Right Angle Trigonometry

Size: px
Start display at page:

Download "Right Angle Trigonometry"

Transcription

1 Righ gl Trigoomry I. si Fs d Dfiiios. Righ gl gl msurig 90. Srigh gl gl msurig 80. u gl gl msurig w 0 d omplmry gls wo gls whos sum is Supplmry gls wo gls whos sum is Righ rigl rigl wih righ gl 7. Isosls rigl rigl wih xly wo sids qul 8. Equilrl rigl rigl wih ll hr sids qul 9. Th sum of h gls of rigl is I grl, pil lrs rfr o gls whil smll lrs rfr o h sids of rigl. For xmpl, sid is opposi gl. II. Righ Trigl Fs d Exmpls. Hypous h sid opposi h righ gl, sid.. Pyhgor Thorm -. d r omplmry. Pg of

2 III. Exmpls:. I righ rigl, h hypous is 0 ihs d o sid is 8 ihs. Wh is h lgh of h ohr sid? Soluio: ?. I righ rigl, if, wh is h msur of? Soluio: Th wo u gls i righ rigl r omplmry IV. Similr Trigls:. Two rigls r similr if h gls of o rigl r qul o h orrspodig gls of h ohr. I similr rigls, rios of orrspodig sids r qul. odiios for Similr Trigls ( ~ EGF ). orrspodig gls i similr rigls r qul: E F G. Rios of orrspodig sids r qul: EG EF FG Pg of

3 Exmpl : 50 F E 50 E 50 mrs EF m d 00 m Fid h lgh of sid. Noi h d EF r similr si orrspodig gls r qul. (Thr is righ gl oh F d, is h sm i oh rigls d quls h u gl E.) E EF 50 Soluio: so 00 y ross muliplyig w g: 50( ) (00) Thrfor 44 mrs. E 50 mrs EF m d 00 m Fid h lgh of sid. Exmpl : ll rigls r similr o o ohr. Two sids r of qul lgh d h hypous is ims h lgh of h of h qul sids. ll rigls r similr o o ohr. Th shors sid of lgh is opposi h smlls gl ( 0 ). Th hypous is wi h lgh of h shors sid. Th sid opposi h 60 hs lgh ims h shorr lg. Pg of

4 Prolm: Fid h lghs of h lgs of hypous is 8 mrs rigl if h Soluio: ) If 8, h 4 mrs d ) (4) 4 mrs. V. Th Six Trigoomri Rios for u gls opposi hypous si si os s hypous si opposi dj hypous osi os s s hypous os dj opposi dj g og o dj opposi TRIG TRIK: good wy o rmmr h rig rios is o us h mmoi SOH H TO! SOH H TO i p p o s i y p o u s o s i d j y p o u s g p p o s i d j Pg 4 of

5 Exmpl : Fid h six rigoomri rios for h u gl. Soluio: opposi si. Usig h ov dfiiios, h rs r: hypous os,, s, s, o Exmpl : I h righ, d. Drmi h six rigoomri rios for. Soluio: Us Pyhgor Thorm: 0 0 (Si lgh is posiiv, w will oly us 0.) si opp hyp dj 0 opp os hyp 0 0 dj hyp 0 hyp 0 s s 0 opp dj dj o opp Pg 5 of

6 VI. Spil ss. Trigoomri vlus of 0 d 60 (Us h rigl from pg..) si 0 si 60 0 os 0 os s 0 s 60 s 0 s 60 o 0 o 60. Trigoomri vlus of 45 (Us h rigl from pg..) si 45 s 45 os 45 s o 45 Pg 6 of

7 VII. ovrig Mius d Sods o Diml Form (Nssry for mos lulor us i vluig rig vlus). To ovr from sods o diml pr of miu, divid h umr of sods y 60.. To ovr from mius o diml pr of dgr, divid h umr of mius y 60. Exmpl : ovr 6447 o dgrs usig dimls. Soluio: Exmpl : ovr 5 0 o dgrs usig dimls. Soluio: VIII. Righ Trigl Trigoomry Prolms To Solv Righ Trigl Prolms: Thr r six prs o y rigl; sids d gls. Eh rig formul (x: si = /) ois hr prs; o u gl d wo sids. If you kow vlus for wo of h hr prs h you solv for h hird ukow pr usig h followig mhod:. Drw righ rigl. Ll h kow prs wih h giv vlus d idi h ukow pr(s) wih lrs.. To fid ukow pr, hoos rig formul whih ivolvs h ukow pr d h wo kow prs. Pg 7 of

8 Exmpl : righ rigl hs 8 d 6. Fid h lgh of sid. Soluio: 6 8 Whih rig formuls ivolv u gl () d h sid opposi () d h sid dj () o h gl? Si oh g d og do, ihr ould usd o solv his prolm. W will us g. opp so, 6 or dj 8 8 Thrfor (lwys hk your swr y omprig siz of gl d lgh of sid; h logr sid is lwys opposi h lrgr gl.) IX. gls of Elvio d Dprssio gl of dprssio gl of lvio Exmpl: From poi 4 f from h foo of owr d o h sm lvl, h gl of lvio of h owr is 6 0. Fid h high of h owr. Soluio: h 4 60 (6.) h f. h 4(0.755) h 9. f. Pg 8 of

9 Pri Prolms:. I righ rigl, if 9 ihs d 6 ihs, fid.. Fid h lgh of sid. No: This prolm d digrm orrspods o fidig h high of sr ligh pol ( ) if 6 f. m ( EF ) ss shdow ( F ) of 5 f. d h pol ss shdow ( ) of 45 f. E 6 0 F 5. Evlu: F G 5 E ) si E = ) E = ) os F = d) s F = 4. Evlu: (Drw rfr d rigls) ) si 0 = ) 60 = ) s 60 = d) 45 = ) s 45 = f) o 0 = Pg 9 of

