Discrete Structures - CB0246 Lattices

Size: px
Start display at page:

Download "Discrete Structures - CB0246 Lattices"

Transcription

1 Discrete Structures - CB0246 Lattices Andrés Sicard-Ramírez EAFIT University Semester

2 Lattices from the Partial Orders Theory Definition (Lattice) A lattice (retículo) is a poset where every pair of elements has both a supremum and an infimum. Discrete Structures - CB0246. Lattices 2/31

3 Lattices from the Partial Orders Theory Definition (Lattice) A lattice (retículo) is a poset where every pair of elements has both a supremum and an infimum. Example The following poset is a lattice. e b d c f a Discrete Structures - CB0246. Lattices 3/31

4 Lattices from the Partial Orders Theory Example (counter-example) The following poset is not a lattice because the upper bounds of the pair {b, c} are d, e and f, but this set has not a least upper bound. f d e b c a Discrete Structures - CB0246. Lattices 4/31

5 Lattices from the Partial Orders Theory Example (counter-example) The following poset is not a lattice because for example, the pair {1, 2} has not supremum n Discrete Structures - CB0246. Lattices 5/31

6 Lattices from the Partial Orders Theory Examples (Z +, ) is a lattice where the supremum is the least common multiple and the infimum is the greatest common divisor. Discrete Structures - CB0246. Lattices 6/31

7 Lattices from the Partial Orders Theory Examples (Z +, ) is a lattice where the supremum is the least common multiple and the infimum is the greatest common divisor. Let A be a set. Is (P (A), ) a lattice? Discrete Structures - CB0246. Lattices 7/31

8 Algebraic Structures Definition (Algebraic structure) An algebraic structure on a set A 0 is essentially a collection of n-ary operations on A. 1 Example (Semigroup) A semigroup (S, ) is a set S with an associative binary operation S S S. Example (Monoid) A monoid (M,, ε) is a semigroup (M, ) with an element ε M which is an unit for, i.e. ( x)(x ε = ε x = x). 1 Cohn, P. M. (1981). Universal Algebra, p. 41. Discrete Structures - CB0246. Lattices 8/31

9 Lattices from the Algebraic Structures Theory Definition (Lattice) Let and be two binaries operations, called meet and join, respectively. A lattice (retículo) is an algebraic structure (L,, ), which satisfy the following axioms for all x, y and z in L: 2 x y = y x x y = y x (x y) z = x (y z) (x y) z = x (y z) x (x y) = x x (x y) = x (Commutative laws) (Associative laws) (Absortion laws) 2 Lipschutz, Seymour and Lipson, Marc Lars (2007). Discrete Mathematics. Schaum s Outline Series. 3rd ed. Discrete Structures - CB0246. Lattices 9/31

10 Lattices from the Algebraic Structures Theory Example Let A be a set. (P (A),, ) is a lattice. Discrete Structures - CB0246. Lattices 10/31

11 Lattices from the Algebraic Structures Theory Definition (Dual) The dual of any statement in a lattice (L,, ) is the statement obtained by interchanging and. 3 Lipschutz, Seymour and Lipson, Marc Lars (2007). Discrete Mathematics. Schaum s Outline Series. 3rd ed. Discrete Structures - CB0246. Lattices 11/31

12 Lattices from the Algebraic Structures Theory Definition (Dual) The dual of any statement in a lattice (L,, ) is the statement obtained by interchanging and. Example The dual of x (y x) = x x is x (y x) = x x. 3 Lipschutz, Seymour and Lipson, Marc Lars (2007). Discrete Mathematics. Schaum s Outline Series. 3rd ed. Discrete Structures - CB0246. Lattices 12/31

13 Lattices from the Algebraic Structures Theory Definition (Dual) The dual of any statement in a lattice (L,, ) is the statement obtained by interchanging and. Example The dual of x (y x) = x x is x (y x) = x x. Theorem (Principle of duality) The dual of any theorem in a lattice is also an theorem. 3 3 Lipschutz, Seymour and Lipson, Marc Lars (2007). Discrete Mathematics. Schaum s Outline Series. 3rd ed. Discrete Structures - CB0246. Lattices 13/31

14 Lattices from the Algebraic Structures Theory Definition (Dual) The dual of any statement in a lattice (L,, ) is the statement obtained by interchanging and. Example The dual of x (y x) = x x is x (y x) = x x. Theorem (Principle of duality) The dual of any theorem in a lattice is also an theorem. 3 Proof. The dual of every axiom in a lattice is also an axiom. Hence, the dual theorem can be proved by using the dual of each step of the proof of the original theorem. 3 Lipschutz, Seymour and Lipson, Marc Lars (2007). Discrete Mathematics. Schaum s Outline Series. 3rd ed. Discrete Structures - CB0246. Lattices 14/31

15 Lattices from the Algebraic Structures Theory Example Let (L,, ) be a lattice. Prove the idempotent laws x x = x, (1) x x = x. (2) Discrete Structures - CB0246. Lattices 15/31

16 Lattices from the Algebraic Structures Theory Example Let (L,, ) be a lattice. Prove the idempotent laws x x = x, (1) x x = x. (2) Proof of (1). x x = x (x (x y)) (second absortion law) = x (first absortion law) Discrete Structures - CB0246. Lattices 16/31

17 Lattices from the Algebraic Structures Theory Example Let (L,, ) be a lattice. Prove the idempotent laws x x = x, (1) x x = x. (2) Proof of (1). x x = x (x (x y)) (second absortion law) = x (first absortion law) Proof of (2). By principle of duality on (1). Discrete Structures - CB0246. Lattices 17/31

