Introduction Proof by unique factorization in Z Proof with Gaussian integers Proof by geometry Applications. Pythagorean Triples

Size: px
Start display at page:

Download "Introduction Proof by unique factorization in Z Proof with Gaussian integers Proof by geometry Applications. Pythagorean Triples"

Transcription

1 Pythagorean Triples Keith Conrad University of Connecticut August 4, 008

2 Introduction We seek positive integers a, b, and c such that a + b = c. Plimpton 3 Babylonian table of Pythagorean triples (1800 BC). Eleventh row is (3, 4, 5).

3 Reduction Step a + b = c a b c Examples of Pythagorean Triples If d a and d b then d c, so d c. Similarly, if d a and d c then d b, and if d b and d c then d a. Therefore (a, b) = (a, b, c). Writing a = da, b = db, and c = dc, a + b = c = a + b = c. From now on we focus on primitive triples: (a, b) = 1.

4 Classification a + b = c, (a, b) = 1. Certainly a and b are not both even. Also they are not both odd: otherwise, c = a + b mod 4, which is impossible. So one of a or b is even and the other is odd. Then c = a + b is odd, so c is odd. Our convention: take b even. Theorem The primitive Pythagorean triples (a, b, c) where b is even are given by a = u v, b = uv, c = u + v, where u > v > 0, (u, v) = 1, and u v mod. For u and v in Z +, need u > v so that a > 0. The conditions (u, v) = 1 and u v mod are forced by primitivity.

5 Classification a = u v, b = uv, c = u + v, u > v > 0, (u, v) = 1, u v mod u v a b c Which u and v give the triple (a, b, c) = (19081, 7830, 05769)?

6 Classification Can solve for u and v : a = u v, b = uv, c = u + v, u > v > 0, (u, v) = 1, u v mod u = a + c, v = c a. For (a, b, c) = (19081, 7830, 05769), a + c So u = 445 and v = 88. = = 445, c a = 7744 = 88.

7 Primitive Triples of Nonzero Integers Theorem Triples (a, b, c) of nonzero integers where a + b = c, (a, b) = 1, b is even, and c > 0, are given by a = u v, b = uv, c = u + v, where u, v Z {0}, (u, v) = 1, and u v mod. Why? Suppose a > 0, b > 0, and c > 0, so the classification says a = u v, b = uv, c = u + v, u > v > 0, (u, v) = 1, u v mod. In terms of this u and v, how do the parametric formulas apply to (a, b, c)? To ( a, b, c)? To ( a, b, c)? To (a, b, c)?

8 Outline Classify primitive Pythagorean triples by unique factorization in Z. Classify primitive Pythagorean triples by unique factorization in Z[i]. Classify primitive Pythagorean triples by analytic geometry. See additional use of each method of proof.

9 First proof: unique factorization in Z, I a + b = c = b = c a = (c + a)(c a). Both c + a and c a are positive and even. What s their gcd? If d (c + a) and d (c a) then d c and d a, so d because (a, c) = 1. Since c + a and c a are even, (c + a, c a) =. So with factors relatively prime. Theorem ( ) b = c + a c a, If xy = in Z + and (x, y) = 1 then x = and y =. So (c + a)/ = u and (c a)/ = v with u, v Z +. Solving, c = u + v and a = u v ; b = (c + a)(c a) = (uv).

10 First proof: unique factorization in Z, II Let s try a different subtraction: a + b = c = a = c b = (c + b)(c b). Both c + b and c b are positive and odd. What s their gcd? If d (c + b) and d (c b) then d c and d b, so d. Since c + b and c b are odd, (c + b, c b) = 1. Then c + b = k and c b = l where k and l are in Z + and odd. Must have (k, l) = 1. Adding and subtracting, c = k + l, b = k l. Then a = (c + b)(c b) = k l, so a = kl. We expect that a = u v, and so on. Since u v = (u + v)(u v), try to get k = u + v and l = u v. Define u = k + l, v = k l.

11 Another parametrization Theorem The primitive Pythagorean triples (a, b, c) where b is even are given by a = kl, b = k l, c = k + l, where k > l > 0, (k, l) = 1, and k and l are both odd. k l a b c

12 Second proof: unique factorization in Z[i] Write c = a + b = (a + bi)(a bi). Suppose δ (a + bi) and δ (a bi) in Z[i]. Taking the norm, N(δ) divides a + b = c, which is odd, so N(δ) is odd. Also δ divides a and bi in Z[i], so N(δ) 4a and N(δ) 4b in Z. Since (a, b) = 1, N(δ) 4, so N(δ) = 1. Thus δ = ±1 or ±i. Theorem If αβ = in Z[i] and (α, β) = 1 then α and β are squares up to unit multiple. Either a + bi = (u + vi) or a + bi = i(u + vi). First case: a + bi = u v + uvi a = u v and b = uv. Second case: a + bi = uv + (u v )i a = uv, but a odd! Choose sign on u so u > 0. Then v > 0 and c = a + b = N((u + vi) ) = N(u + vi) = (u + v ).