10 5. Evlu: 8 0 ) = ) s = ) o = d) s = 6. ovr o diml oio usig lulor: ) ) 45 7 Evlu, usig lulor: ) si 5 48 d) o Ll h sids d rmiig gls of righ rigl, usig,,, d. If 4 d 7, fid h vlus of h rmiig prs. Pg 0 of

11 8. Giv righ rigl wih 0. 6 d 540, fid. Drw digrm. 9. From liff 40 f ov h shor li, osrvr os h h gl of dprssio of ship is 0. Fid h dis from h ship o poi o h shor dirly low h osrvr. liff ship Pg of

12 swrs o Righ Trigl Trigoomry:. 5 ihs (us Pyhgor Thorm). 6 EF F ) si E ) E ) 5 os F d) s F 4. (s pr E of h hdou)= ) si 0 ) 60 ) s60 d) 45 ) s 45 f) o (us Pyhgor Thorm) ) ) s ) 6 o d) 4 s ) 76. ) ) d) (Us os or s o solv for ukow ) x x 55.4f. (gl of dprssio) liff ship Pg of

Outline. Numerical Analysis Boundary Value Problems & PDE. Exam. Boundary Value Problems. Boundary Value Problems. Solution to BVProblems

Outline. Numerical Analysis Boundary Value Problems & PDE. Exam. Boundary Value Problems. Boundary Value Problems. Solution to BVProblems Oulie Numericl Alysis oudry Vlue Prolems & PDE Lecure 5 Jeff Prker oudry Vlue Prolems Sooig Meod Fiie Differece Meod ollocio Fiie Eleme Fll, Pril Differeil Equios Recp of ove Exm You will o e le o rig

More information

Lecture (1) Chapter One: Fourier Transform. Reference: Advanced Engineering Mathematics (By Erwin Kreyszig)

Lecture (1) Chapter One: Fourier Transform. Reference: Advanced Engineering Mathematics (By Erwin Kreyszig) Uivrsiy o choogy Egirig Aysis Lcur os Dp. O Ecric & Ecroic Eg. hird yr www.uoiq.org Lcur Lc. Dr. As H. Iss Lcur Chpr O: Fourir rsorm Rrc: Advcd Egirig Mhmics By Erwi Kryszig. Priodic ucios: A ucio is sid

More information

Ch 7.1: Introduction to Systems of First Order Linear Equations

Ch 7.1: Introduction to Systems of First Order Linear Equations Ch 7.: Iroduio o Sysms of Firs Ordr ir Equios A sysm of simulous firs ordr ordiry diffril quios hs h grl form whr h k is fuio of. If h F k is lir fuio of h h sysm of quios is sid o b lir ohrwis i is olir.

More information

Schneps, Leila; Colmez, Coralie. Math on Trial : How Numbers Get Used and Abused in the Courtroom. New York, NY, USA: Basic Books, 2013. p i.

Schneps, Leila; Colmez, Coralie. Math on Trial : How Numbers Get Used and Abused in the Courtroom. New York, NY, USA: Basic Books, 2013. p i. New York, NY, USA: Basic Books, 2013. p i. http://site.ebrary.com/lib/mcgill/doc?id=10665296&ppg=2 New York, NY, USA: Basic Books, 2013. p ii. http://site.ebrary.com/lib/mcgill/doc?id=10665296&ppg=3 New

More information

Arithmetic Sequences

Arithmetic Sequences Arithmetic equeces A simple wy to geerte sequece is to strt with umber, d dd to it fixed costt d, over d over gi. This type of sequece is clled rithmetic sequece. Defiitio: A rithmetic sequece is sequece

More information

Reading. Minimum Spanning Trees. Outline. A File Sharing Problem. A Kevin Bacon Problem. Spanning Trees. Section 9.6

Reading. Minimum Spanning Trees. Outline. A File Sharing Problem. A Kevin Bacon Problem. Spanning Trees. Section 9.6 Rin Stion 9.6 Minimum Spnnin Trs Outlin Minimum Spnnin Trs Prim s Alorithm Kruskl s Alorithm Extr:Distriut Shortst-Pth Alorithms A Fil Shrin Prolm Sy unh o usrs wnt to istriut il monst thmslvs. Btwn h

More information

Words Symbols Diagram. abcde. a + b + c + d + e

Words Symbols Diagram. abcde. a + b + c + d + e Logi Gtes nd Properties We will e using logil opertions to uild mhines tht n do rithmeti lultions. It s useful to think of these opertions s si omponents tht n e hooked together into omplex networks. To

More information

E M C P e r f o r m a n c e R e q u i r e m e n t s C o m p o n e n t s

E M C P e r f o r m a n c e R e q u i r e m e n t s C o m p o n e n t s D a i m l e r C h r y s l e r D C -1 0 6 1 4 J o i n t E n g i n e e r i n g S t a n d a r d D a t e P u b l i s h e d : 2 0 0 5-03 C h r y s l e r C a t e g o r y : L -2 T ot a l N o. of Pa g e s ( I

More information

Sample Pages from. Leveled Texts for Mathematics: Geometry

Sample Pages from. Leveled Texts for Mathematics: Geometry Smpl Pgs rom Lvl Txts or Mthmtis: Gomtry Th ollowing smpl pgs r inlu in this ownlo: Tl o Contnts Rility Chrt Smpl Pssg For orrltions to Common Cor n Stt Stnrs, pls visit http://www.thrrtmtrils.om/orrltions.

