Online Appendix for AngloDutch Premium Auctions in EighteenthCentury Amsterdam


 Ashlynn Teresa Page
 1 years ago
 Views:
Transcription
1 Online Appendi for AngloDutch Premium Auctions in EighteenthCentury Amsterdam Christiaan van Bochove, Lars Boerner, Daniel Quint January, 06 The first part of Theorem states that for any, ρ > 0, and > 0, an equilibrium eists. The proof is constructive: for 4, equilibrium strategies are given in the appendi of the paper. Here, we show that these strategies do indeed make up an equilibrium, and deal separately with the cases 3 and. First Round Play Firstround strategies and beliefs for player are Do not drop out at P 0 At any history where P > 0 and there is one other active bidder, believe that he has signal s i, and If P < P, remain active If P P, drop out and for player i are Drop out at P 0 At any history where P > 0 and bidder i is still active along with bidder, If P P, believe s U0, ; remain active if s i and drop out if s i < If P < P < P, believe s ; remain active if s i and drop out if s i < If P P, drop out immediately where and c + P c ρ if ρ + ρ if ρ < c + + P + ρ if ρ c + + ρ if ρ < Since all bidders other than bidder are epected to drop out at P 0, any history where P > 0 and more than one of bidders, 3,..., are still active could only be reached following
2 simultaneous deviations by more than one player. Strategies at such histories therefore does not affect equilibrium play, and we do not specify what strategies are played following such deviations. et, we will describe secondround beliefs and strategies, both on and off the equilibrium path, and show that these are equilibrium strategies. After that, we will show that these firstround strategies are bestresponses given that continuation play. Second Round Play On the Equilibrium Path Bidder won the first round at a price of 0. Common beliefs are that s i U0, for all i. Secondround bidding functions are bs i c + s i + s i To see that these bid functions are an equilibrium, first note that bids above b are strictly dominated by bidding b, since this will still win with probability ; and bids below b0 earn epected payoff of 0. For 0,, a bidder with signal s i who plans to bid b will win whenever s j < for every j i, which occurs with probability ; in that event, the security is worth, on average, c + si +, so his epected payoff is c + si + c + + s i Differentiating with respect to gives si s i, which is positive when < s i and negative when > s i, so epected payoff is maimized by setting s i. ote also plugging this into the payoff function that this gives nonnegative epected payoff, so bidding less than b0 and losing for sure is not a profitable deviation. Should bidder choose to drop out at P 0 along with the other bidders so that the firstround winner is chosen by a random tiebreaker, secondround beliefs and strategies are unchanged. Second Round Play After a FirstRound Deviation By Bidder i We refer to this continuation game as CG. As in the tet, assume without loss of generality that bidder is the one who deviated. Since bidder s equilibrium strategy following such a deviation is to bid up to price P, assume that either the deviating bidder has dropped out at a price P 0, P or has won the first round at the price P. All bidders commonly believe that s ; beliefs about
3 the other bidders signals including bidder match the prior s i U0,. Strategies are: Bidder does not bid regardless of his actual type If P c + +, then nobody bids If P c +, c + +, then let s solve P c + + s. Bidder i does not bid when s i s ; when s i > s, he bids bs i c + If P c +, then bidders i each bid s i + s i s s i + s i + bs i c + s i + s i + In the first case, P c + +, each bidder i epects nobody to bid; winning the object would require bidding strictly more than P, therefore strictly more than c + +, for an object that will be worth, on average, c + si + + c + +, so not bidding is a bestresponse. Bidder epects the object to be worth c + s + < c + +, so not bidding is a bestresponse for him as well. In the second case, bs i is strictly increasing, so bids above b are again strictly dominated. By construction, bs P. For s,, a bidder with signal s i who bids b epects to win when the other bidders ecluding himself and bidder have signals below ; he therefore earns epected payoff c + si + + c + s i s s + + s i s Differentiating with respect to gives 3 s i, which is positive for < s i and negative for > s i, so epected payoff is maimized at bs i. Bidding P bs or a tiny bit above that wins only if nobody else bids, giving epected payoff s c + s si + + s s i s c s s + s s s + s + s s i s making it worse than not bidding when s i < s. So for s i < s, any bid equal or greater than P would earn negative epected profits; and for s i > s, bidding bs i earns greater payoff than bs, which is itself positive, so bs i is a bestresponse. 3
4 ote that if bidder dropped out at a price P < P but above c +, then bidder is the firstround winner. The fact that he will win the object if nobody bids in the second round means that by not bidding, he pays bs for the object whenever all other bidders aside from have signals s i < s. This is equivalent to bidder having to bid bs if he does not bid higher than that; his optimal move is therefore still to bid bs when s > s, and to not bid in the second round when s s. As for bidder, bidding b would give epected payoff c + so not bidding is a bestresponse. s + c s + + s s + + < 0 In the third case, bids above b are again dominated, and a bid of b for 0, earns epected payoff c + si + + c s i + + The derivative with respect to is again n 3 s i, so epected payoff is again maimized at s i, which gives positive epected payoff so bidding less than b0 is not a profitable deviation. For bidder, bidding b would give c + s + c + + s + < 0 so not bidding is again a bestresponse. Bidder s Payoff From Deviating In the First Round By deviating in the first round and dropping out before P, bidder guarantees entry into CG discussed above, in which he does not bid and earns epected payoff 0; so remaining active past price 0, but planning to drop out before P, is not a profitable deviation. On the other hand, if bidder deviates in the first round and does not drop out before P, he epects bidder to drop out at price P. We net show that this would earn epected profit of 0 or less for bidder. 4