13 Pythagorean triples from Gaussian integers Pythagorean triples arise from squaring Gaussian integers: (u + vi) = a + bi Norm = (u + v ) = a + b. α α Triple 1 + i 3 + 4i (3, 4, 5) + 3i 5 + 1i (5, 1, 13) 7 + 4i i (33, 56, 65) 7 + 5i i (4, 70, 74) i i (91, 60, 109) From 7 + 5i get nonprimitive (4, 70, 74) = (1, 35, 37). In Z[i], and 7 + 5i 1 + i = (7 + 5i)(1 i) (1 + i)(1 i) = 1 i (6 i) = 35 1i, which gives the primitive triple (35, 1, 37). = 6 i

14 Third proof: analytic geometry a + b = c = r + s = 1, r = a c, s = b c. The line through ( 1, 0) and (r, s) is y = m(x + 1), where m = s. If r, s Q then m Q. r + 1

15 Third proof: analytic geometry Conversely, for m Q where does y = m(x + 1) meet the circle? so 1 = x + y = x + (m(x + 1)) = (m + 1)x + m x + m, ( ) 0 = x + m m + 1 x + m 1 m = (x + 1) x + m m. + 1

16 Third proof: analytic geometry ( ) 0 = (x + 1) x + m 1 m + 1 The second point of intersection is at (r, s), where and We have a correspondence r = m 1 m + 1 = 1 m 1 + m s = m(r + 1) = m 1 + m. {rational points (r, s) ( 1, 0) on x + y = 1} m Q given by (r, s) m = s r + 1 ; 1 m m r = 1 + m, s = m 1 + m. Slope m gives point in first quadrant when 0 < m < 1.

17 From triples to slopes ( a (a, b, c) c, b ) m = b/c c a/c + 1 = ( ) 1 m m 1 + m, m 1 + m. b a + c, a b c m 1/ /3 3/4 1/4 4/5 9/14 It looks like m = v/u in our earlier notation: (u, v) (,1) (3,) (4,3) (4,1) (5,4) (14,9) a b c

18 From triples to slopes a = u v, b = uv, c = u + v, Earlier, we said we can solve for u and v : u = a + c, v = c a. For (a, b, c) = (19081, 7830, 05769), earlier we found a + c = = 445, c a = 7744 = 88, so u = 445 and v = 88. Now geometry makes us notice that so b a + c = uv u = v u, b a + c = = = v u.

19 From slopes to triples m 1/ 1/3 /3 1/4 3/4 (1 m )/(1 + m ) 3/5 4/5 5/13 15/17 7/5 m/(1 + m ) 4/5 3/5 1/13 8/17 4/5 m 1/5 /5 1/17 19/101 (1 m )/(1 + m ) 1/13 1/9 145/ /581 m/(1 + m ) 5/13 0/9 408/ /581 If m (x, y) then 1 m (y, x). 1 + m

20 Application 1: Polynomial Pythagorean triples Consider polynomials f (x), g(x), h(x) satisfying f (x) + g(x) = h(x) and all nonzero. Call the triple primitive if (f (x), g(x)) = 1. Theorem The primitive Pythagorean triples in R[x] are given by f (x) = c(u(x) v(x) ), g(x) = cu(x)v(x), h(x) = c(u(x) + v(x) ), where c R {0} and (u(x), v(x)) = 1. There is a proof by unique factorization in R[x], as in Z. Even/odd considerations drop out since is a unit as a polynomial.

21 Application : a + b = c Suppose a + b = c in Z + and (a, b) = 1. Then a is odd: if a is even then b is odd so c mod 4: NO. From a odd, also c odd, so b = c a mod 8, so b is even. Theorem The solutions (a, b, c) to a + b = c in Z + with (a, b) = 1 are given by a = u v, b = uv, c = u + v, where u, v > 0, (u, v) = 1, and u is odd. u v a b c

22 Application 3: a + b = c 3 In Z[i], (u + vi) 3 = u 3 + 3u (vi) + 3u(vi) + (vi) 3 Take norms of both sides: = (u 3 3uv ) + (3u v v 3 )i. (u + v ) 3 = (u 3 3uv ) + (3u v v 3 ). u v a = u 3 3uv b = 3u v v c = u + v Exercise: All integral solutions to a + b = c 3 with (a, b) = 1 arise in this way with (u, v) = 1 and u v mod.

23 Application 4: Rational parametrizations of other conics x + y =

24 Rational parametrizations of other conics Theorem The rational solutions to x + y = have the form for m Q, and (1, 1). x = m m 1 1 m m 1 + m, y = 1 + m m 1 3/ 5/7 8/5 1 x 1 7/13 3/37 41/89 119/145 y 1 17/13 47/37 119/89 167/ = 13, = 37, = 89.

25 Rational parametrizations of other conics x dy = 1

26 Rational parametrizations of other conics Theorem The rational solutions to x dy = 1 have the form with m Q, and ( 1, 0). x = 1 + dm 1 dm, y = m 1 dm m 1/ 1/3 /3 8/9 0 x 3 11/ /47 801/799 y 6/ /47 40/799 Solutions to x y = 1 There s no simple formula for integral solutions to x dy = 1!

27 Application 5: Factoring quadratics In Z[x], x + 4x + 3 = (x + 1)(x + 3), x + 4x 3 irreducible. but x + 5x + 6 = (x + )(x + 3), x + 5x 6 = (x 1)(x + 6). Question: When do x + mx + n and x + mx n factor in Z[x]? Here m and n are nonzero. If x + mx + n = (x r 1 )(x r ) then x mx + n = (x + r 1 )(x + r ). So we may assume m > 0. May take n > 0 too.