More information

DRAWING LIST: SITE ANALYSIS - C MASTER PLAN

DRAWING LIST: SITE ANALYSIS - C MASTER PLAN RWI I: RWI M: O. RV. RWI M: O. RV. OVR P - PROJ UMMRY - IO YPI IO - & - - VIUIIO YPI IO - & - - POOMO - VIW -9 I IO - & F-F - POOMO - VIW -9 POOMO - VIW -9 VIO POOMO - VIW 4-94 YPI VIO - & - -4 POOMO -

More information

Accelerating Multi-Patterns Matching on Compressed HTTP Traffic

Accelerating Multi-Patterns Matching on Compressed HTTP Traffic This fll x ppr ws pr rviw h irio of IEEE Commiios Soiy sj mr xprs for pliio i h IEEE INFOCOM 29 proigs. Alrig Mli-Prs Mhig o Comprss HTTP Trffi A Brmlr-Brr Compr Si Dp. Irisipliry Cr, Hrzliy, Isrl Emil:

More information

Lecture 7: Minimum Spanning Trees and Prim s Algorithm

Lecture 7: Minimum Spanning Trees and Prim s Algorithm Ltur : Minimum Spnning Trs n Prim s Algorithm CLRS Chptr 3 Outlin o this Ltur Spnning trs n minimum spnning trs. Th minimum spnning tr (MST) prolm. Th gnri lgorithm or MST prolm. Prim s lgorithm or th

More information

A ball rolls up and down an incline A ball tossed up which comes down along the same path

A ball rolls up and down an incline A ball tossed up which comes down along the same path Lecure 4 Moion nd Kinemics Reiew Turning Poins Inerpreing Moion Grphs Ls ime we lef off lking bou ccelerion nd urning poins. Recll ccelerion is wh chnges n iniil elociy o finl elociy. A chnge in elociy

More information

HAROLD CAMPING i ii iii iv v vi vii viii ix x xi xii 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

More information

MATH 181-Exponents and Radicals ( 8 )

MATH 181-Exponents and Radicals ( 8 ) Mth 8 S. Numkr MATH 8-Epots d Rdicls ( 8 ) Itgrl Epots & Frctiol Epots Epotil Fuctios Epotil Fuctios d Grphs I. Epotil Fuctios Th fuctio f ( ), whr is rl umr, 0, d, is clld th potil fuctio, s. Rquirig

More information

Improper Integrals. Dr. Philippe B. laval Kennesaw State University. September 19, 2005. f (x) dx over a finite interval [a, b].

Improper Integrals. Dr. Philippe B. laval Kennesaw State University. September 19, 2005. f (x) dx over a finite interval [a, b]. Improper Inegrls Dr. Philippe B. lvl Kennesw Se Universiy Sepember 9, 25 Absrc Noes on improper inegrls. Improper Inegrls. Inroducion In Clculus II, sudens defined he inegrl f (x) over finie inervl [,

More information

Graph Theory Definitions

Graph Theory Definitions Grph Thory Dfinitions A grph is pir of sts (V, E) whr V is finit st ll th st of vrtis n E is st of 2-lmnt susts of V, ll th st of gs. W viw th gs s st of onntions twn th nos. Hr is n xmpl of grph G: G

More information

Schneps, Leila; Colmez, Coralie. Math on Trial : How Numbers Get Used and Abused in the Courtroom. New York, NY, USA: Basic Books, p i.

Schneps, Leila; Colmez, Coralie. Math on Trial : How Numbers Get Used and Abused in the Courtroom. New York, NY, USA: Basic Books, p i. New York, NY, USA: Basic Books, 2013. p i. http://site.ebrary.com/lib/mcgill/doc?id=10665296&ppg=2 New York, NY, USA: Basic Books, 2013. p iii. http://site.ebrary.com/lib/mcgill/doc?id=10665296&ppg=4 New

More information

Frequently Asked Questions Registrant Site Testing. Q: How do I access the testing and what is my login?

Frequently Asked Questions Registrant Site Testing. Q: How do I access the testing and what is my login? Frquly Akd Qui Rgir Si Tig Q: Hw d I cc h ig d wh i my lgi? A: T r dmiird hrugh crl i hp://rgir.qflippr.cm/ Yu mu b rgird wih h i fr cc. Fr m ud, cc i grd hrugh rgiri lik mild wih yur cur mril. Hwvr, m

More information

CHAPTER 7 EXPONENTS and RADICALS

CHAPTER 7 EXPONENTS and RADICALS Mth 40 Bittiger 8 th Chpter 7 Pge 1 of 0 CHAPTER 7 EXPONENTS d RADICALS 7.1 RADICAL EXPRESSIONS d FUNCTIONS b mes b Exmple: Simplify. (1) 8 sice () 8 () 16 () 4 56 (4) 5 4 16 (5) 4 81 (6) 0.064 (7) 6 (8)

More information

Chapter 04.05 System of Equations

Chapter 04.05 System of Equations hpter 04.05 System of Equtios After redig th chpter, you should be ble to:. setup simulteous lier equtios i mtrix form d vice-vers,. uderstd the cocept of the iverse of mtrix, 3. kow the differece betwee

More information

B y R us se ll E ri c Wr ig ht, DV M. M as te r of S ci en ce I n V et er in ar y Me di ca l Sc ie nc es. A pp ro ve d:

B y R us se ll E ri c Wr ig ht, DV M. M as te r of S ci en ce I n V et er in ar y Me di ca l Sc ie nc es. A pp ro ve d: E ff ec ts o f El ec tr ic al ly -S ti mu la te d Si lv er -C oa te d Im pl an ts a nd B ac te ri al C on ta mi na ti on i n a Ca ni ne R ad iu s Fr ac tu re G ap M od el B y R us se ll E ri c Wr ig ht,

More information

CONTENTS SHIFTING PERCEPTIONS THE SCHOOL. tips for teachers. Children have the power to change the world, The National Reading Strategy

CONTENTS SHIFTING PERCEPTIONS THE SCHOOL. tips for teachers. Children have the power to change the world, The National Reading Strategy I -8X ii Bi i O HIFIG PPIO Oii i i i i H HOOL IPOV PL vi Gi U Gi P ivii W q i Gi i i i Wkk P P i Ii i Li (PIL) Li-G Li 8 P Bi i Bi 8 i Ii i i (I) 8 i G G i i Lk i i v q, i xiv ( Fi) i i, J i v, i i, i