5 If ρ, then P c ρ c + +, so if the first round reaches price P, nobody bids in the second round. In that case, by winning the first round at price P and not updating beliefs about s, bidder earns secondround payoff c + s + c ρ s ρ Combined with winning the premium, then, bidder s epected payoff would be nonpositive. If ρ <, then if P P c + + ρ, s solves and so s c + + ρ c + + s ρ. After winning the first round at price P, bidder epects to be stuck with the security with probability s, for secondround epected payoff s c + s + s c + + s s s s s s s s s ρ s s ρ So including winning the premium in the first round, winning the first round at price P gives epected payoff 0 to bidder if s, and negative epected payoff otherwise. ote therefore that if s and bidder has already deviated by failing to drop out immediately, he epects payoff 0 whether he drops out before P or waits for bidder drop out at P. This means that once he has already deviated, it is a weak best response not to drop out before P which makes bidder willing to punish him by staying in until P ; but also that deviating in the first place cannot be profitable. Second Round Play After Deviations By Bidders i and Again, assume i is the first deviating bidder. If bidder does not drop out immediately, and bidder either drops out at a price P < P, or fails to drop out at price P so that either bidder or wins the first round at a price P > P, we refer to the resulting continuation game as CG3. Beliefs and strategies in the second round are as follows: Everyone believes s s Bidders and regardless of their actual types do not bid 5
6 If P c , then nobody bids If P c +, c , then let s solve P c + s + 3 s + Bidder i 3 does not bid when s i s ; when s i > s, he bids bs i c + If P c +, then bidders i 3 each bid 3 s i + s i s s i + 3 s i + bs i c + 3 s i + 3 s i + In the first case, if P c , then a bidder i 3 with signal s i epects no one else to bid, and believes that the security is worth in epectation c + s i P, and therefore does not bid. Bidder i {, } believes the security to be worth in epectation c + s i + + < P and therefore does not bid either. For the second case, a bid above c is dominated; a bid by bidder i 3 equal to b > s wins whenever s j < for all j {3, 4,..., } {i}, which is with probability 3, and therefore delivers epected payoff of c 3 + si c s i 3 s 3 Differentiating with respect to gives s s i 3 3 s 3si 3 3 which is positive for < s i and negative for > s i, so bs i is a bestresponse among bids above P. Bidding P or slightly above P would give epected payoff s i s 3 3 s s si s 3 s which is positive for s i > s and negative for s i < s. So not bidding is a bestresponse for s i s, and bs i a bestresponse for s i > s. Bidder i {, } who is not the firstround winner would, by 6
7 bidding b, earn epected payoff c + si + + c s i + 3 s s and so prefers not to bid. Bidder i {, } who is the firstround winner is effectively bidding bs by not making a new bid; but since { d d s i + 3 } s 3 s i + 3 s < 0 he prefers bs to a higher bid, and does not bid again. For the third case, a bid of b by bidder i 3 gives epected payoff 3 c + si c s 3 i 3 which has derivative 3 s i 3 3, which once again is positive for < s i and negative for > s i ; setting s i gives strictly positive payoff, so bs i is a bestresponse. For bidder i {, } whether or not the firstround winner, since the firstround winner will for sure be outbid if he does not bid again, but counting the premium received as a sunk benefit, bidding b gives payoff c + si + + c s i + 3 so not bidding is a bestresponse Bidder s Epected Payoff From Failing To Punish et, we show that if s s and either bidder or wins the first round at price P, his epected payoff including the firstround premium is 0. This ensures that i once the price passes P and bidder believes s, then assuming s as well, bidder is willing to stay in until P ; and ii bidder cannot gain by failing to punish a deviation by bidder, since he epects bidder to stay in until P, and even if s s, winning the first round would therefore give bidder zero epected payoff. If ρ, then P c , so if P P, nobody will bid in the second round; in 7
8 that case, the firstround winner wins the security for sure regardless of others signals, so if s s, his epected payoff is c + + c ρ ρ which, combined with winning the premium ρ in the first round, gives a net epected payoff of 0. If ρ <, then when P P, s solves c + + ρ c + s + 3 s + and therefore s ρ. So with probability s, nobody bids in the second round, and the security is worth, in epectation assuming s s, c + s +. So the firstround winner i {, } at price P, assuming s s, gets epected payoff gross of winning the premium s c + s + c s + s s s ρ ρ and so including winning the premium, the firstround winner would get eante epected payoff 0. First Round Strategies Are Equilibrium Strategies Finally, we need to show the strategies given earlier for the first round are indeed bestresponses. First, consider bidder at P 0. If he drops out immediately leading to the first round being determined by a random tiebreaker, he wins the premium with probability instead of, and does not affect secondround play, so this is not a profitable deviation. Following a deviation by bidder, bidder believes s, and epects bidder to stay active until the price reaches P. Dropping out at price P would lead to CG and nonnegative payoffs. Dropping out before or after P would lead to CG3 and zero payoffs; staying in until P would lead to zero payoffs or negative payoffs if s <. So sticking to equilibrium strategies is a bestresponse. As for bidder representing all bidders i >, dropping out immediately leads to nonnegative strictly positive if s > 0 epected payoffs in the second round. ot dropping out immediately, bidder would epect bidder to remain active until P and then drop out; dropping out before 8