28 Factoring quadratics Roots of x + mx ± n are m ± m ± 4n, which are integers exactly when m ± 4n =, since m ± 4n m mod. So we can factor x + mx + n and x + mx n if and only if m 4n = d, m + 4n = e, d and e Z. Then d + e = m, so d e mod. Solving, m = d + e ( ) e + d ( ) e d = +. Thus we have a Pythagorean triple (without specified even term) ( e d, e + d ) e d, m, < e + d < m. Exercise: This triple is primitive if and only if (m, n) = 1.

29 Factoring quadratics Theorem (J. L. Poet, D. L. Vestal, 005) There is a one-to-one correspondence between Pythag. triples (a, b, c) with a < b < c and reducible pairs x + mx ± n with m, n > 0, given by (a, b, c) x + cx ± ab ( e d, x + mx ± n, e + d ), m, with m 4n = d and m + 4n = e. a b c m n x + mx + n x + mx n (x + )(x + 3) (x 1)(x + 6) (x + 3)(x + 10) (x )(x + 15) (x + 5)(x + 1) (x 3)(x + 0) Exercise. Factor x + (u + v )x ± uv(u v ) in Z[x].

PYTHAGOREAN TRIPLES KEITH CONRAD

PYTHAGOREAN TRIPLES KEITH CONRAD PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient

More information

Solution to Exercise 2.2. Both m and n are divisible by d, som = dk and n = dk. Thus m ± n = dk ± dk = d(k ± k ),som + n and m n are divisible by d.

Solution to Exercise 2.2. Both m and n are divisible by d, som = dk and n = dk. Thus m ± n = dk ± dk = d(k ± k ),som + n and m n are divisible by d. [Chap. ] Pythagorean Triples 6 (b) The table suggests that in every primitive Pythagorean triple, exactly one of a, b,orc is a multiple of 5. To verify this, we use the Pythagorean Triples Theorem to write

More information

Settling a Question about Pythagorean Triples

Settling a Question about Pythagorean Triples Settling a Question about Pythagorean Triples TOM VERHOEFF Department of Mathematics and Computing Science Eindhoven University of Technology P.O. Box 513, 5600 MB Eindhoven, The Netherlands E-Mail address:

More information

4.2 Euclid s Classification of Pythagorean Triples

4.2 Euclid s Classification of Pythagorean Triples 178 4. Number Theory: Fermat s Last Theorem Exercise 4.7: A primitive Pythagorean triple is one in which any two of the three numbers are relatively prime. Show that every multiple of a Pythagorean triple

More information

SYSTEMS OF PYTHAGOREAN TRIPLES. Acknowledgements. I would like to thank Professor Laura Schueller for advising and guiding me

SYSTEMS OF PYTHAGOREAN TRIPLES. Acknowledgements. I would like to thank Professor Laura Schueller for advising and guiding me SYSTEMS OF PYTHAGOREAN TRIPLES CHRISTOPHER TOBIN-CAMPBELL Abstract. This paper explores systems of Pythagorean triples. It describes the generating formulas for primitive Pythagorean triples, determines

More information

Unique Factorization

Unique Factorization Unique Factorization Waffle Mathcamp 2010 Throughout these notes, all rings will be assumed to be commutative. 1 Factorization in domains: definitions and examples In this class, we will study the phenomenon

More information

Modern Algebra Lecture Notes: Rings and fields set 4 (Revision 2)

Modern Algebra Lecture Notes: Rings and fields set 4 (Revision 2) Modern Algebra Lecture Notes: Rings and fields set 4 (Revision 2) Kevin Broughan University of Waikato, Hamilton, New Zealand May 13, 2010 Remainder and Factor Theorem 15 Definition of factor If f (x)

More information

Math 319 Problem Set #3 Solution 21 February 2002

Math 319 Problem Set #3 Solution 21 February 2002 Math 319 Problem Set #3 Solution 21 February 2002 1. ( 2.1, problem 15) Find integers a 1, a 2, a 3, a 4, a 5 such that every integer x satisfies at least one of the congruences x a 1 (mod 2), x a 2 (mod

More information

MATH 10034 Fundamental Mathematics IV

MATH 10034 Fundamental Mathematics IV MATH 0034 Fundamental Mathematics IV http://www.math.kent.edu/ebooks/0034/funmath4.pdf Department of Mathematical Sciences Kent State University January 2, 2009 ii Contents To the Instructor v Polynomials.

More information

H/wk 13, Solutions to selected problems

H/wk 13, Solutions to selected problems H/wk 13, Solutions to selected problems Ch. 4.1, Problem 5 (a) Find the number of roots of x x in Z 4, Z Z, any integral domain, Z 6. (b) Find a commutative ring in which x x has infinitely many roots.

More information

3 1. Note that all cubes solve it; therefore, there are no more

3 1. Note that all cubes solve it; therefore, there are no more Math 13 Problem set 5 Artin 11.4.7 Factor the following polynomials into irreducible factors in Q[x]: (a) x 3 3x (b) x 3 3x + (c) x 9 6x 6 + 9x 3 3 Solution: The first two polynomials are cubics, so if

More information

8 Primes and Modular Arithmetic

8 Primes and Modular Arithmetic 8 Primes and Modular Arithmetic 8.1 Primes and Factors Over two millennia ago already, people all over the world were considering the properties of numbers. One of the simplest concepts is prime numbers.