18 Lattices from the Algebraic Structures Theory Exercise (Rosen (2004), Problem 40, p. 500) Prove that if x and y are elements of a lattice (L,, ) then x y = y, if and only if, x y = x. Discrete Structures - CB0246. Lattices 18/31

19 Lattices from the Algebraic Structures Theory Exercise (Rosen (2004), Problem 40, p. 500) Prove that if x and y are elements of a lattice (L,, ) then x y = y, if and only if, x y = x. Proof. Let s suppose x y = y. Then x = x (x y) (first absortion law) = x y (hypothesis) Discrete Structures - CB0246. Lattices 19/31

20 Lattices from the Algebraic Structures Theory Exercise (cont.) Proof. Let s suppose x y = x. Then y = y (y x) (second absortion law) = y (x y) (commutative law) = y x (hypothesis) = x y (commutative law) Discrete Structures - CB0246. Lattices 20/31

21 Equivalence of the Definitions Theorem Let (L,, ) be a lattice. Then (L, ) is a partial order, where the relation is defined by 4 x y def = x y = x. 4 Lipschutz, Seymour and Lipson, Marc Lars (2007). Discrete Mathematics. Schaum s Outline Series. 3rd ed. Discrete Structures - CB0246. Lattices 21/31

22 Equivalence of the Definitions Theorem Let (L,, ) be a lattice. Then (L, ) is a partial order, where the relation is defined by 4 Proof. 1. The relation is reflexive x y def = x y = x. x x = x (idempotency), for all x L. Therefore x x, for all x L. 4 Lipschutz, Seymour and Lipson, Marc Lars (2007). Discrete Mathematics. Schaum s Outline Series. 3rd ed. Discrete Structures - CB0246. Lattices 22/31

23 Equivalence of the Definitions Proof (cont.) 2. The relation is antisymmetric Suppose x y and y x, then x y = x and y x = y. Therefore x = x y (hypothesis) = y x (commutative law) = y (hypothesis) That is, is antisymmetric. Discrete Structures - CB0246. Lattices 23/31

24 Equivalence of the Definitions Proof (cont.) 3. The relation is transitive Suppose x y and y z, then x y = x and y z = y. Therefore x z = (x y) z (hypothesis) = x (y z) (associativity law) = x y (hypothesis) = x (hypothesis) That is, x z. Discrete Structures - CB0246. Lattices 24/31

25 Equivalence of the Definitions Remark Let (L,, ) be a lattice and let be (L, ) the order partial induced by (L,, ). It is possible prove that (L, ) is a lattice. Discrete Structures - CB0246. Lattices 25/31

26 Equivalence of the Definitions Theorem (Rosen (2004), Problem 39, p. 500) Let (L, ) be a lattice. Then (L,, ) is a lattice, where x y def = inf(x, y), x y def = sup(x, y), Discrete Structures - CB0246. Lattices 26/31

27 Equivalence of the Definitions Theorem (Rosen (2004), Problem 39, p. 500) Let (L, ) be a lattice. Then (L,, ) is a lattice, where Proof. x y def = inf(x, y), x y def = sup(x, y), 1. Commutative laws for and (Rosen s solution). Because inf(x, y) = inf(y, x) and sup(x, y) = sup(y, x), it follows that x y = y x and x y = y x. Discrete Structures - CB0246. Lattices 27/31

28 Equivalence of the Definitions Proof (cont.) 2. Associative laws for and (Rosen s solution). Using the definition, (x y) z is a lower bound of x, y and z that is greater than every other lower bound. Because x, y and z play interchangeable roles, x (y z) is the same element. Discrete Structures - CB0246. Lattices 28/31

29 Equivalence of the Definitions Proof (cont.) 2. Associative laws for and (Rosen s solution). Using the definition, (x y) z is a lower bound of x, y and z that is greater than every other lower bound. Because x, y and z play interchangeable roles, x (y z) is the same element. Similarly, (x y) z is an upper bound of x, y and z that is less than every other upper bound. Because x, y and z play interchangeable roles, x (y z) is the same element. Discrete Structures - CB0246. Lattices 29/31

30 Equivalence of the Definitions Proof (cont.) 3. Absortion laws for and (Rosen s solution). To show that x (x y) = x it is sufficient to show that x is the greatest lower bound of x, and x y. Note that x is a lower bound of x, and because x y is by definition greater than x, x is a lower bound for it as well. Therefore, x is a lower bound. But any lower bound of x has to be less than x, so x is the greatest lower bound. The second statement is the dual of the first; we omit its proof. Discrete Structures - CB0246. Lattices 30/31

31 References Cohn, P. M. (1981). Universal Algebra. Revised edition. D. Reidel Publishing Company. Lipschutz, Seymour and Lipson, Marc Lars (2007). Discrete Mathematics. 3rd ed. Schaum s Outline Series. McGraw-Hill. Rosen, Kenneth H. (2004). Matemática Discreta y sus Aplicaciones. 5th ed. McGraw-Hill. Discrete Structures - CB0246. Lattices 31/31

THE PRODUCT SPAN OF A FINITE SUBSET OF A COMPLETELY BOUNDED ARTEX SPACE OVER A BI-MONOID

THE PRODUCT SPAN OF A FINITE SUBSET OF A COMPLETELY BOUNDED ARTEX SPACE OVER A BI-MONOID THE PRODUCT SPAN OF A FINITE SUBSET OF A COMPLETELY BOUNDED ARTEX SPACE OVER A BI-MONOID ABSTRACT The product of subsets of an Artex space over a bi-monoid is defined. Product Combination of elements of

More information

So let us begin our quest to find the holy grail of real analysis.