More information

Enumerating labeled trees

Enumerating labeled trees Eumratig labld trs Dfiitio: A labld tr is a tr th vrtics of which ar assigd uiqu umbrs from to. W ca cout such trs for small valus of by had so as to cojctur a gral formula. Eumratig labld trs Dfiitio:

More information

Problem Set 6 Solutions

Problem Set 6 Solutions 6.04/18.06J Mathmatics for Computr Scic March 15, 005 Srii Dvadas ad Eric Lhma Problm St 6 Solutios Du: Moday, March 8 at 9 PM Problm 1. Sammy th Shar is a fiacial srvic providr who offrs loas o th followig

More information

OVERVIEW Prove & Use the Laws of Sines & Cosines G.SRT.10-HONORS

OVERVIEW Prove & Use the Laws of Sines & Cosines G.SRT.10-HONORS OVERVIEW Prove & Use te Lws of Sines & osines G.SRT.10-HONORS G.SRT.10 (HONORS ONLY) Prove te Lws of Sines nd osines nd use tem to solve prolems. No interprettion needed - prove te Lw of Sines nd te Lw

More information

Scholarship Help for Technology Students

Scholarship Help for Technology Students i NOVEMBER 2014 Sli Hl f Tl S S i il ili l j i il i v f $150000 i li VN l f li Pl Tl N f xl i ii f v Pi Oli i N fi f i f vl i v f f li f i v f Viii Sli f vill f flli j: Pl Tl Mi Alli Hl li A Ifi Tl li

More information

State the size of angle x. Sometimes the fact that the angle sum of a triangle is 180 and other angle facts are needed. b y 127

State the size of angle x. Sometimes the fact that the angle sum of a triangle is 180 and other angle facts are needed. b y 127 ngles 2 CHTER 2.1 Tringles Drw tringle on pper nd lel its ngles, nd. Ter off its orners. Fit ngles, nd together. They mke stright line. This shows tht the ngles in this tringle dd up to 180 ut it is not

More information

STEP Solutions 2012. Mathematics STEP 9465/9470/9475

STEP Solutions 2012. Mathematics STEP 9465/9470/9475 STEP Solio Mhmi STEP 96/97/97 Novmr Th Cmrig Am Gro i Ero' lrg m g l lig rol i rrhig, vloig livrig m ro h glo Or qlifiio r livr i ovr ori hrogh or hr mjor m or Cmrig Am i h r m of h Uivri of Cmrig Lol

More information

Proving the Pythagorean Theorem

Proving the Pythagorean Theorem Proving the Pythgoren Theorem Proposition 47 of Book I of Eulid s Elements is the most fmous of ll Eulid s propositions. Disovered long efore Eulid, the Pythgoren Theorem is known y every high shool geometry

More information

Module 4: Dividing Radical Expressions

Module 4: Dividing Radical Expressions Her MTH 9 Secio IV: Rdicl Epressios, Equios, d Fucios Module 4: Dividig Rdicl Epressios Recll he propery of epoes h ses h oi logous propery for rdicls:. We c use his propery o 1 1 1 (usig he propery of

More information

Homework 6 - Solution

Homework 6 - Solution Howork 6 - oluo 364: 79 Rfr o xal 7 Th aou of fll ss by a bolg ach s orally srbu wh σ= ouc If = 9 bols ar raoly slc fro h ouu of h ach w fou ha h robably ha h sal a wll b wh 3 ouc of h ru a s 638 uos ha

More information

Phys222 W12 Quiz 2: Chapters 23, 24. Name: = 80 nc, and q = 30 nc in the figure, what is the magnitude of the total electric force on q?

Phys222 W12 Quiz 2: Chapters 23, 24. Name: = 80 nc, and q = 30 nc in the figure, what is the magnitude of the total electric force on q? Nme: 1. A pricle (m = 5 g, = 5. µc) is relesed from res when i is 5 cm from second pricle (Q = µc). Deermine he mgniude of he iniil ccelerion of he 5-g pricle.. 54 m/s b. 9 m/s c. 7 m/s d. 65 m/s e. 36

More information

8.2 Trigonometric Ratios

8.2 Trigonometric Ratios 8.2 Trigonometri Rtios Ojetives: G.SRT.6: Understnd tht y similrity, side rtios in right tringles re properties of the ngles in the tringle, leding to definitions of trigonometri rtios for ute ngles. For

More information

SCO TT G LEA SO N D EM O Z G EB R E-

SCO TT G LEA SO N D EM O Z G EB R E- SCO TT G LEA SO N D EM O Z G EB R E- EG Z IA B H ER e d it o r s N ) LICA TIO N S A N D M ETH O D S t DVD N CLUDED C o n t e n Ls Pr e fa c e x v G l o b a l N a v i g a t i o n Sa t e llit e S y s t e

More information

Released Assessment Questions, 2015 QUESTIONS

Released Assessment Questions, 2015 QUESTIONS Relesed Assessmet Questios, 15 QUESTIONS Grde 9 Assessmet of Mthemtis Ademi Red the istrutios elow. Alog with this ooklet, mke sure you hve the Aswer Booklet d the Formul Sheet. You my use y spe i this

More information

Batch Printing. Creating New Batch Print Jobs

Batch Printing. Creating New Batch Print Jobs Bth Printing Bth printing llows you to print svrl rports t on. You n print rports to printr or to PDF or PRN fil. First, though, you must st up th th print jo, n thn you must xut it. Follow th instrutions

More information

Some Useful Integrals of Exponential Functions

Some Useful Integrals of Exponential Functions prvious indx nxt Som Usful Intgrls of Exponntil Functions Michl Fowlr W v shown tht diffrntiting th xponntil function just multiplis it by th constnt in th xponnt, tht is to sy, d x x Intgrting th xponntil

More information

Orthogonal Functions. Orthogonal Series Expansion. Orthonormal Functions. Page 1. Orthogonal Functions and Fourier Series. (x)dx = 0.