9 then would lead to CG and zero payoffs; winning the first round at price P would likewise lead to CG and zero payoffs or negative if s <. So having already failed to drop out at P 0, it remains a bestresponse to stay active until P P. If bidder fails to drop out at P P, bidder then believes s ; provided s as well, bidder epects zero payoffs if he stays in and wins at price P, strictly positive payoffs if he stays in and wins at a lower price than that; dropping out prior to P would lead to CG3, and zero payoffs for bidder. So having stayed in past P 0, bidder has no reason to drop out prior to P. Once the price passes P, the winner of the first round is assured negative payoffs, so both players bestrespond by dropping out immediately. As mentioned above, any history not eplicitly addressed in the strategies above could only be reached via simultaneous deviations by multiple bidders, and therefore cannot affect play on the equilibrium path; we therefore do not specify what happens at these histories. What if 3? If 3, define { P ma P, c } 6ρ If P P, modify both bidder s strategy following a deviation by bidder to be, stay in till P, drop out at P, and drop out immediately at any P > P, and bidder s strategy following a deviation by himself to be, stay in till P, do not drop out at P, drop out immediately at any P > P. Play at all histories other than CG3 are otherwise unchanged. In CG3 when 3, bidders effectively play the drainage tract auction equilibrium considered in EngelbrechtWiggans, Milgrom and Weber 983, Milgrom and Weber 98b, and Hendricks, Porter and Wilson 994, where the one bidder with private information plays a pure strategy and the uninformed bidders play mied strategies and earn zero epected profit. We will construct such an equilibrium where the roundone winner plays a mied strategy while the third bidder whiever of bidders and lost the first round does not bid. Let i denote the identity of the firstround winner, and j whichever of and is not i. Recall that this continuation game includes the common beliefs that s s. Let s 3 solve P c+ 3 +s 3, or s 3 0 if P < c + 3. Define a function Γ : s 3, R + by Γt c t + s 3 t 9
10 and note that Γ t 3 Γs 3 P. s 3 t > 0 for t s 3,, so Γ is strictly increasing. Also note that Define a probability distribution G with support P, Γ by if Γ G ep Γ dt if P, Γ c+ 3 +Γ t t 0 if < P ote that this distribution has a point mass at P. Bidding strategies are as follows: Bidder 3 bids Γs 3 if s 3 > s 3, and does not bid if s 3 s 3 If s i, bidder i mies such that the CDF of his bids is G with the point mass at P indicating no new bid; if s i <, bidder i does not bid Bidder j does not bid To see this is an equilibrium, we first show that if bidder 3 plays this strategy, bidder i is indifferent between not bidding and bidding any number in the support of b 3. Treat the firstround bonus won by bidder i as a sunk benefit, and note that since bidder 3 never bids eactly P not bidding is identical to bidding P Γs 3 for bidder i. By bidding Γ for s 3,, bidder i wins when s 3 < ; if bidder i has signal s i and believes s j, this gives epected payoff c si + Γ c si + c s 3 3 s i s 3 3 s i 6 s 3 If s i, then this is the same for all, so bidder i is indifferent among all bids in the range of Γ and not bidding effectively bidding P, and is therefore bestresponding by playing a mied strategy. As for bidder j, by those same calculations, if s i, bidding Γ would give an epected payoff of 3 s j 6 s 3 G, which is nonpositive for any and any s j, so j bestresponds by not bidding. Finally, knowing the value of the security is c s 3, bidder 3 solves the maimization problem ma b P,Γ {0} ln Gb c s 3 b 0
11 Taking the derivative with respect to b gives gb Gb c s 3 b c Γ b b c s 3 b This is positive when Γ b < s 3, or b < Γs 3 and negative when b > Γs 3 ; so bidder 3 s logprofit problem is strictly quasiconcave and solved at b Γs 3. For s 3 > s 3, c s 3 Γs 3 c s 3 c 3 + s 3 + s 3 s 3 3 s 3 s 3 s 3 > 0 so bidder 3 prefers bidding to not bidding; and for any s 3 s 3, c s 3 P, so bidder 3 prefers not bidding to bidding. What we need from CG3 is for bidder j the one who is not the firstround winner to earn 0 payoffs which is true since he doesn t bid, and if P P, for player i to earn nonpostiive eante payoffs. To see the latter, note that means s 3 c s 3 P P c + 3 6ρ ; bidder i s secondround profit is therefore + 6ρ 3 s i 6 s 3 ρ and therefore even counting the firstround bonus, bidder i s profits are not positive. What if? For, the game is modified in the following way: Firstround strategies are the same, but with P and P modified to be P c+ and P c + + ρ + ρ If bidder deviates in the first round but drops out at a price P P, leaving bidder as the firstround winner, CG is replaced by a drainage tract auction where s and s U0,. Bidder s strategy is to bid Γ s i c + + s if this is above P, and not bid otherwise. Bidder s strategy is to mi over not bidding and bidding in the range of Γ, such that the
12 distribution of his bids is if Γ G ep Γ dt if P, Γ c+ +Γ t t 0 if < P with the point mass at P corresponding to not bidding. If bidder deviates in the first round and wins when bidder drops out at price P, CG is replaced by a different drainage tract auction where s and s U0,. Bidder s strategy is to bid Γ 3 s c + + s + ρ s if s > ρ, and to not bid if s ρ ; bidder mies such that the distribution of his bids is if Γ 3 G 3 ep Γ dt if P, Γ c+ +Γ 3 3 t t 0 if < P If both bidders deviate in the first round, leading to either bidder winning at a price P < P or either bidder winning a price P > P, beliefs are s s ; if P < c +, both bidders bid c + in the second round, and if P c +, neither bidder bids in the second round. In the case where deviated but still dropped out at P P, losing the premium, bidder s strategy implies that a bid of Γ by bidder gives epected payoff c + s + Γ s so if s, bidder earns zero payoffs from any bid and is thus content to mi. Given bidder s mied strategy, bidder having already won the premium and believing that s, by bidding b, earns additional payoff G b c + + s b. Taking the log and then the first order condition gives, which is positive when b < Γ s c+ +Γ b b c+ and negative +s b when b > Γ s, making Γ s a bestresponse when it is greater than P and making not bidding, equivalent to bidding P, a bestresponse when Γ s < P.