So let us begin our quest to find the holy grail of real analysis. 1 Section 5.2 The Complete Ordered Field: Purpose of Section We present an axiomatic description of the real numbers as a complete ordered field. The axioms which describe the arithmetic of the real numbers

More information

Some Special Artex Spaces Over Bi-monoids

Some Special Artex Spaces Over Bi-monoids Some Special Artex Spaces Over Bi-monoids K.Muthukumaran (corresponding auther) Assistant Professor PG and Research Department Of Mathematics, Saraswathi Narayanan College, Perungudi Madurai-625022,Tamil

More information

Khair Eddin Sabri and Ridha Khedri

Khair Eddin Sabri and Ridha Khedri Khair Eddin Sabri and Ridha Foundations & Practice of Security Symposium (Oct. 2012) CRYPTO Presentation Outline 1 Introduction 2 3 4 Order Semiring 5 keystructure 6 7 8 Technique 9 Verification of secrecy

More information

Solutions to In-Class Problems Week 4, Mon.

Solutions to In-Class Problems Week 4, Mon. Massachusetts Institute of Technology 6.042J/18.062J, Fall 05: Mathematics for Computer Science September 26 Prof. Albert R. Meyer and Prof. Ronitt Rubinfeld revised September 26, 2005, 1050 minutes Solutions

More information

Full and Complete Binary Trees

Full and Complete Binary Trees Full and Complete Binary Trees Binary Tree Theorems 1 Here are two important types of binary trees. Note that the definitions, while similar, are logically independent. Definition: a binary tree T is full

More information

Page 331, 38.4 Suppose a is a positive integer and p is a prime. Prove that p a if and only if the prime factorization of a contains p.

Page 331, 38.4 Suppose a is a positive integer and p is a prime. Prove that p a if and only if the prime factorization of a contains p. Page 331, 38.2 Assignment #11 Solutions Factor the following positive integers into primes. a. 25 = 5 2. b. 4200 = 2 3 3 5 2 7. c. 10 10 = 2 10 5 10. d. 19 = 19. e. 1 = 1. Page 331, 38.4 Suppose a is a

More information

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan 3 Binary Operations We are used to addition and multiplication of real numbers. These operations combine two real numbers

More information

Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products

Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products Chapter 3 Cartesian Products and Relations The material in this chapter is the first real encounter with abstraction. Relations are very general thing they are a special type of subset. After introducing

More information

4.1. Title: data analysis (systems analysis). 4.2. Annotation of educational discipline: educational discipline includes in itself the mastery of the

4.1. Title: data analysis (systems analysis). 4.2. Annotation of educational discipline: educational discipline includes in itself the mastery of the 4.1. Title: data analysis (systems analysis). 4.4. Term of study: 7th semester. 4.1. Title: data analysis (applied mathematics). 4.4. Term of study: 6th semester. 4.1. Title: data analysis (computer science).

More information

Discrete Mathematics. Hans Cuypers. October 11, 2007

Discrete Mathematics. Hans Cuypers. October 11, 2007 Hans Cuypers October 11, 2007 1 Contents 1. Relations 4 1.1. Binary relations................................ 4 1.2. Equivalence relations............................. 6 1.3. Relations and Directed Graphs.......................

More information

A domain of spacetime intervals in general relativity

A domain of spacetime intervals in general relativity A domain of spacetime intervals in general relativity Keye Martin Department of Mathematics Tulane University New Orleans, LA 70118 United States of America martin@math.tulane.edu Prakash Panangaden School

More information

. 0 1 10 2 100 11 1000 3 20 1 2 3 4 5 6 7 8 9

. 0 1 10 2 100 11 1000 3 20 1 2 3 4 5 6 7 8 9 Introduction The purpose of this note is to find and study a method for determining and counting all the positive integer divisors of a positive integer Let N be a given positive integer We say d is a

More information

MA651 Topology. Lecture 6. Separation Axioms.

MA651 Topology. Lecture 6. Separation Axioms. MA651 Topology. Lecture 6. Separation Axioms. This text is based on the following books: Fundamental concepts of topology by Peter O Neil Elements of Mathematics: General Topology by Nicolas Bourbaki Counterexamples

More information

Invertible elements in associates and semigroups. 1

Invertible elements in associates and semigroups. 1 Quasigroups and Related Systems 5 (1998), 53 68 Invertible elements in associates and semigroups. 1 Fedir Sokhatsky Abstract Some invertibility criteria of an element in associates, in particular in n-ary

More information

God created the integers and the rest is the work of man. (Leopold Kronecker, in an after-dinner speech at a conference, Berlin, 1886)

God created the integers and the rest is the work of man. (Leopold Kronecker, in an after-dinner speech at a conference, Berlin, 1886) Chapter 2 Numbers God created the integers and the rest is the work of man. (Leopold Kronecker, in an after-dinner speech at a conference, Berlin, 1886) God created the integers and the rest is the work

More information

Class notes Program Analysis course given by Prof. Mooly Sagiv Computer Science Department, Tel Aviv University second lecture 8/3/2007

Class notes Program Analysis course given by Prof. Mooly Sagiv Computer Science Department, Tel Aviv University second lecture 8/3/2007 Constant Propagation Class notes Program Analysis course given by Prof. Mooly Sagiv Computer Science Department, Tel Aviv University second lecture 8/3/2007 Osnat Minz and Mati Shomrat Introduction This

More information

Finite Projective demorgan Algebras. honoring Jorge Martínez

Finite Projective demorgan Algebras. honoring Jorge Martínez Finite Projective demorgan Algebras Simone Bova Vanderbilt University (Nashville TN, USA) joint work with Leonardo Cabrer March 11-13, 2011 Vanderbilt University (Nashville TN, USA) honoring Jorge Martínez

More information

If n is odd, then 3n + 7 is even.