Orthogonal Functions. Orthogonal Series Expansion. Orthonormal Functions. Page 1. Orthogonal Functions and Fourier Series. (x)dx = 0. Orthogol Fuctios q Th ir roduct of two fuctios f d f o itrvl [, ] is th umr Orthogol Fuctios d Fourir Sris ( f, f ) f f dx. q Two fuctios f d f r sid to orthogol o itrvl [, ] if ( f, f ) f f dx. q A st

More information

ms3452 receptacle, box mount

ms3452 receptacle, box mount 3452 l, o o x. x. oli.. +.010 +.031 o iz o ll iz ±.031 -.005.000 ±.015 16 & 1,4 & 10 o o ±.016 l 2 8 0.875 0.594 0.120 0.562 0.083 1.662 0.171 0.331 0.500 1/2-28 10 1.000 0.719 0.120 0.562 0.083 1.662

More information

Geometric Sequences. Definition: A geometric sequence is a sequence of the form

Geometric Sequences. Definition: A geometric sequence is a sequence of the form Geometic equeces Aothe simple wy of geetig sequece is to stt with umbe d epetedly multiply it by fixed ozeo costt. This type of sequece is clled geometic sequece. Defiitio: A geometic sequece is sequece

More information

MATH 90 CHAPTER 5 Name:.

MATH 90 CHAPTER 5 Name:. MATH 90 CHAPTER 5 Nme:. 5.1 Multiplictio of Expoets Need To Kow Recll expoets The ide of expoet properties Apply expoet properties Expoets Expoets me repeted multiplictio. 3 4 3 4 4 ( ) Expoet Properties

More information

NUMBER SYSTEMS CHAPTER 1. (A) Main Concepts and Results

NUMBER SYSTEMS CHAPTER 1. (A) Main Concepts and Results CHAPTER NUMBER SYSTEMS Min Concepts nd Results Rtionl numbers Irrtionl numbers Locting irrtionl numbers on the number line Rel numbers nd their deciml expnsions Representing rel numbers on the number line

More information

Chapter 5 The Discrete-Time Fourier Transform

Chapter 5 The Discrete-Time Fourier Transform ELG 30 Sigls d Systms Chptr 5 Chptr 5 Th Discrt-Tim ourir Trsform 5.0 Itroductio Thr r my similritis d strog prllls i lyzig cotiuous-tim d discrttim sigls. Thr r lso importt diffrcs. or xmpl, th ourir

More information

1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ).

1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ). PROCEDIMIENTO DE RECUPERACION Y COPIAS DE SEGURIDAD DEL CORTAFUEGOS LINUX P ar a p od e r re c u p e ra r nu e s t r o c o rt a f u e go s an t e un d es a s t r e ( r ot u r a d e l di s c o o d e l a

More information

Chapter 3 Chemical Equations and Stoichiometry

Chapter 3 Chemical Equations and Stoichiometry Chptr Chmicl Equtions nd Stoichiomtry Homwork (This is VERY importnt chptr) Chptr 27, 29, 1, 9, 5, 7, 9, 55, 57, 65, 71, 75, 77, 81, 87, 91, 95, 99, 101, 111, 117, 121 1 2 Introduction Up until now w hv

More information

Know the sum of angles at a point, on a straight line and in a triangle

Know the sum of angles at a point, on a straight line and in a triangle 2.1 ngle sums Know the sum of ngles t point, on stright line n in tringle Key wors ngle egree ngle sum n ngle is mesure of turn. ngles re usully mesure in egrees, or for short. ngles tht meet t point mke

More information

Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100

Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100 hsn.uk.net Higher Mthemtics UNIT 3 OUTCOME 1 Vectors Contents Vectors 18 1 Vectors nd Sclrs 18 Components 18 3 Mgnitude 130 4 Equl Vectors 131 5 Addition nd Subtrction of Vectors 13 6 Multipliction by

More information

Fourier Series and Spectrum

Fourier Series and Spectrum EE54 Signls nd Sysms Fourir Sris nd Spcrum Yo Wng Polychnic Univrsiy Mos of h slids includd r xrcd from lcur prsnions prprd by McCllln nd Schfr Licns Info for SPFirs Slids his wor rlsd undr Criv Commons

More information

UNIT FIVE DETERMINANTS

UNIT FIVE DETERMINANTS UNIT FIVE DETERMINANTS. INTRODUTION I uit oe the determit of mtrix ws itroduced d used i the evlutio of cross product. I this chpter we exted the defiitio of determit to y size squre mtrix. The determit

More information

Step Functions; and Laplace Transforms of Piecewise Continuous Functions

Step Functions; and Laplace Transforms of Piecewise Continuous Functions Sp Fnion; and Lapla Tranform of Piwi Conino Fnion Th prn objiv i o h Lapla ranform o olv diffrnial qaion wih piwi onino foring fnion ha i, foring fnion ha onain dioninii Bfor ha old b don, w nd o larn

More information

11. PYTHAGORAS THEOREM

11. PYTHAGORAS THEOREM 11. PYTHAGORAS THEOREM 11-1 Along the Nile 2 11-2 Proofs of Pythgors theorem 3 11-3 Finding sides nd ngles 5 11-4 Semiirles 7 11-5 Surds 8 11-6 Chlking hndll ourt 9 11-7 Pythgors prolems 10 11-8 Designing

More information

Campus Sustainability Assessment and Related Literature

Campus Sustainability Assessment and Related Literature Campus Sustainability Assessment and Related Literature An Annotated Bibliography and Resource Guide Andrew Nixon February 2002 Campus Sustainability Assessment Review Project Telephone: (616) 387-5626

More information

Lesson 18.2: Right Triangle Trigonometry

Lesson 18.2: Right Triangle Trigonometry Lesson 8.: Right Tringle Trigonometry lthough Trigonometry is used to solve mny prolems, historilly it ws first pplied to prolems tht involve right tringle. This n e extended to non-right tringles (hpter