13 In the case where bidder won the first round at price P, the logic is similar, but now bidding Γ 3 earns bidder a secondround payoff of c + s + Γ 3 c + s + c + ρ s ρ so if s, any secondround bid gives the same payoff of ρ, eactly countering the win of the premium in the first round. Since bidder won the premium, not bidding is the same as bidding P, and gives the same payoff of ρ. Again given bidder s miing strategy, Γ 3 is a bestresponse for bidder. If bidder deviates, bidder epects to drop out of the first round at price P and earn positive payoff in the second round; by dropping out earlier, he would induce bidder to bid c + in the second round, so he would earn 0. So it is credible for bidder to stay in until P. If bidder deviates, then, he epects to either drop out before P, in which case he earns nothing; or to win the first round at P, in which case he wins the premium ρ but then earns payoff ρ in the second round. So deviating in the first round is not profitable for bidder. Secondround play on the equilibrium path is the same symmetric equilibrium as in the > cases. References. EngelbrechtWiggans, Richard, Paul Milgrom, and Robert Weber, Competitive Bidding and Proprietary Information, Journal of Mathematical Economics 983, Hendricks, Kenneth, Robert Porter, and Charles Wilson, Auctions for Oil and Gas Leases with an Informed Bidder and a Random Reservation Price, Econometrica 6 994, Milgrom, Paul, and Robert Weber, The Value of Information in a SealedBid Auction, Journal of Mathematical Economics 0 98b,
Midsummer Examinations 2013
[EC 7089] Midsummer Examinations 2013 No. of Pages: 5 No. of Questions: 5 Subject [Economics] Title of Paper [EC 7089: GAME THEORY] Time Allowed [2 hours (TWO HOURS)] Instructions to candidates Answer
More informationChapter 7. Sealedbid Auctions
Chapter 7 Sealedbid Auctions An auction is a procedure used for selling and buying items by offering them up for bid. Auctions are often used to sell objects that have a variable price (for example oil)
More informationEconomics 200C, Spring 2012 Practice Midterm Answer Notes
Economics 200C, Spring 2012 Practice Midterm Answer Notes I tried to write questions that are in the same form, the same length, and the same difficulty as the actual exam questions I failed I think that
More information1. Suppose demand for a monopolist s product is given by P = 300 6Q
Solution for June, Micro Part A Each of the following questions is worth 5 marks. 1. Suppose demand for a monopolist s product is given by P = 300 6Q while the monopolist s marginal cost is given by MC
More informationCournot s model of oligopoly
Cournot s model of oligopoly Single good produced by n firms Cost to firm i of producing q i units: C i (q i ), where C i is nonnegative and increasing If firms total output is Q then market price is P(Q),
More informationECON 459 Game Theory. Lecture Notes Auctions. Luca Anderlini Spring 2015
ECON 459 Game Theory Lecture Notes Auctions Luca Anderlini Spring 2015 These notes have been used before. If you can still spot any errors or have any suggestions for improvement, please let me know. 1
More information8 Modeling network traffic using game theory
8 Modeling network traffic using game theory Network represented as a weighted graph; each edge has a designated travel time that may depend on the amount of traffic it contains (some edges sensitive to
More informationExam #2 cheat sheet. The space provided below each question should be sufficient for your answer. If you need additional space, use additional paper.
Exam #2 cheat sheet The space provided below each question should be sufficient for your answer. If you need additional space, use additional paper. You are allowed to use a calculator, but only the basic
More informationOptimal Auctions Continued
Lecture 6 Optimal Auctions Continued 1 Recap Last week, we... Set up the Myerson auction environment: n riskneutral bidders independent types t i F i with support [, b i ] residual valuation of t 0 for
More informationA Theory of Auction and Competitive Bidding
A Theory of Auction and Competitive Bidding Paul Milgrom and Rober Weber Econometrica 1982 Presented by Yifang Guo Duke University November 3, 2011 Yifang Guo (Duke University) Envelope Theorems Nov. 3,
More informationDepartment of Economics The Ohio State University Second Midterm Exam Answers Econ 805
Prof. Peck Winter 010 Department of Economics The Ohio State University Second Midterm Exam Answers Econ 805 1. (30 points) a: Consider the following class of strategic form games, based on the parameter,
More informationUniversidad Carlos III de Madrid Game Theory Problem set on Repeated Games and Bayesian Games
Session 1: 1, 2, 3, 4 Session 2: 5, 6, 8, 9 Universidad Carlos III de Madrid Game Theory Problem set on Repeated Games and Bayesian Games 1. Consider the following game in the normal form: Player 1 Player
More informationIntroduction to Auctions
Introduction to Auctions Lots of good theory and empirical work. game is simple with wellspecified rules actions are observed directly payoffs can sometimes be inferred Also, lots of data. government
More informationECO 199 B GAMES OF STRATEGY Spring Term 2004 PROBLEM SET 4 B DRAFT ANSWER KEY 1003 9099 21 8089 14 7079 4 069 11
The distribution of grades was as follows. ECO 199 B GAMES OF STRATEGY Spring Term 2004 PROBLEM SET 4 B DRAFT ANSWER KEY Range Numbers 1003 9099 21 8089 14 7079 4 069 11 Question 1: 30 points Games
More informationNext Tuesday: Amit Gandhi guest lecture on empirical work on auctions Next Wednesday: first problem set due
Econ 805 Advanced Micro Theory I Dan Quint Fall 2007 Lecture 6 Sept 25 2007 Next Tuesday: Amit Gandhi guest lecture on empirical work on auctions Next Wednesday: first problem set due Today: the pricediscriminating
More informationGame Theory. UCI Math Circle, Fall 2015
Game Theory UCI Math Circle, Fall 2015 (1) (Prisoner s Dilemma) Two members of a criminal gang are arrested and imprisoned. Each prisoner is in solitary confinement with no means of communicating with
More informationNash Equilibrium. Ichiro Obara. January 11, 2012 UCLA. Obara (UCLA) Nash Equilibrium January 11, 2012 1 / 31
Nash Equilibrium Ichiro Obara UCLA January 11, 2012 Obara (UCLA) Nash Equilibrium January 11, 2012 1 / 31 Best Response and Nash Equilibrium In many games, there is no obvious choice (i.e. dominant action).