If n is odd, then 3n + 7 is even. Proof: Proof: We suppose... that 3n + 7 is even. that 3n + 7 is even. Since n is odd, there exists an integer k so that n = 2k + 1. that 3n + 7 is even. Since n is odd, there exists an integer k so that

More information

Boolean Algebra Part 1

Boolean Algebra Part 1 Boolean Algebra Part 1 Page 1 Boolean Algebra Objectives Understand Basic Boolean Algebra Relate Boolean Algebra to Logic Networks Prove Laws using Truth Tables Understand and Use First Basic Theorems

More information

DIVISORS IN A DEDEKIND DOMAIN. Javier Cilleruelo and Jorge Jiménez-Urroz. 1 Introduction

DIVISORS IN A DEDEKIND DOMAIN. Javier Cilleruelo and Jorge Jiménez-Urroz. 1 Introduction DIVISORS IN A DEDEKIND DOMAIN Javier Cilleruelo and Jorge Jiménez-Urroz 1 Introduction Let A be a Dedekind domain in which we can define a notion of distance. We are interested in the number of divisors

More information

Properties of Real Numbers

Properties of Real Numbers 16 Chapter P Prerequisites P.2 Properties of Real Numbers What you should learn: Identify and use the basic properties of real numbers Develop and use additional properties of real numbers Why you should

More information

NIM with Cash. Abstract. loses. This game has been well studied. For example, it is known that for NIM(1, 2, 3; n)

NIM with Cash. Abstract. loses. This game has been well studied. For example, it is known that for NIM(1, 2, 3; n) NIM with Cash William Gasarch Univ. of MD at College Park John Purtilo Univ. of MD at College Park Abstract NIM(a 1,..., a k ; n) is a -player game where initially there are n stones on the board and the

More information

Math 223 Abstract Algebra Lecture Notes

Math 223 Abstract Algebra Lecture Notes Math 223 Abstract Algebra Lecture Notes Steven Tschantz Spring 2001 (Apr. 23 version) Preamble These notes are intended to supplement the lectures and make up for the lack of a textbook for the course

More information

Mathematical Methods of Engineering Analysis

Mathematical Methods of Engineering Analysis Mathematical Methods of Engineering Analysis Erhan Çinlar Robert J. Vanderbei February 2, 2000 Contents Sets and Functions 1 1 Sets................................... 1 Subsets.............................

More information

On The Existence Of Flips

On The Existence Of Flips On The Existence Of Flips Hacon and McKernan s paper, arxiv alg-geom/0507597 Brian Lehmann, February 2007 1 Introduction References: Hacon and McKernan s paper, as above. Kollár and Mori, Birational Geometry

More information

Mathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson

Mathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson Mathematics for Computer Science/Software Engineering Notes for the course MSM1F3 Dr. R. A. Wilson October 1996 Chapter 1 Logic Lecture no. 1. We introduce the concept of a proposition, which is a statement

More information

Introduction to Topology

Introduction to Topology Introduction to Topology Tomoo Matsumura November 30, 2010 Contents 1 Topological spaces 3 1.1 Basis of a Topology......................................... 3 1.2 Comparing Topologies.......................................

More information

FIRST YEAR CALCULUS. Chapter 7 CONTINUITY. It is a parabola, and we can draw this parabola without lifting our pencil from the paper.

FIRST YEAR CALCULUS. Chapter 7 CONTINUITY. It is a parabola, and we can draw this parabola without lifting our pencil from the paper. FIRST YEAR CALCULUS WWLCHENW L c WWWL W L Chen, 1982, 2008. 2006. This chapter originates from material used by the author at Imperial College, University of London, between 1981 and 1990. It It is is

More information

No: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics

No: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics No: 10 04 Bilkent University Monotonic Extension Farhad Husseinov Discussion Papers Department of Economics The Discussion Papers of the Department of Economics are intended to make the initial results

More information

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics Undergraduate Notes in Mathematics Arkansas Tech University Department of Mathematics An Introductory Single Variable Real Analysis: A Learning Approach through Problem Solving Marcel B. Finan c All Rights

More information

THIN GROUPS OF FRACTIONS

THIN GROUPS OF FRACTIONS Contemporary Mathematics THIN GROUPS OF FRACTIONS Patrick DEHORNOY Abstract. A number of properties of spherical Artin Tits groups extend to Garside groups, defined as the groups of fractions of monoids

More information

Notes on Determinant

Notes on Determinant ENGG2012B Advanced Engineering Mathematics Notes on Determinant Lecturer: Kenneth Shum Lecture 9-18/02/2013 The determinant of a system of linear equations determines whether the solution is unique, without

More information

Bi-approximation Semantics for Substructural Logic at Work

Bi-approximation Semantics for Substructural Logic at Work Bi-approximation Semantics for Substructural Logic at Work Tomoyuki Suzuki Department of Computer Science, University of Leicester Leicester, LE1 7RH, United Kingdom tomoyuki.suzuki@mcs.le.ac.uk Abstract

More information

1 Norms and Vector Spaces

1 Norms and Vector Spaces 008.10.07.01 1 Norms and Vector Spaces Suppose we have a complex vector space V. A norm is a function f : V R which satisfies (i) f(x) 0 for all x V (ii) f(x + y) f(x) + f(y) for all x,y V (iii) f(λx)

More information

COMMUTATIVITY DEGREES OF WREATH PRODUCTS OF FINITE ABELIAN GROUPS

COMMUTATIVITY DEGREES OF WREATH PRODUCTS OF FINITE ABELIAN GROUPS COMMUTATIVITY DEGREES OF WREATH PRODUCTS OF FINITE ABELIAN GROUPS IGOR V. EROVENKO AND B. SURY ABSTRACT. We compute commutativity degrees of wreath products A B of finite abelian groups A and B. When B

More information

Incenter Circumcenter

Incenter Circumcenter TRIANGLE: Centers: Incenter Incenter is the center of the inscribed circle (incircle) of the triangle, it is the point of intersection of the angle bisectors of the triangle. The radius of incircle is

More information

Indiana State Core Curriculum Standards updated 2009 Algebra I

Indiana State Core Curriculum Standards updated 2009 Algebra I Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and

More information

9. Quotient Groups Given a group G and a subgroup H, under what circumstances can we find a homomorphism φ: G G ', such that H is the kernel of φ?