More information

1 Homework 1. [p 0 q i+j +... + p i 1 q j+1 ] + [p i q j ] + [p i+1 q j 1 +... + p i+j q 0 ]

1 Homework 1. [p 0 q i+j +... + p i 1 q j+1 ] + [p i q j ] + [p i+1 q j 1 +... + p i+j q 0 ] 1 Homework 1 (1) Prove the ideal (3,x) is a maximal ideal in Z[x]. SOLUTION: Suppose we expand this ideal by including another generator polynomial, P / (3, x). Write P = n + x Q with n an integer not

More information

it is easy to see that α = a

it is easy to see that α = a 21. Polynomial rings Let us now turn out attention to determining the prime elements of a polynomial ring, where the coefficient ring is a field. We already know that such a polynomial ring is a UF. Therefore

More information

Winter Camp 2011 Polynomials Alexander Remorov. Polynomials. Alexander Remorov alexanderrem@gmail.com

Winter Camp 2011 Polynomials Alexander Remorov. Polynomials. Alexander Remorov alexanderrem@gmail.com Polynomials Alexander Remorov alexanderrem@gmail.com Warm-up Problem 1: Let f(x) be a quadratic polynomial. Prove that there exist quadratic polynomials g(x) and h(x) such that f(x)f(x + 1) = g(h(x)).

More information

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5. PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include

More information

PROOFS BY DESCENT KEITH CONRAD

PROOFS BY DESCENT KEITH CONRAD PROOFS BY DESCENT KEITH CONRAD As ordinary methods, such as are found in the books, are inadequate to proving such difficult propositions, I discovered at last a most singular method... that I called the

More information

Galois Theory, First Edition

Galois Theory, First Edition Galois Theory, First Edition David A. Cox, published by John Wiley & Sons, 2004 Errata as of September 18, 2012 This errata sheet is organized by which printing of the book you have. The printing can be

More information

2.5 Zeros of a Polynomial Functions

2.5 Zeros of a Polynomial Functions .5 Zeros of a Polynomial Functions Section.5 Notes Page 1 The first rule we will talk about is Descartes Rule of Signs, which can be used to determine the possible times a graph crosses the x-axis and

More information

a 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4)

a 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4) ROOTS OF POLYNOMIAL EQUATIONS In this unit we discuss polynomial equations. A polynomial in x of degree n, where n 0 is an integer, is an expression of the form P n (x) =a n x n + a n 1 x n 1 + + a 1 x

More information

FACTORING IN QUADRATIC FIELDS. 1. Introduction. This is called a quadratic field and it has degree 2 over Q. Similarly, set

FACTORING IN QUADRATIC FIELDS. 1. Introduction. This is called a quadratic field and it has degree 2 over Q. Similarly, set FACTORING IN QUADRATIC FIELDS KEITH CONRAD For a squarefree integer d other than 1, let 1. Introduction K = Q[ d] = {x + y d : x, y Q}. This is called a quadratic field and it has degree 2 over Q. Similarly,

More information

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. We begin by defining the ring of polynomials with coefficients in a ring R. After some preliminary results, we specialize

More information

x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1

x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1 Implicit Functions Defining Implicit Functions Up until now in this course, we have only talked about functions, which assign to every real number x in their domain exactly one real number f(x). The graphs

More information

Factoring Polynomials

Factoring Polynomials Factoring Polynomials Sue Geller June 19, 2006 Factoring polynomials over the rational numbers, real numbers, and complex numbers has long been a standard topic of high school algebra. With the advent

More information

Solutions Manual for How to Read and Do Proofs

Solutions Manual for How to Read and Do Proofs Solutions Manual for How to Read and Do Proofs An Introduction to Mathematical Thought Processes Sixth Edition Daniel Solow Department of Operations Weatherhead School of Management Case Western Reserve

More information

CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY

CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY January 10, 2010 CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY The set of polynomials over a field F is a ring, whose structure shares with the ring of integers many characteristics.

More information

15 Prime and Composite Numbers

15 Prime and Composite Numbers 15 Prime and Composite Numbers Divides, Divisors, Factors, Multiples In section 13, we considered the division algorithm: If a and b are whole numbers with b 0 then there exist unique numbers q and r such

More information

THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS

THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS KEITH CONRAD 1. Introduction The Fundamental Theorem of Algebra says every nonconstant polynomial with complex coefficients can be factored into linear

More information

This unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions.

This unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions. Algebra I Overview View unit yearlong overview here Many of the concepts presented in Algebra I are progressions of concepts that were introduced in grades 6 through 8. The content presented in this course

More information

Alex, I will take congruent numbers for one million dollars please

Alex, I will take congruent numbers for one million dollars please Alex, I will take congruent numbers for one million dollars please Jim L. Brown The Ohio State University Columbus, OH 4310 jimlb@math.ohio-state.edu One of the most alluring aspectives of number theory

More information

MOP 2007 Black Group Integer Polynomials Yufei Zhao. Integer Polynomials. June 29, 2007 Yufei Zhao yufeiz@mit.edu

MOP 2007 Black Group Integer Polynomials Yufei Zhao. Integer Polynomials. June 29, 2007 Yufei Zhao yufeiz@mit.edu Integer Polynomials June 9, 007 Yufei Zhao yufeiz@mit.edu We will use Z[x] to denote the ring of polynomials with integer coefficients. We begin by summarizing some of the common approaches used in dealing

More information

OSTROWSKI FOR NUMBER FIELDS

OSTROWSKI FOR NUMBER FIELDS OSTROWSKI FOR NUMBER FIELDS KEITH CONRAD Ostrowski classified the nontrivial absolute values on Q: up to equivalence, they are the usual (archimedean) absolute value and the p-adic absolute values for

More information

1.3 Polynomials and Factoring

1.3 Polynomials and Factoring 1.3 Polynomials and Factoring Polynomials Constant: a number, such as 5 or 27 Variable: a letter or symbol that represents a value. Term: a constant, variable, or the product or a constant and variable.

More information

Pythagorean Triples and Rational Points on the Unit Circle

Pythagorean Triples and Rational Points on the Unit Circle Pythagorean Triles and Rational Points on the Unit Circle Solutions Below are samle solutions to the roblems osed. You may find that your solutions are different in form and you may have found atterns

More information

Algebra II End of Course Exam Answer Key Segment I. Scientific Calculator Only

Algebra II End of Course Exam Answer Key Segment I. Scientific Calculator Only Algebra II End of Course Exam Answer Key Segment I Scientific Calculator Only Question 1 Reporting Category: Algebraic Concepts & Procedures Common Core Standard: A-APR.3: Identify zeros of polynomials

More information

Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P.

Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P. MATH 11011 FINDING REAL ZEROS KSU OF A POLYNOMIAL Definitions: Polynomial: is a function of the form P (x) = a n x n + a n 1 x n 1 + + a x + a 1 x + a 0. The numbers a n, a n 1,..., a 1, a 0 are called

More information

MATH10040 Chapter 2: Prime and relatively prime numbers

MATH10040 Chapter 2: Prime and relatively prime numbers MATH10040 Chapter 2: Prime and relatively prime numbers Recall the basic definition: 1. Prime numbers Definition 1.1. Recall that a positive integer is said to be prime if it has precisely two positive

More information

RECURSIVE ENUMERATION OF PYTHAGOREAN TRIPLES

RECURSIVE ENUMERATION OF PYTHAGOREAN TRIPLES RECURSIVE ENUMERATION OF PYTHAGOREAN TRIPLES DARRYL MCCULLOUGH AND ELIZABETH WADE In [9], P. W. Wade and W. R. Wade (no relation to the second author gave a recursion formula that produces Pythagorean

More information

PROBLEM SET 6: POLYNOMIALS

PROBLEM SET 6: POLYNOMIALS PROBLEM SET 6: POLYNOMIALS 1. introduction In this problem set we will consider polynomials with coefficients in K, where K is the real numbers R, the complex numbers C, the rational numbers Q or any other

More information

Quotient Rings and Field Extensions

Quotient Rings and Field Extensions Chapter 5 Quotient Rings and Field Extensions In this chapter we describe a method for producing field extension of a given field. If F is a field, then a field extension is a field K that contains F.

More information

k, then n = p2α 1 1 pα k

k, then n = p2α 1 1 pα k Powers of Integers An integer n is a perfect square if n = m for some integer m. Taking into account the prime factorization, if m = p α 1 1 pα k k, then n = pα 1 1 p α k k. That is, n is a perfect square

More information

MATH 289 PROBLEM SET 4: NUMBER THEORY

MATH 289 PROBLEM SET 4: NUMBER THEORY MATH 289 PROBLEM SET 4: NUMBER THEORY 1. The greatest common divisor If d and n are integers, then we say that d divides n if and only if there exists an integer q such that n = qd. Notice that if d divides

More information

SUM OF TWO SQUARES JAHNAVI BHASKAR

SUM OF TWO SQUARES JAHNAVI BHASKAR SUM OF TWO SQUARES JAHNAVI BHASKAR Abstract. I will investigate which numbers can be written as the sum of two squares and in how many ways, providing enough basic number theory so even the unacquainted

More information

Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year.

Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year. This document is designed to help North Carolina educators teach the Common Core (Standard Course of Study). NCDPI staff are continually updating and improving these tools to better serve teachers. Algebra

More information

Congruent Number Problem

Congruent Number Problem University of Waterloo October 28th, 2015 Number Theory Number theory, can be described as the mathematics of discovering and explaining patterns in numbers. There is nothing in the world which pleases

More information

Module MA3411: Abstract Algebra Galois Theory Appendix Michaelmas Term 2013

Module MA3411: Abstract Algebra Galois Theory Appendix Michaelmas Term 2013 Module MA3411: Abstract Algebra Galois Theory Appendix Michaelmas Term 2013 D. R. Wilkins Copyright c David R. Wilkins 1997 2013 Contents A Cyclotomic Polynomials 79 A.1 Minimum Polynomials of Roots of

More information

The Division Algorithm for Polynomials Handout Monday March 5, 2012

The Division Algorithm for Polynomials Handout Monday March 5, 2012 The Division Algorithm for Polynomials Handout Monday March 5, 0 Let F be a field (such as R, Q, C, or F p for some prime p. This will allow us to divide by any nonzero scalar. (For some of the following,

More information

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan 3 Binary Operations We are used to addition and multiplication of real numbers. These operations combine two real numbers

More information

CHAPTER 5. Number Theory. 1. Integers and Division. Discussion

CHAPTER 5. Number Theory. 1. Integers and Division. Discussion CHAPTER 5 Number Theory 1. Integers and Division 1.1. Divisibility. Definition 1.1.1. Given two integers a and b we say a divides b if there is an integer c such that b = ac. If a divides b, we write a

More information

Introduction to Finite Fields (cont.)