More information

Math Bowl 2009 Written Test Solutions. 2 8i

Math Bowl 2009 Written Test Solutions. 2 8i Mth owl 009 Writte Test Solutios i? i i i i i ( i)( i ( i )( i ) ) 8i i i (i ) 9i 8 9i 9 i How my pirs of turl umers ( m, ) stisfy the equtio? m We hve to hve m d d, the m ; d, the 0 m m Tryig these umers,

More information

Types of Forecasting Techniques. Qualitative Forecasting Methods. Quantitative Forecasting Methods. Quantitative Forecasting Methods

Types of Forecasting Techniques. Qualitative Forecasting Methods. Quantitative Forecasting Methods. Quantitative Forecasting Methods MS0 Busiss orcasig Mhods Iroducio Lcurr: Dr. Iris Yug Room : P7509 l No.: 7888566 E-mail: msiris@ciyu.du.hk Imporac of Busiss orcasig I markig, oal dmad for producs mus b forcasd i ordr o pla oal promoioal

More information

GRANT ADMINISTRATION: How Do I Close Out An Expired Grant or Award?

GRANT ADMINISTRATION: How Do I Close Out An Expired Grant or Award? GRANT AMINISTRATION PROCEURES - Scio 6.5 GRANT AMINISTRATION: ow o I Clos Ou A Expird Gr or Awrd? Iroducio Th Niol Isius of lh ( NI ) hs sblishd h followig rquirs for fdrl gr or wrd o b closd ou by isiuios

More information

Approximation Algorithms

Approximation Algorithms Prsnttion or us with th txtook, Alorithm Dsin n Applitions, y M. T. Goorih n R. Tmssi, Wily, 2015 Approximtion Alorithms 1 Bik Tour Suppos you i to ri iyl roun Irln you will strt in Dulin th ol is to visit

More information

Journeys Common Core Spelling Activities. First Grade. Units 1, 2, 3, 4, 5,6 A full year of activities!

Journeys Common Core Spelling Activities. First Grade. Units 1, 2, 3, 4, 5,6 A full year of activities! Firs Grde Unis 1, 2, 3, 4, 5,6 A full yer of civiies! Shor 1.m 2. 3.s 4.mn 5.dd Criss Cross Words c Wrie ech word five imes ech Lesson 1 Wh is Pl? Hve fmily memer prin ou word serch wih his week s spelling

More information

Two special Right-triangles 1. The

Two special Right-triangles 1. The Mth Right Tringle Trigonometry Hndout B (length of ) - c - (length of side ) (Length of side to ) Pythgoren s Theorem: for tringles with right ngle ( side + side = ) + = c Two specil Right-tringles. The

More information

Ratio and Proportion

Ratio and Proportion Rtio nd Proportion Rtio: The onept of rtio ours frequently nd in wide vriety of wys For exmple: A newspper reports tht the rtio of Repulins to Demorts on ertin Congressionl ommittee is 3 to The student/fulty

More information

Intro to Sequences / Arithmetic Sequences and Series Levels

Intro to Sequences / Arithmetic Sequences and Series Levels Itro to Sequeces / Arithmetic Sequeces ad Series Levels Level : pg. 569: #7, 0, 33 Pg. 575: #, 7, 8 Pg. 584: #8, 9, 34, 36 Levels, 3, ad 4(Fiboacci Sequece Extesio) See Hadout Check for Uderstadig Level

More information

Application: Volume. 6.1 Overture. Cylinders

Application: Volume. 6.1 Overture. Cylinders Applictio: Volume 61 Overture I this chpter we preset other pplictio of the defiite itegrl, this time to fid volumes of certi solids As importt s this prticulr pplictio is, more importt is to recogize

More information

PARALLEL LINES CHAPTER

PARALLEL LINES CHAPTER HPTR 9 HPTR TL OF ONTNTS 9-1 Proving Lines Parallel 9-2 Properties of Parallel Lines 9-3 Parallel Lines in the oordinate Plane 9-4 The Sum of the Measures of the ngles of a Triangle 9-5 Proving Triangles

More information

CLASS TEST GRADE 11. PHYSICAL SCIENCES: CHEMISTRY Test 6: Chemical change

CLASS TEST GRADE 11. PHYSICAL SCIENCES: CHEMISTRY Test 6: Chemical change CLASS TEST GRADE PHYSICAL SCIENCES: CHEMISTRY Test 6: Chemical change MARKS: 45 TIME: hour INSTRUCTIONS AND INFORMATION. Answer ALL the questions. 2. You may use non-programmable calculators. 3. You may

More information

Masters Mens Physique 45+

Masters Mens Physique 45+ C G x By, F, hysq, Bk Chpshps Ap, Cv Cy, Cf Mss Ms hysq + Fs Ls Css Ov Css s G MC Chpk M+ W M+/MC y Bs 9 8 9 9 8 B O'H 8 9 8 S Rs 8 8 9 h K 9 D Szwsk 8 9 8 9 9 G M+ h D Ly Iz M+ 8 M R : : C G x By, F,

More information

Uses for Binary Trees -- Binary Search Trees

Uses for Binary Trees -- Binary Search Trees CS122 Algorithms n Dt Struturs MW 11:00 m 12:15 pm, MSEC 101 Instrutor: Xio Qin Ltur 10: Binry Srh Trs n Binry Exprssion Trs Uss or Binry Trs Binry Srh Trs n Us or storing n rtriving inormtion n Insrt,

More information

www.akcp.com Virtual Sensors

www.akcp.com Virtual Sensors www.akcp.cm Irduci: Virual Ssrs Virual ssrs ca b a vry pwrful l i yur mirig sysm. O h scuriyprb yu ca hav up 80 f hs virual ssrs ad hy allw fr a muliud f applicais. Igrai wih MODBUS wrks wih h scuriyprb

More information

Victims Compensation Claim Status of All Pending Claims and Claims Decided Within the Last Three Years

Victims Compensation Claim Status of All Pending Claims and Claims Decided Within the Last Three Years Claim#:021914-174 Initials: J.T. Last4SSN: 6996 DOB: 5/3/1970 Crime Date: 4/30/2013 Status: Claim is currently under review. Decision expected within 7 days Claim#:041715-334 Initials: M.S. Last4SSN: 2957