9. Quotient Groups Given a group G and a subgroup H, under what circumstances can we find a homomorphism φ: G G ', such that H is the kernel of φ? 9. Quotient Groups Given a group G and a subgroup H, under what circumstances can we find a homomorphism φ: G G ', such that H is the kernel of φ? Clearly a necessary condition is that H is normal in G.

More information

2.5 ZEROS OF POLYNOMIAL FUNCTIONS. Copyright Cengage Learning. All rights reserved.

2.5 ZEROS OF POLYNOMIAL FUNCTIONS. Copyright Cengage Learning. All rights reserved. 2.5 ZEROS OF POLYNOMIAL FUNCTIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Use the Fundamental Theorem of Algebra to determine the number of zeros of polynomial functions.

More information

ON COMPLETELY CONTINUOUS INTEGRATION OPERATORS OF A VECTOR MEASURE. 1. Introduction

ON COMPLETELY CONTINUOUS INTEGRATION OPERATORS OF A VECTOR MEASURE. 1. Introduction ON COMPLETELY CONTINUOUS INTEGRATION OPERATORS OF A VECTOR MEASURE J.M. CALABUIG, J. RODRÍGUEZ, AND E.A. SÁNCHEZ-PÉREZ Abstract. Let m be a vector measure taking values in a Banach space X. We prove that

More information

4. CLASSES OF RINGS 4.1. Classes of Rings class operator A-closed Example 1: product Example 2:

4. CLASSES OF RINGS 4.1. Classes of Rings class operator A-closed Example 1: product Example 2: 4. CLASSES OF RINGS 4.1. Classes of Rings Normally we associate, with any property, a set of objects that satisfy that property. But problems can arise when we allow sets to be elements of larger sets

More information

81. Arbeitstagung Allgemeine Algebra (AAA 81) 81 st Workshop on General Algebra. Conference Office / Social Programme

81. Arbeitstagung Allgemeine Algebra (AAA 81) 81 st Workshop on General Algebra. Conference Office / Social Programme 81. Arbeitstagung Allgemeine Algebra (AAA 81) 81 st Workshop on General Algebra University of Salzburg, February 3 6, 2011 Conference Office / Social Programme Thursday, February 3, 2011 17:00 21:00 Conference

More information

Parametric Domain-theoretic models of Linear Abadi & Plotkin Logic

Parametric Domain-theoretic models of Linear Abadi & Plotkin Logic Parametric Domain-theoretic models of Linear Abadi & Plotkin Logic Lars Birkedal Rasmus Ejlers Møgelberg Rasmus Lerchedahl Petersen IT University Technical Report Series TR-00-7 ISSN 600 600 February 00

More information

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. We begin by defining the ring of polynomials with coefficients in a ring R. After some preliminary results, we specialize

More information

Math 319 Problem Set #3 Solution 21 February 2002

Math 319 Problem Set #3 Solution 21 February 2002 Math 319 Problem Set #3 Solution 21 February 2002 1. ( 2.1, problem 15) Find integers a 1, a 2, a 3, a 4, a 5 such that every integer x satisfies at least one of the congruences x a 1 (mod 2), x a 2 (mod

More information

The Prime Numbers. Definition. A prime number is a positive integer with exactly two positive divisors.

The Prime Numbers. Definition. A prime number is a positive integer with exactly two positive divisors. The Prime Numbers Before starting our study of primes, we record the following important lemma. Recall that integers a, b are said to be relatively prime if gcd(a, b) = 1. Lemma (Euclid s Lemma). If gcd(a,

More information

An Efficient and Secure Key Management Scheme for Hierarchical Access Control Based on ECC

An Efficient and Secure Key Management Scheme for Hierarchical Access Control Based on ECC An Efficient and Secure Key Management Scheme for Hierarchical Access Control Based on ECC Laxminath Tripathy 1 Nayan Ranjan Paul 2 1Department of Information technology, Eastern Academy of Science and

More information

Elementary Number Theory and Methods of Proof. CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.

Elementary Number Theory and Methods of Proof. CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook. Elementary Number Theory and Methods of Proof CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.edu/~cse215 1 Number theory Properties: 2 Properties of integers (whole

More information

Interpersonal Comparisons of Utility: An Algebraic Characterization of Projective Preorders and Some Welfare Consequences

Interpersonal Comparisons of Utility: An Algebraic Characterization of Projective Preorders and Some Welfare Consequences DISCUSSION PAPER SERIES IZA DP No. 2594 Interpersonal Comparisons of Utility: An Algebraic Characterization of Projective Preorders and Some Welfare Consequences Juan Carlos Candeal Esteban Induráin José

More information

INTRODUCTORY SET THEORY

INTRODUCTORY SET THEORY M.Sc. program in mathematics INTRODUCTORY SET THEORY Katalin Károlyi Department of Applied Analysis, Eötvös Loránd University H-1088 Budapest, Múzeum krt. 6-8. CONTENTS 1. SETS Set, equal sets, subset,

More information

Catalan Numbers. Thomas A. Dowling, Department of Mathematics, Ohio State Uni- versity.