Introduction to Finite Fields (cont.) Chapter 6 Introduction to Finite Fields (cont.) 6.1 Recall Theorem. Z m is a field m is a prime number. Theorem (Subfield Isomorphic to Z p ). Every finite field has the order of a power of a prime number

More information

THE CONGRUENT NUMBER PROBLEM

THE CONGRUENT NUMBER PROBLEM THE CONGRUENT NUMBER PROBLEM KEITH CONRAD 1. Introduction A right triangle is called rational when its legs and hypotenuse are all rational numbers. Examples of rational right triangles include Pythagorean

More information

Algebra 1 Course Title

Algebra 1 Course Title Algebra 1 Course Title Course- wide 1. What patterns and methods are being used? Course- wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept

More information

Solving Quadratic Equations

Solving Quadratic Equations 9.3 Solving Quadratic Equations by Using the Quadratic Formula 9.3 OBJECTIVES 1. Solve a quadratic equation by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation

More information

DigitalCommons@University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln MAT Exam Expository Papers Math in the Middle Institute Partnership 7-1-007 Pythagorean Triples Diane Swartzlander University

More information

DIVISIBILITY AND GREATEST COMMON DIVISORS

DIVISIBILITY AND GREATEST COMMON DIVISORS DIVISIBILITY AND GREATEST COMMON DIVISORS KEITH CONRAD 1 Introduction We will begin with a review of divisibility among integers, mostly to set some notation and to indicate its properties Then we will

More information

The Method of Partial Fractions Math 121 Calculus II Spring 2015

The Method of Partial Fractions Math 121 Calculus II Spring 2015 Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method

More information

The last three chapters introduced three major proof techniques: direct,

The last three chapters introduced three major proof techniques: direct, CHAPTER 7 Proving Non-Conditional Statements The last three chapters introduced three major proof techniques: direct, contrapositive and contradiction. These three techniques are used to prove statements

More information

POLYNOMIAL RINGS AND UNIQUE FACTORIZATION DOMAINS

POLYNOMIAL RINGS AND UNIQUE FACTORIZATION DOMAINS POLYNOMIAL RINGS AND UNIQUE FACTORIZATION DOMAINS RUSS WOODROOFE 1. Unique Factorization Domains Throughout the following, we think of R as sitting inside R[x] as the constant polynomials (of degree 0).

More information

4. How many integers between 2004 and 4002 are perfect squares?

4. How many integers between 2004 and 4002 are perfect squares? 5 is 0% of what number? What is the value of + 3 4 + 99 00? (alternating signs) 3 A frog is at the bottom of a well 0 feet deep It climbs up 3 feet every day, but slides back feet each night If it started

More information

Pythagorean Triples. becomes

Pythagorean Triples. becomes Solution Commentary: Solution of Main Problems: Pythagorean Triples 1. If m = (n + 1), n = [m -1]/ and n+1 = [m +1]/. Then, by substitution, the equation n + (n + 1) = (n+1) m + 1 becomes + m =. Now, because

More information

Kevin James. MTHSC 412 Section 2.4 Prime Factors and Greatest Comm

Kevin James. MTHSC 412 Section 2.4 Prime Factors and Greatest Comm MTHSC 412 Section 2.4 Prime Factors and Greatest Common Divisor Greatest Common Divisor Definition Suppose that a, b Z. Then we say that d Z is a greatest common divisor (gcd) of a and b if the following

More information

Trigonometric Functions and Triangles

Trigonometric Functions and Triangles Trigonometric Functions and Triangles Dr. Philippe B. Laval Kennesaw STate University August 27, 2010 Abstract This handout defines the trigonometric function of angles and discusses the relationship between

More information

Factorization in Polynomial Rings

Factorization in Polynomial Rings Factorization in Polynomial Rings These notes are a summary of some of the important points on divisibility in polynomial rings from 17 and 18 of Gallian s Contemporary Abstract Algebra. Most of the important

More information

COMPLEX NUMBERS. a bi c di a c b d i. a bi c di a c b d i For instance, 1 i 4 7i 1 4 1 7 i 5 6i

COMPLEX NUMBERS. a bi c di a c b d i. a bi c di a c b d i For instance, 1 i 4 7i 1 4 1 7 i 5 6i COMPLEX NUMBERS _4+i _-i FIGURE Complex numbers as points in the Arg plane i _i +i -i A complex number can be represented by an expression of the form a bi, where a b are real numbers i is a symbol with

More information

Pearson Algebra 1 Common Core 2015

Pearson Algebra 1 Common Core 2015 A Correlation of Pearson Algebra 1 Common Core 2015 To the Common Core State Standards for Mathematics Traditional Pathways, Algebra 1 High School Copyright 2015 Pearson Education, Inc. or its affiliate(s).