More informationBayesian Nash Equilibrium
. Bayesian Nash Equilibrium . In the final two weeks: Goals Understand what a game of incomplete information (Bayesian game) is Understand how to model static Bayesian games Be able to apply Bayes Nash
More informationJar of Coins. Jar contains some amount of coins
Jar of Coins Jar contains some amount of coins Jar of Coins Jar contains some amount of coins Write down a bid on the jar Jar of Coins Jar contains some amount of coins Write down a bid on the jar Is this
More informationBidding with Securities: ProfitShare (Equity) vs. Cash Auctions
Elmar G. Wolfstetter 1/13 Bidding with Securities: ProfitShare (Equity) vs. Cash Auctions Elmar G. Wolfstetter Elmar G. Wolfstetter 2/13 Outline 1 Introduction 2 Equilibrium 3 (Almost) full surplus extraction
More informationAsymmetric Information
Chapter 12 Asymmetric Information CHAPTER SUMMARY In situations of asymmetric information, the allocation of resources will not be economically efficient. The asymmetry can be resolved directly through
More informationGame Theory and Poker
Game Theory and Poker Jason Swanson April, 2005 Abstract An extremely simplified version of poker is completely solved from a game theoretic standpoint. The actual properties of the optimal solution are
More informationMA300.2 Game Theory II, LSE
MA300.2 Game Theory II, LSE Lecture 10: Sequential Games with Imperfect Information 1. The Spence Signaling Model Or: a model of education in which you don t really learn anything... [But that s not why
More informationHybrid Auctions Revisited
Hybrid Auctions Revisited Dan Levin and Lixin Ye, Abstract We examine hybrid auctions with affiliated private values and riskaverse bidders, and show that the optimal hybrid auction trades off the benefit
More informationMidterm Exam. Economics Spring 2014 Professor Jeff Ely
Midterm Exam Economics 4103 Spring 014 Professor Jeff Ely Instructions: There are three questions with equal weight. You have until 10:50 to complete the exam. This is a closedbook and closednotebook
More information6.207/14.15: Networks Lecture 16: Cooperation and Trust in Networks
6.207/14.15: Networks Lecture 16: Cooperation and Trust in Networks Daron Acemoglu and Asu Ozdaglar MIT November 4, 2009 1 Introduction Outline The role of networks in cooperation A model of social norms
More informationGames of Incomplete Information
Games of Incomplete Information Jonathan Levin February 00 Introduction We now start to explore models of incomplete information. Informally, a game of incomplete information is a game where the players
More informationWe refer to player 1 as the sender and to player 2 as the receiver.
7 Signaling Games 7.1 What is Signaling? The concept of signaling refers to strategic models where one or more informed agents take some observable actions before one or more uninformed agents make their
More information10.1 Bipartite Graphs and Perfect Matchings
10.1 Bipartite Graphs and Perfect Matchings In bipartite graph the nodes are divided into two categories and each edge connects a node in one category to a node in the other category. For example: Administrators
More informationMarkus K. Brunnermeier
Institutional tut Finance Financial Crises, Risk Management and Liquidity Markus K. Brunnermeier Preceptor: Dong BeomChoi Princeton University 1 Market Making Limit Orders Limit order price contingent
More informationCMSC287: Network Science and Networked Information CHAPTER 6. Games
CMSC287: Network Science and Networked Information CHAPTER 6 Games What is a Game? You and a partner both have an exam and presentation the next day. You can both either study for the exam or prepare
More informationRentSeeking and Corruption
RentSeeking and Corruption Holger Sieg University of Pennsylvania October 1, 2015 Corruption Inefficiencies in the provision of public goods and services arise due to corruption and rentseeking of public
More information4 Eliminating Dominated Strategies
4 Eliminating Dominated Strategies Um so schlimmer für die Tatsache (So much the worse for the facts) Georg Wilhelm Friedrich Hegel 4.1 Dominated Strategies Suppose S i is a finite set of pure strategies
More informationCHAPTER 3. Arbitrage and Financial Decision Making. Chapter Synopsis
CHAPTER 3 Arbitrage and Financial Decision Making Chapter Synopsis 3.1 Valuing Decisions When considering an investment opportunity, a financial manager must systematically compare the costs and benefits
More informationChapter 9. Auctions. 9.1 Types of Auctions
From the book Networks, Crowds, and Markets: Reasoning about a Highly Connected World. By David Easley and Jon Kleinberg. Cambridge University Press, 2010. Complete preprint online at http://www.cs.cornell.edu/home/kleinber/networksbook/
More informationInternet Advertising and the Generalized Second Price Auction:
Internet Advertising and the Generalized Second Price Auction: Selling Billions of Dollars Worth of Keywords Ben Edelman, Harvard Michael Ostrovsky, Stanford GSB Michael Schwarz, Yahoo! Research A Few
More information6.207/14.15: Networks Lecture 15: Repeated Games and Cooperation
6.207/14.15: Networks Lecture 15: Repeated Games and Cooperation Daron Acemoglu and Asu Ozdaglar MIT November 2, 2009 1 Introduction Outline The problem of cooperation Finitelyrepeated prisoner s dilemma
More informationCHAPTER 13 GAME THEORY AND COMPETITIVE STRATEGY
CHAPTER 13 GAME THEORY AND COMPETITIVE STRATEGY EXERCISES 3. Two computer firms, A and B, are planning to market network systems for office information management. Each firm can develop either a fast,
More informationUnraveling versus Unraveling: A Memo on Competitive Equilibriums and Trade in Insurance Markets
Unraveling versus Unraveling: A Memo on Competitive Equilibriums and Trade in Insurance Markets Nathaniel Hendren January, 2014 Abstract Both Akerlof (1970) and Rothschild and Stiglitz (1976) show that
More informationChapter 11: Game Theory & Competitive Strategy
Chapter 11: Game Theory & Competitive Strategy Game theory helps to understand situations in which decisionmakers strategically interact. A game in the everyday sense is: A competitive activity... according
More informationOnce we allow for bidders wanting multiple auctions, things immediately get much more complicated.
