# Graph Matching. walk back and forth in front of Motion Detector

Save this PDF as:

Size: px
Start display at page:

Download "Graph Matching. walk back and forth in front of Motion Detector"

## Transcription

1 Experiment 1 One of the most effective methods of describing motion is to plot graphs of distance, velocity, and acceleration vs. time. From such a graphical representation, it is possible to determine in what direction an object is going, how fast it is moving, how far it traveled, and whether it is speeding up or slowing down. In this experiment, you will use a Motion Detector to determine this information by plotting a real time graph of your motion as you move across the classroom. The Motion Detector measures the time it takes for a high frequency sound pulse to travel from the detector to an object and back. Using this round-trip time and the speed of sound, you can determine the distance to the object; that is, its position. Logger Pro will perform this calculation for you. It can then use the change in position to calculate the object s velocity and acceleration. All of this information can be displayed either as a table or a graph. A qualitative analysis of the graphs of your motion will help you develop an understanding of the concepts of kinematics. walk back and forth in front of Motion Detector OBJECTIVES Analyze the motion of a student walking across the room. Predict, sketch, and test distance vs. time kinematics graphs. Predict, sketch, and test velocity vs. time kinematics graphs. MATERIALS Palm M515 with Data Pro LabPro and batteries or power supply Cradle to charge Palm Vernier Motion Detector with cable Meter stick Masking tape Physics with Computers 1-1

3 Part Il Distance vs. Time Graph Matching 1. Describe how you would walk to produce this target graph. 2. To test your prediction, choose a starting position and stand at that point. Start data collection by tapping start. When you hear the Motion Detector begin to click, walk in such a way that the graph of your motion matches the target graph. 10. If you were not successful, repeat the process until your motion closely matches the graph on the screen. If a printer is attached, print the graph with your best attempt. 11. Repeat Steps 8 10, using a new target graph. 12. Answer the Analysis questions for Part II before proceeding to Part III. Part IIl Velocity vs. Time Graph Matching 13. Change to a velocity v. time graph by tapping the Y axis and selecting Velocity. Physics with Computers 1-3

4 Experiment Describe how you would walk to produce this target graph. 15. To test your prediction, choose a starting position and stand at that point. Start data collection by tapping start. When you hear the Motion Detector begin to click, walk in such a way that the graph of your motion matches the target graph on the screen. It will be more difficult to match the velocity graph than it was for the distance graph. 16. Repeat Steps to match this graph. 17. Remove the masking tape strips from the floor. ANALYSIS Part II Distance vs. Time Graph Matching 1. Describe how you walked for each of the graphs that you matched. 2. Explain the significance of the slope of a distance vs. time graph. Include a discussion of positive and negative slope. 3. What type of motion is occurring when the slope of a distance vs. time graph is zero? 4. What type of motion is occurring when the slope of a distance vs. time graph is constant? 5. What type of motion is occurring when the slope of a distance vs. time graph is changing? Test your answer to this question using the Motion Detector. 1-4 Physics with Computers

### GRAPH MATCHING EQUIPMENT/MATERIALS

GRAPH MATCHING LAB MECH 6.COMP. From Physics with Computers, Vernier Software & Technology, 2000. Mathematics Teacher, September, 1994. INTRODUCTION One of the most effective methods of describing motion

### 1 One Dimensional Horizontal Motion Position vs. time Velocity vs. time

PHY132 Experiment 1 One Dimensional Horizontal Motion Position vs. time Velocity vs. time One of the most effective methods of describing motion is to plot graphs of distance, velocity, and acceleration

### STATIC AND KINETIC FRICTION

STATIC AND KINETIC FRICTION LAB MECH 3.COMP From Physics with Computers, Vernier Software & Technology, 2000. INTRODUCTION If you try to slide a heavy box resting on the floor, you may find it difficult

### Experiment: Static and Kinetic Friction

PHY 201: General Physics I Lab page 1 of 6 OBJECTIVES Experiment: Static and Kinetic Friction Use a Force Sensor to measure the force of static friction. Determine the relationship between force of static

### LAB 1: INTRODUCTION TO MOTION

Name Date Partners V1 OBJECTIVES OVERVIEW LAB 1: INTRODUCTION TO MOTION To discover how to measure motion with a motion detector To see how motion looks as a positiontime graph To see how motion looks

### COEFFICIENT OF KINETIC FRICTION

COEFFICIENT OF KINETIC FRICTION LAB MECH 5.COMP From Physics with Computers, Vernier Software & Technology, 2000. INTRODUCTION If you try to slide a heavy box resting on the floor, you may find it difficult

### Velocity Test: Interpreting Velocity Graphs

Velocity Test: Interpreting Velocity Graphs Activity 3 When you walk, ride a bike, or travel in a car, you are often interested in the distance traveled, the time it took, and the speed or velocity of

### WEEK 2: INTRODUCTION TO MOTION

Names Date OBJECTIVES WEEK 2: INTRODUCTION TO MOTION To discover how to use a motion detector. To explore how various motions are represented on a distance (position) time graph. To explore how various

### Evaluation copy. Centripetal Acceleration on a Turntable. computer OBJECTIVES MATERIALS

Computer 20 Centripetal Acceleration on a Turntable As a child, you may remember the challenge of spinning a playground merry-go-round so you could scare the unfortunate riders as they traveled around

