l l a g e s BY MEMORIE YASUDA What s better than a milliondollar view from the top of a skyscraper? Try a multimillion-dollar view from a satellite flying around Earth. A satellite

More information

Mapping Earth from Space Remote sensing and satellite images. Remote sensing developments from war

Mapping Earth from Space Remote sensing and satellite images. Remote sensing developments from war Mapping Earth from Space Remote sensing and satellite images Geomatics includes all the following spatial technologies: a. Cartography "The art, science and technology of making maps" b. Geographic Information

More information

Radiation Transfer in Environmental Science

Radiation Transfer in Environmental Science Radiation Transfer in Environmental Science with emphasis on aquatic and vegetation canopy media Autumn 2008 Prof. Emmanuel Boss, Dr. Eyal Rotenberg Introduction Radiation in Environmental sciences Most

More information

CHAPTER 3 Heat and energy in the atmosphere

CHAPTER 3 Heat and energy in the atmosphere CHAPTER 3 Heat and energy in the atmosphere In Chapter 2 we examined the nature of energy and its interactions with Earth. Here we concentrate initially on the way in which energy interacts with the atmosphere

More information

Overview. What is EMR? Electromagnetic Radiation (EMR) LA502 Special Studies Remote Sensing

Overview. What is EMR? Electromagnetic Radiation (EMR) LA502 Special Studies Remote Sensing LA502 Special Studies Remote Sensing Electromagnetic Radiation (EMR) Dr. Ragab Khalil Department of Landscape Architecture Faculty of Environmental Design King AbdulAziz University Room 103 Overview What

More information

Satellite Remote Sensing of Volcanic Ash

Satellite Remote Sensing of Volcanic Ash Marco Fulle www.stromboli.net Satellite Remote Sensing of Volcanic Ash Michael Pavolonis NOAA/NESDIS/STAR SCOPE Nowcasting 1 Meeting November 19 22, 2013 1 Outline Getty Images Volcanic ash satellite remote

More information

Satellite Communication Systems. mgr inż. Krzysztof Włostowski Instytut Telekomunikacji PW chrisk@tele.pw.edu.pl

Satellite Communication Systems. mgr inż. Krzysztof Włostowski Instytut Telekomunikacji PW chrisk@tele.pw.edu.pl Satellite Communication Systems mgr inż. Krzysztof Włostowski Instytut Telekomunikacji PW chrisk@tele.pw.edu.pl Satellite Communication Satellite Communication combines the missile and microwave technologies

More information

Post Processing Service

Post Processing Service Post Processing Service The delay of propagation of the signal due to the ionosphere is the main source of generation of positioning errors. This problem can be bypassed using a dual-frequency receivers

More information

Observed Cloud Cover Trends and Global Climate Change. Joel Norris Scripps Institution of Oceanography

Observed Cloud Cover Trends and Global Climate Change. Joel Norris Scripps Institution of Oceanography Observed Cloud Cover Trends and Global Climate Change Joel Norris Scripps Institution of Oceanography Increasing Global Temperature from www.giss.nasa.gov Increasing Greenhouse Gases from ess.geology.ufl.edu

More information

Mobile Communications Chapter 5: Satellite Systems

Mobile Communications Chapter 5: Satellite Systems Mobile Communications Chapter 5: Satellite Systems History Basics Localization Handover Routing Systems History of satellite communication 1945 Arthur C. Clarke publishes an essay about Extra Terrestrial

More information

RADIATION IN THE TROPICAL ATMOSPHERE and the SAHEL SURFACE HEAT BALANCE. Peter J. Lamb. Cooperative Institute for Mesoscale Meteorological Studies

RADIATION IN THE TROPICAL ATMOSPHERE and the SAHEL SURFACE HEAT BALANCE. Peter J. Lamb. Cooperative Institute for Mesoscale Meteorological Studies RADIATION IN THE TROPICAL ATMOSPHERE and the SAHEL SURFACE HEAT BALANCE by Peter J. Lamb Cooperative Institute for Mesoscale Meteorological Studies and School of Meteorology The University of Oklahoma

More information

Corso di Fisica Te T cnica Ambientale Solar Radiation

Corso di Fisica Te T cnica Ambientale Solar Radiation Solar Radiation Solar radiation i The Sun The Sun is the primary natural energy source for our planet. It has a diameter D = 1.39x10 6 km and a mass M = 1.989x10 30 kg and it is constituted by 1/3 of He

More information

Summary Report on National and Regional Projects set-up in Russian Federation to integrate different Ground-based Observing Systems

Summary Report on National and Regional Projects set-up in Russian Federation to integrate different Ground-based Observing Systems WORLD METEOROLOGICAL ORGANIZATION COMMISSION FOR INSTRUMENT AND METHODS OF OBSERVATION OPAG-UPPER AIR EXPERT TEAM ON REMOTE SENSING UPPER-AIR TECHNOLOGY AND TECHNIQUES First Session Geneva, Switzerland,