Econ 805 Advanced Micro Theory I Dan Quint Fall 2009 Lecture 16 Today  a fairly brief overview of multiunit auctions. Everything we ve done so far has assumed unit demand. In a couple of cases, we ve
More informationGAME THEORY. Department of Economics, MIT, A normal (or strategic) form game is a triplet (N, S, U) with the following properties
14.126 GAME THEORY MIHAI MANEA Department of Economics, MIT, 1. NormalForm Games A normal (or strategic) form game is a triplet (N, S, U) with the following properties N = {1, 2,..., n} is a finite set
More informationThe Sealed Bid Auction Experiment:
The Sealed Bid Auction Experiment: This is an experiment in the economics of decision making. The instructions are simple, and if you follow them carefully and make good decisions, you may earn a considerable
More informationLATE AND MULTIPLE BIDDING IN SECOND PRICE INTERNET AUCTIONS: THEORY AND EVIDENCE CONCERNING DIFFERENT RULES FOR ENDING AN AUCTION
LATE AND MULTIPLE BIDDING IN SECOND PRICE INTERNET AUCTIONS: THEORY AND EVIDENCE CONCERNING DIFFERENT RULES FOR ENDING AN AUCTION AXEL OCKENFELS ALVIN E. ROTH CESIFO WORKING PAPER NO. 992 CATEGORY 9: INDUSTRIAL
More informationEconomics 431 Homework 5 Due Wed,
Economics 43 Homework 5 Due Wed, Part I. The tipping game (this example due to Stephen Salant) Thecustomercomestoarestaurantfordinnereverydayandisservedbythe same waiter. The waiter can give either good
More informationSTRATEGY AND GAMES 1
STRATEGY AND GAMES Overview Context: You re in an industry with a small number of competitors. You re concerned that if you cut your price, your competitors will, too. How do you act? Ditto pretty much
More informationPerfect Bayesian Equilibrium
Perfect Bayesian Equilibrium When players move sequentially and have private information, some of the Bayesian Nash equilibria may involve strategies that are not sequentially rational. The problem is
More informationChapter 3 : Dynamic Game Theory.
Chapter 3 : Dynamic Game Theory. In the previous chapter we focused on static games. However for many important economic applications we need to think of the game as being played over a number of time
More informationManagerial Economics
Managerial Economics Unit 8: Auctions Rudolf WinterEbmer Johannes Kepler University Linz Winter Term 2012 Managerial Economics: Unit 8  Auctions 1 / 40 Objectives Explain how managers can apply game
More informationGames of Incomplete Information
Games of Incomplete Information Yan Chen November 16, 2005 Games of Incomplete Information Auction Experiments Auction Theory Administrative stuff Games of Incomplete Information Several basic concepts:
More informationMicroeconomic Theory Jamison / Kohlberg / Avery Problem Set 4 Solutions Spring 2012. (a) LEFT CENTER RIGHT TOP 8, 5 0, 0 6, 3 BOTTOM 0, 0 7, 6 6, 3
Microeconomic Theory Jamison / Kohlberg / Avery Problem Set 4 Solutions Spring 2012 1. Subgame Perfect Equilibrium and Dominance (a) LEFT CENTER RIGHT TOP 8, 5 0, 0 6, 3 BOTTOM 0, 0 7, 6 6, 3 Highlighting
More information. Introduction to Game Theory Lecture 8: Dynamic Bayesian Games. Haifeng Huang University of California, Merced. Shanghai, Summer 2011
.. Introduction to Game Theory Lecture 8: Dynamic Bayesian Games Haifeng Huang University of California, Merced Shanghai, Summer 2011 Basic terminology Now we study dynamic Bayesian games, or dynamic/extensive
More informationChapter 22: Exchange in Capital Markets
Chapter 22: Exchange in Capital Markets 22.1: Introduction We are now in a position to examine trade in capital markets. We know that some people borrow and some people save. After a moment s reflection
More informationBidding with Securities: Comment
Bidding with Securities: Comment YeonKoo Che 1 Jinwoo Kim 2 1 Columbia University, Economics Department; Email: yeonkooche@gmail.com 2 Yonsei University, School of Economics; Email: jikim@yonsei.ac.kr.
More informationProbability and Expected Value
Probability and Expected Value This handout provides an introduction to probability and expected value. Some of you may already be familiar with some of these topics. Probability and expected value are
More informationI d Rather Stay Stupid: The Advantage of Having Low Utility
I d Rather Stay Stupid: The Advantage of Having Low Utility Lior Seeman Department of Computer Science Cornell University lseeman@cs.cornell.edu Abstract Motivated by cost of computation in game theory,
More informationMean field equilibria of dynamic auctions with learning
Mean field equilibria of dynamic auctions with learning Ramesh Johari Stanford University Joint work with K. Iyer and M. Sundararajan Overview What tools are useful for studying dynamic systems with many
More informationAvoiding the Consolation Prize: The Mathematics of Game Shows
Avoiding the Consolation Prize: The Mathematics of Game Shows STUART GLUCK, Ph.D. CENTER FOR TALENTED YOUTH JOHNS HOPKINS UNIVERSITY STU@JHU.EDU CARLOS RODRIGUEZ CENTER FOR TALENTED YOUTH JOHNS HOPKINS
More informationIntroduction to Probability Theory for Graduate Economics
Introduction to Probability Theory for Graduate Economics Brent Hickman November 2, 29 2 Part I In this chapter we will deal with random variables and the probabilistic laws that govern their outcomes.