Catalan Numbers. Thomas A. Dowling, Department of Mathematics, Ohio State Uni- versity. 7 Catalan Numbers Thomas A. Dowling, Department of Mathematics, Ohio State Uni- Author: versity. Prerequisites: The prerequisites for this chapter are recursive definitions, basic counting principles,

More information

Four Unsolved Problems in Congruence Permutable Varieties

Four Unsolved Problems in Congruence Permutable Varieties Four Unsolved Problems in Congruence Permutable Varieties Ross Willard University of Waterloo, Canada Nashville, June 2007 Ross Willard (Waterloo) Four Unsolved Problems Nashville, June 2007 1 / 27 Congruence

More information

Degrees of Truth: the formal logic of classical and quantum probabilities as well as fuzzy sets.

Degrees of Truth: the formal logic of classical and quantum probabilities as well as fuzzy sets. Degrees of Truth: the formal logic of classical and quantum probabilities as well as fuzzy sets. Logic is the study of reasoning. A language of propositions is fundamental to this study as well as true

More information

Some Polynomial Theorems. John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.

Some Polynomial Theorems. John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom. Some Polynomial Theorems by John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.com This paper contains a collection of 31 theorems, lemmas,

More information

8 Divisibility and prime numbers

8 Divisibility and prime numbers 8 Divisibility and prime numbers 8.1 Divisibility In this short section we extend the concept of a multiple from the natural numbers to the integers. We also summarize several other terms that express

More information

ON SOME CLASSES OF REGULAR ORDER SEMIGROUPS

ON SOME CLASSES OF REGULAR ORDER SEMIGROUPS Commun. Korean Math. Soc. 23 (2008), No. 1, pp. 29 40 ON SOME CLASSES OF REGULAR ORDER SEMIGROUPS Zhenlin Gao and Guijie Zhang Reprinted from the Communications of the Korean Mathematical Society Vol.

More information

Notes from February 11

Notes from February 11 Notes from February 11 Math 130 Course web site: www.courses.fas.harvard.edu/5811 Two lemmas Before proving the theorem which was stated at the end of class on February 8, we begin with two lemmas. The

More information

COMMUTATIVE RINGS. Definition: A domain is a commutative ring R that satisfies the cancellation law for multiplication:

COMMUTATIVE RINGS. Definition: A domain is a commutative ring R that satisfies the cancellation law for multiplication: COMMUTATIVE RINGS Definition: A commutative ring R is a set with two operations, addition and multiplication, such that: (i) R is an abelian group under addition; (ii) ab = ba for all a, b R (commutative

More information

Midterm Practice Problems

Midterm Practice Problems 6.042/8.062J Mathematics for Computer Science October 2, 200 Tom Leighton, Marten van Dijk, and Brooke Cowan Midterm Practice Problems Problem. [0 points] In problem set you showed that the nand operator

More information

Cycles in a Graph Whose Lengths Differ by One or Two

Cycles in a Graph Whose Lengths Differ by One or Two Cycles in a Graph Whose Lengths Differ by One or Two J. A. Bondy 1 and A. Vince 2 1 LABORATOIRE DE MATHÉMATIQUES DISCRÉTES UNIVERSITÉ CLAUDE-BERNARD LYON 1 69622 VILLEURBANNE, FRANCE 2 DEPARTMENT OF MATHEMATICS

More information

COMMUTATIVITY DEGREES OF WREATH PRODUCTS OF FINITE ABELIAN GROUPS

COMMUTATIVITY DEGREES OF WREATH PRODUCTS OF FINITE ABELIAN GROUPS Bull Austral Math Soc 77 (2008), 31 36 doi: 101017/S0004972708000038 COMMUTATIVITY DEGREES OF WREATH PRODUCTS OF FINITE ABELIAN GROUPS IGOR V EROVENKO and B SURY (Received 12 April 2007) Abstract We compute

More information

Lecture 17 : Equivalence and Order Relations DRAFT

Lecture 17 : Equivalence and Order Relations DRAFT CS/Math 240: Introduction to Discrete Mathematics 3/31/2011 Lecture 17 : Equivalence and Order Relations Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT Last lecture we introduced the notion

More information

Mathematical finance and linear programming (optimization)

Mathematical finance and linear programming (optimization) Mathematical finance and linear programming (optimization) Geir Dahl September 15, 2009 1 Introduction The purpose of this short note is to explain how linear programming (LP) (=linear optimization) may

More information

Switching Algebra and Logic Gates

Switching Algebra and Logic Gates Chapter 2 Switching Algebra and Logic Gates The word algebra in the title of this chapter should alert you that more mathematics is coming. No doubt, some of you are itching to get on with digital design

More information

Sample Induction Proofs

Sample Induction Proofs Math 3 Worksheet: Induction Proofs III, Sample Proofs A.J. Hildebrand Sample Induction Proofs Below are model solutions to some of the practice problems on the induction worksheets. The solutions given

More information

x a x 2 (1 + x 2 ) n.

x a x 2 (1 + x 2 ) n. Limits and continuity Suppose that we have a function f : R R. Let a R. We say that f(x) tends to the limit l as x tends to a; lim f(x) = l ; x a if, given any real number ɛ > 0, there exists a real number

More information

Introduction to Finite Fields (cont.)