More information

Florida Math 0028. Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper

Florida Math 0028. Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper Florida Math 0028 Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper Exponents & Polynomials MDECU1: Applies the order of operations to evaluate algebraic

More information

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

More information

SOLVING POLYNOMIAL EQUATIONS

SOLVING POLYNOMIAL EQUATIONS C SOLVING POLYNOMIAL EQUATIONS We will assume in this appendix that you know how to divide polynomials using long division and synthetic division. If you need to review those techniques, refer to an algebra

More information

minimal polyonomial Example

minimal polyonomial Example Minimal Polynomials Definition Let α be an element in GF(p e ). We call the monic polynomial of smallest degree which has coefficients in GF(p) and α as a root, the minimal polyonomial of α. Example: We

More information

Number Theory. Proof. Suppose otherwise. Then there would be a finite number n of primes, which we may

Number Theory. Proof. Suppose otherwise. Then there would be a finite number n of primes, which we may Number Theory Divisibility and Primes Definition. If a and b are integers and there is some integer c such that a = b c, then we say that b divides a or is a factor or divisor of a and write b a. Definition

More information

Zeros of a Polynomial Function

Zeros of a Polynomial Function Zeros of a Polynomial Function An important consequence of the Factor Theorem is that finding the zeros of a polynomial is really the same thing as factoring it into linear factors. In this section we

More information

Chapter 7 - Roots, Radicals, and Complex Numbers

Chapter 7 - Roots, Radicals, and Complex Numbers Math 233 - Spring 2009 Chapter 7 - Roots, Radicals, and Complex Numbers 7.1 Roots and Radicals 7.1.1 Notation and Terminology In the expression x the is called the radical sign. The expression under the

More information

Zeros of Polynomial Functions

Zeros of Polynomial Functions Review: Synthetic Division Find (x 2-5x - 5x 3 + x 4 ) (5 + x). Factor Theorem Solve 2x 3-5x 2 + x + 2 =0 given that 2 is a zero of f(x) = 2x 3-5x 2 + x + 2. Zeros of Polynomial Functions Introduction

More information

Vieta s Formulas and the Identity Theorem

Vieta s Formulas and the Identity Theorem Vieta s Formulas and the Identity Theorem This worksheet will work through the material from our class on 3/21/2013 with some examples that should help you with the homework The topic of our discussion

More information

Elementary Number Theory and Methods of Proof. CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.

Elementary Number Theory and Methods of Proof. CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook. Elementary Number Theory and Methods of Proof CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.edu/~cse215 1 Number theory Properties: 2 Properties of integers (whole

More information

Polynomial Invariants

Polynomial Invariants Polynomial Invariants Dylan Wilson October 9, 2014 (1) Today we will be interested in the following Question 1.1. What are all the possible polynomials in two variables f(x, y) such that f(x, y) = f(y,

More information

Integer roots of quadratic and cubic polynomials with integer coefficients

Integer roots of quadratic and cubic polynomials with integer coefficients Integer roots of quadratic and cubic polynomials with integer coefficients Konstantine Zelator Mathematics, Computer Science and Statistics 212 Ben Franklin Hall Bloomsburg University 400 East Second Street

More information

Chapter 17. Orthogonal Matrices and Symmetries of Space

Chapter 17. Orthogonal Matrices and Symmetries of Space Chapter 17. Orthogonal Matrices and Symmetries of Space Take a random matrix, say 1 3 A = 4 5 6, 7 8 9 and compare the lengths of e 1 and Ae 1. The vector e 1 has length 1, while Ae 1 = (1, 4, 7) has length

More information

Factoring and Applications

Factoring and Applications Factoring and Applications What is a factor? The Greatest Common Factor (GCF) To factor a number means to write it as a product (multiplication). Therefore, in the problem 48 3, 4 and 8 are called the

More information

Precalculus with Geometry and Trigonometry

Precalculus with Geometry and Trigonometry Precalculus with Geometry and Trigonometry by Avinash Sathaye, Professor of Mathematics 1 Department of Mathematics, University of Kentucky Āryabhaṭa This book may be freely downloaded for personal use

More information

On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples

On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples Brian Hilley Boston College MT695 Honors Seminar March 3, 2006 1 Introduction 1.1 Mazur s Theorem Let C be a

More information

1 = (a 0 + b 0 α) 2 + + (a m 1 + b m 1 α) 2. for certain elements a 0,..., a m 1, b 0,..., b m 1 of F. Multiplying out, we obtain

1 = (a 0 + b 0 α) 2 + + (a m 1 + b m 1 α) 2. for certain elements a 0,..., a m 1, b 0,..., b m 1 of F. Multiplying out, we obtain Notes on real-closed fields These notes develop the algebraic background needed to understand the model theory of real-closed fields. To understand these notes, a standard graduate course in algebra is

More information

Applications of Fermat s Little Theorem and Congruences

Applications of Fermat s Little Theorem and Congruences Applications of Fermat s Little Theorem and Congruences Definition: Let m be a positive integer. Then integers a and b are congruent modulo m, denoted by a b mod m, if m (a b). Example: 3 1 mod 2, 6 4

More information

calculating the result modulo 3, as follows: p(0) = 0 3 + 0 + 1 = 1 0,

calculating the result modulo 3, as follows: p(0) = 0 3 + 0 + 1 = 1 0, Homework #02, due 1/27/10 = 9.4.1, 9.4.2, 9.4.5, 9.4.6, 9.4.7. Additional problems recommended for study: (9.4.3), 9.4.4, 9.4.9, 9.4.11, 9.4.13, (9.4.14), 9.4.17 9.4.1 Determine whether the following polynomials

More information

SOLUTIONS FOR PROBLEM SET 2

SOLUTIONS FOR PROBLEM SET 2 SOLUTIONS FOR PROBLEM SET 2 A: There exist primes p such that p+6k is also prime for k = 1,2 and 3. One such prime is p = 11. Another such prime is p = 41. Prove that there exists exactly one prime p such

More information

What are the place values to the left of the decimal point and their associated powers of ten?