More informationThe Shapley Value and the Core
The Shapley Value and the Core Lecture 23 The Shapley Value and the Core Lecture 23, Slide 1 Lecture Overview 1 Recap 2 Analyzing Coalitional Games 3 The Shapley Value 4 The Core The Shapley Value and
More informationEquilibrium Bids in Sponsored Search. Auctions: Theory and Evidence
Equilibrium Bids in Sponsored Search Auctions: Theory and Evidence Tilman Börgers Ingemar Cox Martin Pesendorfer Vaclav Petricek September 2008 We are grateful to Sébastien Lahaie, David Pennock, Isabelle
More informationAlgorithmic Game Theory and Applications. Lecture 1: What is game theory?
Algorithmic Game Theory and Applications Lecture : What is game theory? Kousha Etessami Basic course information Lecturer: Kousha Etessami; Office: IF 5.2; Phone: 65 597. Lecture times: Monday&Thursday,
More informationChapter 11. Network Models of Markets with Intermediaries PriceSetting in Markets
From the book Networks, Crowds, and Markets: Reasoning about a Highly Connected World. By David Easley and Jon Kleinberg. Cambridge University Press, 2. Complete preprint online at http://www.cs.cornell.edu/home/kleinber/networksbook/
More informationFinancial Markets. Itay Goldstein. Wharton School, University of Pennsylvania
Financial Markets Itay Goldstein Wharton School, University of Pennsylvania 1 Trading and Price Formation This line of the literature analyzes the formation of prices in financial markets in a setting
More informationIntroduction to Game Theory Lecture Note 3: Mixed Strategies
Introduction to Game Theory Lecture Note 3: Mixed Strategies Haifeng Huang University of California, Merced Mixed strategies and von NeumannMorgenstern preferences So far what we have considered are pure
More information6.254 : Game Theory with Engineering Applications Lecture 2: Strategic Form Games
6.254 : Game Theory with Engineering Applications Lecture 2: Strategic Form Games Asu Ozdaglar MIT February 4, 2009 1 Introduction Outline Decisions, utility maximization Strategic form games Best responses
More informationOn Victory Point scales in duplicate bridge
On Victory Point scales in duplicate bridge Preamble During 2103 the WBF introduced new VP scales for their events. I first noticed this when Ron Klinger went to press on this subject in the July ABF newsletter.
More informationFinance 400 A. Penati  G. Pennacchi Market MicroStructure: Notes on the Kyle Model
Finance 400 A. Penati  G. Pennacchi Market MicroStructure: Notes on the Kyle Model These notes consider the singleperiod model in Kyle (1985) Continuous Auctions and Insider Trading, Econometrica 15,
More informationA Study of Second Price Internet Ad Auctions. Andrew Nahlik
A Study of Second Price Internet Ad Auctions Andrew Nahlik 1 Introduction Internet search engine advertising is becoming increasingly relevant as consumers shift to a digital world. In 2010 the Internet
More informationThe Limits of Price Discrimination
The Limits of Price Discrimination Dirk Bergemann, Ben Brooks and Stephen Morris University of Zurich May 204 Introduction: A classic economic issue... a classic issue in the analysis of monpoly is the
More informationSealed Bid Second Price Auctions with Discrete Bidding
Sealed Bid Second Price Auctions with Discrete Bidding Timothy Mathews and Abhijit Sengupta August 16, 2006 Abstract A single item is sold to two bidders by way of a sealed bid second price auction in
More informationLecture V: Mixed Strategies
Lecture V: Mixed Strategies Markus M. Möbius February 26, 2008 Osborne, chapter 4 Gibbons, sections 1.31.3.A 1 The Advantage of Mixed Strategies Consider the following RockPaperScissors game: Note that
More informationColored Hats and Logic Puzzles
Colored Hats and Logic Puzzles Alex Zorn January 21, 2013 1 Introduction In this talk we ll discuss a collection of logic puzzles/games in which a number of people are given colored hats, and they try
More informationCPC/CPA Hybrid Bidding in a Second Price Auction
CPC/CPA Hybrid Bidding in a Second Price Auction Benjamin Edelman Hoan Soo Lee Working Paper 09074 Copyright 2008 by Benjamin Edelman and Hoan Soo Lee Working papers are in draft form. This working paper
More informationChapter 5.1 Systems of linear inequalities in two variables.
Chapter 5. Systems of linear inequalities in two variables. In this section, we will learn how to graph linear inequalities in two variables and then apply this procedure to practical application problems.
More information10 Dynamic Games of Incomple Information
10 Dynamic Games of Incomple Information DRAW SELTEN S HORSE In game above there are no subgames. Hence, the set of subgame perfect equilibria and the set of Nash equilibria coincide. However, the sort
More information0.0.2 Pareto Efficiency (Sec. 4, Ch. 1 of text)
September 2 Exercises: Problem 2 (p. 21) Efficiency: p. 2829: 1, 4, 5, 6 0.0.2 Pareto Efficiency (Sec. 4, Ch. 1 of text) We discuss here a notion of efficiency that is rooted in the individual preferences
More informationCHAPTER NINE WORLD S SIMPLEST 5 PIP SCALPING METHOD
CHAPTER NINE WORLD S SIMPLEST 5 PIP SCALPING METHOD For a book that was intended to help you build your confidence, it s spent a long time instead discussing various trading methods and systems. But there
More informationDynamic Auction: Mechanisms and Applications
Dynamic Auction: Mechanisms and Applications Lin Gao IERG 6280 Network Economics Spring 2011 Preliminary Benchmark Model Extensions Applications Conclusion Outline What is an Auction? An auction is a market
More informationOdds: Odds compares the number of favorable outcomes to the number of unfavorable outcomes.