Introduction to Finite Fields (cont.) Chapter 6 Introduction to Finite Fields (cont.) 6.1 Recall Theorem. Z m is a field m is a prime number. Theorem (Subfield Isomorphic to Z p ). Every finite field has the order of a power of a prime number

More information

AGARWAL COLLEGE & WEB SERVICES TRUST. In Collaboration with KARANATAKA STATE OPEN UNIVERSITY

AGARWAL COLLEGE & WEB SERVICES TRUST. In Collaboration with KARANATAKA STATE OPEN UNIVERSITY AGARWAL COLLEGE & WEB SERVICES TRUST In Collaboration with KARANATAKA STATE OPEN UNIVERSITY Syllabus of Post Graduate Diploma in Computer Application (PGDCA) Post Graduate Diploma in Computer Applications:

More information

The Galois Connection between Syntax and Semantics

The Galois Connection between Syntax and Semantics The Galois Connection between Syntax and Semantics Peter Smith University of Cambridge Note: The material in Chs. 2 and 3 now appears, in revised form, as (stand-alone) chapters in my Notes on Category

More information

INCIDENCE-BETWEENNESS GEOMETRY

INCIDENCE-BETWEENNESS GEOMETRY INCIDENCE-BETWEENNESS GEOMETRY MATH 410, CSUSM. SPRING 2008. PROFESSOR AITKEN This document covers the geometry that can be developed with just the axioms related to incidence and betweenness. The full

More information

Just the Factors, Ma am

Just the Factors, Ma am 1 Introduction Just the Factors, Ma am The purpose of this note is to find and study a method for determining and counting all the positive integer divisors of a positive integer Let N be a given positive

More information

Document Management System Security

Document Management System Security Document Management System Security Jonas Birmé birme@cs.umu.se January 24, 2005 20 credits Umeå University Department of Computing Science SE-901 87 UMEÅ SWEDEN Abstract A common demand today is that

More information

Dedekind s forgotten axiom and why we should teach it (and why we shouldn t teach mathematical induction in our calculus classes)

Dedekind s forgotten axiom and why we should teach it (and why we shouldn t teach mathematical induction in our calculus classes) Dedekind s forgotten axiom and why we should teach it (and why we shouldn t teach mathematical induction in our calculus classes) by Jim Propp (UMass Lowell) March 14, 2010 1 / 29 Completeness Three common

More information

All trees contain a large induced subgraph having all degrees 1 (mod k)

All trees contain a large induced subgraph having all degrees 1 (mod k) All trees contain a large induced subgraph having all degrees 1 (mod k) David M. Berman, A.J. Radcliffe, A.D. Scott, Hong Wang, and Larry Wargo *Department of Mathematics University of New Orleans New

More information

Rough Semi Prime Ideals and Rough Bi-Ideals in Rings

Rough Semi Prime Ideals and Rough Bi-Ideals in Rings Int Jr. of Mathematical Sciences & Applications Vol. 4, No.1, January-June 2014 Copyright Mind Reader Publications ISSN No: 2230-9888 www.journalshub.com Rough Semi Prime Ideals and Rough Bi-Ideals in

More information

Every tree contains a large induced subgraph with all degrees odd

Every tree contains a large induced subgraph with all degrees odd Every tree contains a large induced subgraph with all degrees odd A.J. Radcliffe Carnegie Mellon University, Pittsburgh, PA A.D. Scott Department of Pure Mathematics and Mathematical Statistics University

More information

Non-deterministic Semantics and the Undecidability of Boolean BI

Non-deterministic Semantics and the Undecidability of Boolean BI 1 Non-deterministic Semantics and the Undecidability of Boolean BI DOMINIQUE LARCHEY-WENDLING, LORIA CNRS, Nancy, France DIDIER GALMICHE, LORIA Université Henri Poincaré, Nancy, France We solve the open

More information

Note on some explicit formulae for twin prime counting function

Note on some explicit formulae for twin prime counting function Notes on Number Theory and Discrete Mathematics Vol. 9, 03, No., 43 48 Note on some explicit formulae for twin prime counting function Mladen Vassilev-Missana 5 V. Hugo Str., 4 Sofia, Bulgaria e-mail:

More information

SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH

SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH 31 Kragujevac J. Math. 25 (2003) 31 49. SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH Kinkar Ch. Das Department of Mathematics, Indian Institute of Technology, Kharagpur 721302, W.B.,

More information

IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL. 1. Introduction

IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL. 1. Introduction IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL R. DRNOVŠEK, T. KOŠIR Dedicated to Prof. Heydar Radjavi on the occasion of his seventieth birthday. Abstract. Let S be an irreducible

More information

o-minimality and Uniformity in n 1 Graphs

o-minimality and Uniformity in n 1 Graphs o-minimality and Uniformity in n 1 Graphs Reid Dale July 10, 2013 Contents 1 Introduction 2 2 Languages and Structures 2 3 Definability and Tame Geometry 4 4 Applications to n 1 Graphs 6 5 Further Directions

More information

Examples oflattices in Computer Security Models

Examples oflattices in Computer Security Models ~-~p~pr~o~v~ed~fo-r-r""'el""e-a-s e...,...by...,...n"""s,..."a-o-n... 1 2..._... 0..,.1...,-2... 0,...,1...,.1"""",T=r-a-n-sp-a-r-e-n-cy-C="""a-se""""#"""""63""'8~5:a Examples oflattices in Computer Security

More information

DIFFERENTIABILITY OF COMPLEX FUNCTIONS. Contents

DIFFERENTIABILITY OF COMPLEX FUNCTIONS. Contents DIFFERENTIABILITY OF COMPLEX FUNCTIONS Contents 1. Limit definition of a derivative 1 2. Holomorphic functions, the Cauchy-Riemann equations 3 3. Differentiability of real functions 5 4. A sufficient condition