More information

Batteries in general: Batteries. Anode/cathode in rechargeable batteries. Rechargeable batteries

Batteries in general: Batteries. Anode/cathode in rechargeable batteries. Rechargeable batteries Bttris i grl: Bttris How -bsd bttris work A rducig (gtiv) lctrod A oxidizig (positiv) lctrod A - th ioic coductor Rchrgbl bttris Rctios ust b rvrsibl Not too y irrvrsibl sid rctios Aod/cthod i rchrgbl

More information

Schedule C. Notice in terms of Rule 5(10) of the Capital Gains Rules, 1993

Schedule C. Notice in terms of Rule 5(10) of the Capital Gains Rules, 1993 (Rul 5(10)) Shul C Noti in trms o Rul 5(10) o th Cpitl Gins Ruls, 1993 Sttmnt to sumitt y trnsror o shrs whr thr is trnsr o ontrolling intrst Prt 1 - Dtils o Trnsror Nm Arss ROC No (ompnis only) Inom Tx

More information

int Ron t Marc ier rise e la Impasse du u Liv oue re M lin Berthel ry roix Fleu m Clos inot s int V urg S Faub Rue Rue du C rc de l ' Etuv e Stuart

int Ron t Marc ier rise e la Impasse du u Liv oue re M lin Berthel ry roix Fleu m Clos inot s int V urg S Faub Rue Rue du C rc de l ' Etuv e Stuart . Big i N éi N Cil l l Néi l N i C lli C i é Néi i i I. N -D z Ei if ig Vll Bl ig Vig l'o l S Bg i i g l Ci Qi i Blf Si ig l i i 1945 g li gg ég Ni l Bl l i H Si J iz Eg S i Villi I l Bl i i i H Bliz Dli

More information

Right Triangle Trigonometry 8.7

Right Triangle Trigonometry 8.7 304470_Bello_h08_se7_we 11/8/06 7:08 PM Pge R1 8.7 Right Tringle Trigonometry R1 8.7 Right Tringle Trigonometry T E G T I N G S T R T E D The origins of trigonometry, from the Greek trigonon (ngle) nd

More information

Power Means Calculus Product Calculus, Harmonic Mean Calculus, and Quadratic Mean Calculus

Power Means Calculus Product Calculus, Harmonic Mean Calculus, and Quadratic Mean Calculus Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do Powr Ms Clculus Product Clculus, Hrmoic M Clculus, d Qudrtic M Clculus H. Vic Do vick@dc.com Mrch, 008 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008

More information

New Advanced Higher Mathematics: Formulae

New Advanced Higher Mathematics: Formulae Advcd High Mthmtics Nw Advcd High Mthmtics: Fomul G (G): Fomul you must mmois i od to pss Advcd High mths s thy ot o th fomul sht. Am (A): Ths fomul giv o th fomul sht. ut it will still usful fo you to

More information

1 di 28 19/04/2014 23:33 2 di 28 19/04/2014 23:33 3 di 28 19/04/2014 23:33 4 di 28 19/04/2014 23:33 5 di 28 19/04/2014 23:33 6 di 28 19/04/2014 23:33 7 di 28 19/04/2014 23:33 8 di 28 19/04/2014 23:33 9

More information

EuroFGI Workshop on IP QoS and Traffic Control TITOLO. A Receiver Side Approach for Real-Time Monitoring of IP Performance Metrics

EuroFGI Workshop on IP QoS and Traffic Control TITOLO. A Receiver Side Approach for Real-Time Monitoring of IP Performance Metrics EuroFGI Workhop on IP QoS n Trff Conrol TITOLO A Rvr S Approh for Rl-T Monorng of IP Prforn Mr TESI R. G. Grroppo, S. Gorno, F. Oppno, G. Pro Dp. of Inforon Engnrng Unvry of P 1 Lbon, Porugl, Dbr 6-7,

More information

10.3 Systems of Linear Equations: Determinants

10.3 Systems of Linear Equations: Determinants 758 CHAPTER 10 Systems of Equtions nd Inequlities 10.3 Systems of Liner Equtions: Determinnts OBJECTIVES 1 Evlute 2 y 2 Determinnts 2 Use Crmer s Rule to Solve System of Two Equtions Contining Two Vriles

More information

Fourier Series (Lecture 13)

Fourier Series (Lecture 13) Fourier Series (Lecture 3) ody s Objectives: Studets will be ble to: ) Determie the Fourier Coefficiets for periodic sigl b) Fid the stedy-stte respose for system forced with geerl periodic forcig Rrely

More information

Are We There Yet? IPv6 as Related to GDP per Capita Alain Durand, October 26 th 2016

Are We There Yet? IPv6 as Related to GDP per Capita Alain Durand, October 26 th 2016 Are We There Yet? as Related to Alain Durand, October 26 th 2016 Quesons for this Study: I. Where are we across the globe with adoption? a. Is deployed uniformly? b. Is there a rich country/poor country

More information

The area of the larger square is: IF it s a right triangle, THEN + =

The area of the larger square is: IF it s a right triangle, THEN + = 8.1 Pythgoren Theorem nd 2D Applitions The Pythgoren Theorem sttes tht IF tringle is right tringle, THEN the sum of the squres of the lengths of the legs equls the squre of the hypotenuse lengths. Tht

More information

Alphabet Stitch Info Color Chart

Alphabet Stitch Info Color Chart Page 1 Alphabet Stitch Info Color Chart 0 1 2 Stitch Count: 3988 Height: 2.2 Width: 1.61 Stitch Count: 2958 Width: 1.26 Stitch Count: 3628 Width: 2.01 3 4 Stitch Count: 3671 Height: 2.2 Width: 1.54 Stitch

More information

STUDENT S COMPANIONS IN BASIC MATH: THE SECOND. Basic Identities in Algebra. Let us start with a basic identity in algebra:

STUDENT S COMPANIONS IN BASIC MATH: THE SECOND. Basic Identities in Algebra. Let us start with a basic identity in algebra: STUDENT S COMPANIONS IN BASIC MATH: THE SECOND Bsic Idetities i Algebr Let us strt with bsic idetity i lgebr: 2 b 2 ( b( + b. (1 Ideed, multiplyig out the right hd side, we get 2 +b b b 2. Removig the

More information

Analytical Pricing of Defaultable Bond with Stochastic Default Intensity

Analytical Pricing of Defaultable Bond with Stochastic Default Intensity oki P o-ji Uiviy D o Ali Mhi My 5 Alyil Pii o Dll o wih Sohi Dl Iiy h wih Eoo Dl ovy O Hyo-hol Ni o i Si Ki Il S Uiviy Pyoy D. P.. o Ko D o Ali Mhi o-ji Uiviy Shhi hi Aho: O Hyohol 964- h; Ni 979- G S

More information

STRAND I: Geometry and Trigonometry. UNIT I2 Trigonometric Problems: Text * * Contents. Section. I2.1 Mixed Problems Using Trigonometry

STRAND I: Geometry and Trigonometry. UNIT I2 Trigonometric Problems: Text * * Contents. Section. I2.1 Mixed Problems Using Trigonometry Mthemtics SKE: STRND I UNIT I Trigonometric Prolems: Text STRND I: Geometry nd Trigonometry I Trigonometric Prolems Text ontents Section * * * I. Mixed Prolems Using Trigonometry I. Sine nd osine Rules

More information

Showing Recursive Sequences Converge

Showing Recursive Sequences Converge Showig Recursive Sequeces Coverge Itroductio My studets hve sked me bout how to prove tht recursively defied sequece coverges. Hopefully, fter redig these otes, you will be ble to tckle y such problem.

More information

Student Jobs Fairs. YOUR ticket to student recruitment in Birmingham 2015 Version 2

Student Jobs Fairs. YOUR ticket to student recruitment in Birmingham 2015 Version 2 S J Fi YOUR ik i i Biih 2015 i 2 W D vi -i, vi k vi v 28,000? Th k fh Th Gi f S h vi f f vii ii i k i k 18,000 hh h Gi, f h hi f -i/ vi k ii h hi h Th i i vi j ii hi i k Oii Th Gi f S i: J Fi 3 F Pi 5

More information

Essential Question What are the Law of Sines and the Law of Cosines?

Essential Question What are the Law of Sines and the Law of Cosines? 9.7 TEXS ESSENTIL KNOWLEDGE ND SKILLS G.6.D Lw of Sines nd Lw of osines Essentil Question Wht re the Lw of Sines nd the Lw of osines? Disovering the Lw of Sines Work with prtner.. opy nd omplete the tle

More information

Fractions: Arithmetic Review

Fractions: Arithmetic Review Frtions: Arithmeti Review Frtions n e interprete s rtios omprisons of two quntities. For given numer expresse in frtion nottion suh s we ll the numertor n the enomintor n it is helpful to interpret this

More information

Mot3.: Noise in amplifiers with feedback

Mot3.: Noise in amplifiers with feedback Mo3.: Noise i amplifiers wih feedback So far we have discussed he amplifiers wihou feedback ( "ope loop"). Now we will discuss he impac of feedback. geeral feedback is used o... chage he gai, chage impedaces,

More information

Paper Technics Orientation Course in Papermaking 2009:

Paper Technics Orientation Course in Papermaking 2009: P P Otto Cou Pmkg 2009: g to mk u tt you ol o tgt P Wo ould ttd? Otto Cou Pmkg wll b of vlu to t followg gou of ol:- 1. P mll mloy, wo dl dtly wt t o of mkg d w to mov t udtdg of t o d t mll oto t bod

More information

Preorder Traversal. Binary Tree Traversal Methods. Binary Tree Traversal Methods. Binary Tree Traversal Methods

Preorder Traversal. Binary Tree Traversal Methods. Binary Tree Traversal Methods. Binary Tree Traversal Methods Binry Tr Trvrsl Mthos Mny inry tr oprtions r on y prorming trvrsl o th inry tr. Possil Binry Tr Oprtions: Dtrmin th hight. Dtrmin th numr o nos. Mk lon. Evlut th rithmti xprssion rprsnt y inry tr. Binry

More information

Hong Kong Amateur Swimming Association. Swimming Coaches Certificate Course 2006 (Level II) 2006

Hong Kong Amateur Swimming Association. Swimming Coaches Certificate Course 2006 (Level II) 2006 Hong Kong Amateur Swimming Association Swimming Coaches Certificate Course 2006 (Level II) 2006 Date : 19 May 2006 31 May 2006 Venue : Please refer to attached course schedule Course Content: Part A :

More information

Napoleon and Pythagoras with Geometry Expressions

Napoleon and Pythagoras with Geometry Expressions Npoleon nd Pythgors with eometry xpressions NPOLON N PYTORS WIT OMTRY XPRSSIONS... 1 INTROUTION... xmple 1: Npoleon s Theorem... 3 xmple : n unexpeted tringle from Pythgors-like digrm... 5 xmple 3: Penequilterl

More information

Section IV.5: Recurrence Relations from Algorithms

Section IV.5: Recurrence Relations from Algorithms Sectio IV.5: Recurrece Relatios from Algorithms Give a recursive algorithm with iput size, we wish to fid a Θ (best big O) estimate for its ru time T() either by obtaiig a explicit formula for T() or by

More information

ASA Angle Side Angle SAA Side Angle Angle SSA Side Side Angle. B a C

ASA Angle Side Angle SAA Side Angle Angle SSA Side Side Angle. B a C 8.2 The Law of Sines Section 8.2 Notes Page 1 The law of sines is used to solve for missing sides or angles of triangles when we have the following three cases: S ngle Side ngle S Side ngle ngle SS Side

More information