MATH 11008: Odds and Expected Value Odds: Odds compares the number of favorable outcomes to the number of unfavorable outcomes. Suppose all outcomes in a sample space are equally likely where a of them
More informationECON 40050 Game Theory Exam 1  Answer Key. 4) All exams must be turned in by 1:45 pm. No extensions will be granted.
1 ECON 40050 Game Theory Exam 1  Answer Key Instructions: 1) You may use a pen or pencil, a handheld nonprogrammable calculator, and a ruler. No other materials may be at or near your desk. Books, coats,
More informationOverview: Auctions and Bidding. Examples of Auctions
Overview: Auctions and Bidding Introduction to Auctions Openoutcry: ascending, descending Sealedbid: firstprice, secondprice Private Value Auctions Common Value Auctions Winner s curse Auction design
More informationMath 016. Materials With Exercises
Math 06 Materials With Exercises June 00, nd version TABLE OF CONTENTS Lesson Natural numbers; Operations on natural numbers: Multiplication by powers of 0; Opposite operations; Commutative Property of
More informationChapter 9 Parity and Other Option Relationships
Chapter 9 Parity and Other Option Relationships Question 9.1. This problem requires the application of putcallparity. We have: Question 9.2. P (35, 0.5) C (35, 0.5) e δt S 0 + e rt 35 P (35, 0.5) $2.27
More information6.207/14.15: Networks Lectures 1921: Incomplete Information: Bayesian Nash Equilibria, Auctions and Introduction to Social Learning
6.207/14.15: Networks Lectures 1921: Incomplete Information: Bayesian Nash Equilibria, Auctions and Introduction to Social Learning Daron Acemoglu and Asu Ozdaglar MIT November 23, 25 and 30, 2009 1 Introduction
More informationSequential lmove Games. Using Backward Induction (Rollback) to Find Equilibrium
Sequential lmove Games Using Backward Induction (Rollback) to Find Equilibrium Sequential Move Class Game: Century Mark Played by fixed pairs of players taking turns. At each turn, each player chooses
More information1. (a) Multiply by negative one to make the problem into a min: 170A 170B 172A 172B 172C Antonovics Foster Groves 80 88
Econ 172A, W2001: Final Examination, Possible Answers There were 480 possible points. The first question was worth 80 points (40,30,10); the second question was worth 60 points (10 points for the first
More informationPoker with a Three Card Deck 1
Poker with a Three Card Deck We start with a three card deck containing one Ace, one King and one Queen. Alice and Bob are each dealt one card at random. There is a pot of $ P (and we assume P 0). Alice
More informationGame Theory: Supermodular Games 1
Game Theory: Supermodular Games 1 Christoph Schottmüller 1 License: CC Attribution ShareAlike 4.0 1 / 22 Outline 1 Introduction 2 Model 3 Revision questions and exercises 2 / 22 Motivation I several solution
More informationAngloDutch Premium Auctions in EighteenthCentury Amsterdam
AngloDutch Premium Auctions in EighteenthCentury Amsterdam Christiaan van Bochove Lars Boerner Daniel Quint School of Business & Economics Discussion Paper Economics 2012/3 ANGLODUTCH PREMIUM AUCTIONS
More informationPolitical Economy and the Firm
Political Economy and the Firm David Kelsey Department of Economics University of Exeter June 2011. (University of Exeter) Political Economy and the Firm June 2011. 1 / 25 Introduction In Bulkley, Myles,
More informationEconomics 431 Homework 4 Due Wed July 25
Economics 431 Homework 4 Due Wed July 5 Part I A variant of Stackelberg game There are two firms. Demand is linear, p = A BQ, and marginal cost is constant and equal to c. Suppose that firm 1 moves first
More informationA Sealed Bid Auction that Matches the English Auction 1
A Sealed Bid Auction that Matches the English Auction 1 Motty Perry Dept. of Economics Hebrew University of Jerusalem Mount Scopus Jerusalem 91905 Israel motty@sunset.huji.ac.il Elmar Wolfstetter Dept.
More informationEconomics 335, Spring 1999 Problem Set #7
Economics 335, Spring 1999 Problem Set #7 Name: 1. A monopolist has two sets of customers, group 1 and group 2. The inverse demand for group 1 may be described by P 1 = 200? Q 1, where P 1 is the price
More informationWeek 7  Game Theory and Industrial Organisation
Week 7  Game Theory and Industrial Organisation The Cournot and Bertrand models are the two basic templates for models of oligopoly; industry structures with a small number of firms. There are a number
More informationA short note on American option prices
A short note on American option Filip Lindskog April 27, 2012 1 The setup An American call option with strike price K written on some stock gives the holder the right to buy a share of the stock (exercise
More informationThe Basics of Game Theory
Sloan School of Management 15.010/15.011 Massachusetts Institute of Technology RECITATION NOTES #7 The Basics of Game Theory Friday  November 5, 2004 OUTLINE OF TODAY S RECITATION 1. Game theory definitions:
More informationFUNDING INVESTMENTS FINANCE 738, Spring 2008, Prof. Musto Class 4 Market Making
FUNDING INVESTMENTS FINANCE 738, Spring 2008, Prof. Musto Class 4 Market Making Only Game In Town, by Walter Bagehot (actually, Jack Treynor) Seems like any trading idea would be worth trying Tiny amount
More informationOptimal Bidding Strategies in NonSealed Bid Online Auctions of Common Products with Quantity Uncertainty
Optimal Bidding Strategies in NonSealed Bid Online Auctions of Common Products with Quantity Uncertainty Chonawee Supatgiat Research Group, Enron Corporation Houston, TX 77002 John R. Birge Department
More informationFINAL EXAM, Econ 171, March, 2015, with answers
FINAL EXAM, Econ 171, March, 2015, with answers There are 9 questions. Answer any 8 of them. Good luck! Problem 1. (True or False) If a player has a dominant strategy in a simultaneousmove game, then
More information