More information

MATH 22. THE FUNDAMENTAL THEOREM of ARITHMETIC. Lecture R: 10/30/2003

MATH 22. THE FUNDAMENTAL THEOREM of ARITHMETIC. Lecture R: 10/30/2003 MATH 22 Lecture R: 10/30/2003 THE FUNDAMENTAL THEOREM of ARITHMETIC You must remember this, A kiss is still a kiss, A sigh is just a sigh; The fundamental things apply, As time goes by. Herman Hupfeld

More information

We can express this in decimal notation (in contrast to the underline notation we have been using) as follows: 9081 + 900b + 90c = 9001 + 100c + 10b

We can express this in decimal notation (in contrast to the underline notation we have been using) as follows: 9081 + 900b + 90c = 9001 + 100c + 10b In this session, we ll learn how to solve problems related to place value. This is one of the fundamental concepts in arithmetic, something every elementary and middle school mathematics teacher should

More information

Two-Sided Matching Theory

Two-Sided Matching Theory Two-Sided Matching Theory M. Utku Ünver Boston College Introduction to the Theory of Two-Sided Matching To see which results are robust, we will look at some increasingly general models. Even before we

More information

def: An axiom is a statement that is assumed to be true, or in the case of a mathematical system, is used to specify the system.

def: An axiom is a statement that is assumed to be true, or in the case of a mathematical system, is used to specify the system. Section 1.5 Methods of Proof 1.5.1 1.5 METHODS OF PROOF Some forms of argument ( valid ) never lead from correct statements to an incorrect. Some other forms of argument ( fallacies ) can lead from true

More information

Integer roots of quadratic and cubic polynomials with integer coefficients

Integer roots of quadratic and cubic polynomials with integer coefficients Integer roots of quadratic and cubic polynomials with integer coefficients Konstantine Zelator Mathematics, Computer Science and Statistics 212 Ben Franklin Hall Bloomsburg University 400 East Second Street

More information

An inequality for the group chromatic number of a graph

An inequality for the group chromatic number of a graph Discrete Mathematics 307 (2007) 3076 3080 www.elsevier.com/locate/disc Note An inequality for the group chromatic number of a graph Hong-Jian Lai a, Xiangwen Li b,,1, Gexin Yu c a Department of Mathematics,

More information

University of Ostrava. Fuzzy Transforms

University of Ostrava. Fuzzy Transforms University of Ostrava Institute for Research and Applications of Fuzzy Modeling Fuzzy Transforms Irina Perfilieva Research report No. 58 2004 Submitted/to appear: Fuzzy Sets and Systems Supported by: Grant

More information

DEGREES OF ORDERS ON TORSION-FREE ABELIAN GROUPS

DEGREES OF ORDERS ON TORSION-FREE ABELIAN GROUPS DEGREES OF ORDERS ON TORSION-FREE ABELIAN GROUPS ASHER M. KACH, KAREN LANGE, AND REED SOLOMON Abstract. We construct two computable presentations of computable torsion-free abelian groups, one of isomorphism

More information

Synthetic Projective Treatment of Cevian Nests and Graves Triangles

Synthetic Projective Treatment of Cevian Nests and Graves Triangles Synthetic Projective Treatment of Cevian Nests and Graves Triangles Igor Minevich 1 Introduction Several proofs of the cevian nest theorem (given below) are known, including one using ratios along sides

More information

The Minimal Dependency Relation for Causal Event Ordering in Distributed Computing

The Minimal Dependency Relation for Causal Event Ordering in Distributed Computing Appl. Math. Inf. Sci. 9, No. 1, 57-61 (2015) 57 Applied Mathematics & Information Sciences An International Journal http://dx.doi.org/10.12785/amis/090108 The Minimal Dependency Relation for Causal Event

More information

Row Ideals and Fibers of Morphisms

Row Ideals and Fibers of Morphisms Michigan Math. J. 57 (2008) Row Ideals and Fibers of Morphisms David Eisenbud & Bernd Ulrich Affectionately dedicated to Mel Hochster, who has been an inspiration to us for many years, on the occasion

More information

BOOLEAN ALGEBRA & LOGIC GATES

BOOLEAN ALGEBRA & LOGIC GATES BOOLEAN ALGEBRA & LOGIC GATES Logic gates are electronic circuits that can be used to implement the most elementary logic expressions, also known as Boolean expressions. The logic gate is the most basic

More information

Convex analysis and profit/cost/support functions

Convex analysis and profit/cost/support functions CALIFORNIA INSTITUTE OF TECHNOLOGY Division of the Humanities and Social Sciences Convex analysis and profit/cost/support functions KC Border October 2004 Revised January 2009 Let A be a subset of R m

More information

= 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that

= 2 + 1 2 2 = 3 4, Now assume that P (k) is true for some fixed k 2. This means that Instructions. Answer each of the questions on your own paper, and be sure to show your work so that partial credit can be adequately assessed. Credit will not be given for answers (even correct ones) without

More information

ON SEQUENTIAL CONTINUITY OF COMPOSITION MAPPING. 0. Introduction

ON SEQUENTIAL CONTINUITY OF COMPOSITION MAPPING. 0. Introduction ON SEQUENTIAL CONTINUITY OF COMPOSITION MAPPING Abstract. In [1] there was proved a theorem concerning the continuity of the composition mapping, and there was announced a theorem on sequential continuity

More information

F. ABTAHI and M. ZARRIN. (Communicated by J. Goldstein)

F. ABTAHI and M. ZARRIN. (Communicated by J. Goldstein) Journal of Algerian Mathematical Society Vol. 1, pp. 1 6 1 CONCERNING THE l p -CONJECTURE FOR DISCRETE SEMIGROUPS F. ABTAHI and M. ZARRIN (Communicated by J. Goldstein) Abstract. For 2 < p

More information