What are the place values to the left of the decimal point and their associated powers of ten? The verbal answers to all of the following questions should be memorized before completion of algebra. Answers that are not memorized will hinder your ability to succeed in geometry and algebra. (Everything

More information

Properties of Real Numbers

Properties of Real Numbers 16 Chapter P Prerequisites P.2 Properties of Real Numbers What you should learn: Identify and use the basic properties of real numbers Develop and use additional properties of real numbers Why you should

More information

3.3 Real Zeros of Polynomials

3.3 Real Zeros of Polynomials 3.3 Real Zeros of Polynomials 69 3.3 Real Zeros of Polynomials In Section 3., we found that we can use synthetic division to determine if a given real number is a zero of a polynomial function. This section

More information

FACTORING SPARSE POLYNOMIALS

FACTORING SPARSE POLYNOMIALS FACTORING SPARSE POLYNOMIALS Theorem 1 (Schinzel): Let r be a positive integer, and fix non-zero integers a 0,..., a r. Let F (x 1,..., x r ) = a r x r + + a 1 x 1 + a 0. Then there exist finite sets S

More information

Collinear Points in Permutations

Collinear Points in Permutations Collinear Points in Permutations Joshua N. Cooper Courant Institute of Mathematics New York University, New York, NY József Solymosi Department of Mathematics University of British Columbia, Vancouver,

More information

with functions, expressions and equations which follow in units 3 and 4.

with functions, expressions and equations which follow in units 3 and 4. Grade 8 Overview View unit yearlong overview here The unit design was created in line with the areas of focus for grade 8 Mathematics as identified by the Common Core State Standards and the PARCC Model

More information

How To Solve Factoring Problems

How To Solve Factoring Problems 05-W4801-AM1.qxd 8/19/08 8:45 PM Page 241 Factoring, Solving Equations, and Problem Solving 5 5.1 Factoring by Using the Distributive Property 5.2 Factoring the Difference of Two Squares 5.3 Factoring

More information

ON GALOIS REALIZATIONS OF THE 2-COVERABLE SYMMETRIC AND ALTERNATING GROUPS

ON GALOIS REALIZATIONS OF THE 2-COVERABLE SYMMETRIC AND ALTERNATING GROUPS ON GALOIS REALIZATIONS OF THE 2-COVERABLE SYMMETRIC AND ALTERNATING GROUPS DANIEL RABAYEV AND JACK SONN Abstract. Let f(x) be a monic polynomial in Z[x] with no rational roots but with roots in Q p for

More information

Answer Key for California State Standards: Algebra I

Answer Key for California State Standards: Algebra I Algebra I: Symbolic reasoning and calculations with symbols are central in algebra. Through the study of algebra, a student develops an understanding of the symbolic language of mathematics and the sciences.

More information

Computing exponents modulo a number: Repeated squaring

Computing exponents modulo a number: Repeated squaring Computing exponents modulo a number: Repeated squaring How do you compute (1415) 13 mod 2537 = 2182 using just a calculator? Or how do you check that 2 340 mod 341 = 1? You can do this using the method

More information

Math Placement Test Study Guide. 2. The test consists entirely of multiple choice questions, each with five choices.

Math Placement Test Study Guide. 2. The test consists entirely of multiple choice questions, each with five choices. Math Placement Test Study Guide General Characteristics of the Test 1. All items are to be completed by all students. The items are roughly ordered from elementary to advanced. The expectation is that

More information

Contents. 6 Continued Fractions and Diophantine Equations. 6.1 Linear Diophantine Equations

Contents. 6 Continued Fractions and Diophantine Equations. 6.1 Linear Diophantine Equations Number Theory (part 6): Continued Fractions and Diophantine Equations (by Evan Dummit, 04, v 00) Contents 6 Continued Fractions and Diophantine Equations 6 Linear Diophantine Equations 6 The Frobenius

More information

Pythagorean Theorem: Proof and Applications

Pythagorean Theorem: Proof and Applications Pythagorean Theorem: Proof and Applications Kamel Al-Khaled & Ameen Alawneh Department of Mathematics and Statistics, Jordan University of Science and Technology IRBID 22110, JORDAN E-mail: kamel@just.edu.jo,

More information

A number field is a field of finite degree over Q. By the Primitive Element Theorem, any number

A number field is a field of finite degree over Q. By the Primitive Element Theorem, any number Number Fields Introduction A number field is a field of finite degree over Q. By the Primitive Element Theorem, any number field K = Q(α) for some α K. The minimal polynomial Let K be a number field and

More information

Indiana State Core Curriculum Standards updated 2009 Algebra I

Indiana State Core Curriculum Standards updated 2009 Algebra I Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and

More information