More information

Climatology and Monitoring of Dust and Sand Storms in the Arabian Peninsula

Climatology and Monitoring of Dust and Sand Storms in the Arabian Peninsula Climatology and Monitoring of Dust and Sand Storms in the Arabian Peninsula Mansour Almazroui Center of Excellence for Climate Change Research (CECCR) King Abdulaziz University, Jeddah, Saudi Arabia E-mail:

More information

SATELLITE IMAGES IN ENVIRONMENTAL DATA PROCESSING

SATELLITE IMAGES IN ENVIRONMENTAL DATA PROCESSING SATELLITE IMAGES IN ENVIRONMENTAL DATA PROCESSING Magdaléna Kolínová Aleš Procházka Martin Slavík Prague Institute of Chemical Technology Department of Computing and Control Engineering Technická 95, 66

More information

SPACE WEATHER SUPPORT FOR COMMUNICATIONS. Overview

SPACE WEATHER SUPPORT FOR COMMUNICATIONS. Overview SPACE WEATHER SUPPORT FOR COMMUNICATIONS Overview Ionospheric variability (space weather) significantly impacts ground and space-based communications. In essence, the electrically charged particles of

More information

Temporal variation in snow cover over sea ice in Antarctica using AMSR-E data product

Temporal variation in snow cover over sea ice in Antarctica using AMSR-E data product Temporal variation in snow cover over sea ice in Antarctica using AMSR-E data product Michael J. Lewis Ph.D. Student, Department of Earth and Environmental Science University of Texas at San Antonio ABSTRACT

More information

Cloud Radiation and the Law of Attraction

Cloud Radiation and the Law of Attraction Convec,on, cloud and radia,on Convection redistributes the thermal energy yielding (globally-averaged), a mean lapse rate of ~ -6.5 o C/km. Radiative processes tend to produce a more negative temperature

More information

APPENDIX D: SOLAR RADIATION

APPENDIX D: SOLAR RADIATION APPENDIX D: SOLAR RADIATION The sun is the source of most energy on the earth and is a primary factor in determining the thermal environment of a locality. It is important for engineers to have a working

More information

MSG MPEF Products focus on GII Simon Elliott Meteorological Operations Division simon.elliott@eumetsat.int

MSG MPEF Products focus on GII Simon Elliott Meteorological Operations Division simon.elliott@eumetsat.int MSG MPEF focus on GII Simon Elliott Meteorological Operations Division simon.elliott@eumetsat.int MSG Application Workshop, 15-19 March 2010, Alanya, Türkiye Slide: 1 1. What is the MPEF? Meteorological

More information

Solar Energy. Outline. Solar radiation. What is light?-- Electromagnetic Radiation. Light - Electromagnetic wave spectrum. Electromagnetic Radiation

Solar Energy. Outline. Solar radiation. What is light?-- Electromagnetic Radiation. Light - Electromagnetic wave spectrum. Electromagnetic Radiation Outline MAE 493R/593V- Renewable Energy Devices Solar Energy Electromagnetic wave Solar spectrum Solar global radiation Solar thermal energy Solar thermal collectors Solar thermal power plants Photovoltaics

More information

A remote sensing instrument collects information about an object or phenomenon within the

A remote sensing instrument collects information about an object or phenomenon within the Satellite Remote Sensing GE 4150- Natural Hazards Some slides taken from Ann Maclean: Introduction to Digital Image Processing Remote Sensing the art, science, and technology of obtaining reliable information

More information

Sunlight and its Properties. EE 495/695 Y. Baghzouz

Sunlight and its Properties. EE 495/695 Y. Baghzouz Sunlight and its Properties EE 495/695 Y. Baghzouz The sun is a hot sphere of gas whose internal temperatures reach over 20 million deg. K. Nuclear fusion reaction at the sun's core converts hydrogen to

More information

Evaluating GCM clouds using instrument simulators

Evaluating GCM clouds using instrument simulators Evaluating GCM clouds using instrument simulators University of Washington September 24, 2009 Why do we care about evaluation of clouds in GCMs? General Circulation Models (GCMs) project future climate

More information

Sky Monitoring Techniques using Thermal Infrared Sensors. sabino piazzolla Optical Communications Group JPL

Sky Monitoring Techniques using Thermal Infrared Sensors. sabino piazzolla Optical Communications Group JPL Sky Monitoring Techniques using Thermal Infrared Sensors sabino piazzolla Optical Communications Group JPL Atmospheric Monitoring The atmospheric channel has a great impact on the channel capacity at optical

More information

Review for Introduction to Remote Sensing: Science Concepts and Technology

Review for Introduction to Remote Sensing: Science Concepts and Technology Review for Introduction to Remote Sensing: Science Concepts and Technology Ann Johnson Associate Director ann@baremt.com Funded by National Science Foundation Advanced Technological Education program [DUE

More information

Satellite Altimetry Missions

Satellite Altimetry Missions Satellite Altimetry Missions SINGAPORE SPACE SYMPOSIUM 30 TH SEPTEMBER 2015 AUTHORS: LUCA SIMONINI/ ERICK LANSARD/ JOSE M GONZALEZ www.thalesgroup.com Table of Content General Principles and Applications

More information