### Meet You at the Intersection: Solving a System of Linear Equations

Meet You at the Intersection: Solving a System of Linear Equations Activity 30 Many times, the solution to a real-life problem involves solving more than one mathematical equation at the same time. The

### Physics 1050 Experiment 2. Acceleration Due to Gravity

Acceleration Due to Gravity Prelab Questions These questions need to be completed before entering the lab. Please show all workings. Prelab 1: For a falling ball, which bounces, draw the expected shape

### PHYSICS 220 LAB #2: PROJECTILE MOTION

Name: Partners: PHYSICS 220 LAB #2: PROJECTILE MOTION As a dolphin leaps out of the water, it experiences a change in velocity that is the same as that of any other mass moving freely close to the surface

### Conservation of Momentum Using PASCO TM Carts and Track to Study Collisions in One Dimension

14 Conservation of Conservation of Using PASCO TM Carts and Track to Study s in One Dimension OBJECTIVE Students will collide two PASCO TM carts on a track to determine the momentum before and after a

### Picket Fence Free Fall

Picket Fence Free Fall Experiment 5 We say an object is in free fall when the only force acting on it is the earth s gravitational force. No other forces can be acting; in particular, air resistance must

### FREE FALL. Introduction. Reference Young and Freedman, University Physics, 12 th Edition: Chapter 2, section 2.5

Physics 161 FREE FALL Introduction This experiment is designed to study the motion of an object that is accelerated by the force of gravity. It also serves as an introduction to the data analysis capabilities

Distance and Radiation Computer 2 Scientists and health care workers using intense radiation sources are often told that the best protection is distance; that is, the best way to minimize exposure to radiation

### Acceleration Due to Gravity

Activity 5 PS-2826 Acceleration Due to Gravity Kinematics: linear motion, acceleration, free fall, graphing GLX setup file: free fall Qty Equipment and Materials Part Number 1 PASPORT Xplorer GLX PS-2002

### Static and Kinetic Friction

Objectives Static and Kinetic Friction In this lab you will Equipment investigate how friction varies with the applied force. measure the coefficients of static and kinetic friction. learn how to use the

### Physics P150A Labs Experimental Lab #3 Newton s 3 rd Law (Rev A 9/21/12) Activity #1 Rocket Balloons

Activity #1 Rocket Balloons In this activity, you will learn about Newton s Third Law of Motion: how do the actions and reactions in a moving system relate to forces and acceleration? In this experiment

### Measuring Motion. walk back and forth in front of Motion Detector

Measuring Motion walk back and forth in front of Motion Detector Objective: To understand the relationship between Distance, Velocity and Acceleration. To gain familiarity with collecting position data

### THE CONSERVATION OF ENERGY - PENDULUM -

THE CONSERVATION OF ENERGY - PENDULUM - Introduction The purpose of this experiment is to measure the potential energy and the kinetic energy of a mechanical system and to quantitatively compare the two

### Introduction to the Vernier Photogate Using LabQuest App

Introduction to the Vernier Photogate Using LabQuest App The purpose of this document is to provide a tutorial on the use of Vernier Photogates with LabQuest App data-collection software. This combination

### Kinematics 1D ~ Lab. 4. What was the average speed of the truck for the six seconds? show your work here.

Kinematics 1D ~ Lab Name: Instructions: Using a pencil, answer the following questions. The lab is marked based on clarity of responses, completeness, neatness, and accuracy. Do your best! Part 1: Graphing

### Quick Reference Manual

Quick Reference Manual ii TABLE OF CONTENTS This guide first leads you through the basics of Logger Pro, including software installation procedures. You will learn how to collect data, manually enter data,

### The Magnetic Field of a Permanent Magnet

Introduction The of a Permanent Magnet A bar magnet is called a dipole since it has two poles, commonly labeled North and South. Breaking a magnet in two does not produce two isolated poles; each fragment

### Gravity Pre-Lab 1. Why do you need an inclined plane to measure the effects due to gravity?

AS 101 Lab Exercise: Gravity (Report) Your Name & Your Lab Partner s Name Due Date Gravity Pre-Lab 1. Why do you need an inclined plane to measure the effects due to gravity? 2. What are several advantage

### LAB MECH 16. CALC From Physics with Calculators, Vernier Software & Technology, 2003.

LAB MECH 16. CALC From Physics with Calculators, Vernier Software & Technology, 2003. INTRODUCTION A swinging pendulum keeps a very regular beat. It is so regular, in fact, that for many years the pendulum

### Computer Experiment. Simple Harmonic Motion. Kinematics and Dynamics of Simple Harmonic Motion. Evaluation copy

INTRODUCTION Simple Harmonic Motion Kinematics and Dynamics of Simple Harmonic Motion Computer Experiment 16 When you suspend an object from a spring, the spring will stretch. If you pull on the object,

### Physics 1020 Laboratory #6 Equilibrium of a Rigid Body. Equilibrium of a Rigid Body

Equilibrium of a Rigid Body Contents I. Introduction II. III. IV. Finding the center of gravity of the meter stick Calibrating the force probe Investigation of the angled meter stick V. Investigation of

### Centripetal Acceleration on a Turntable

Experiment 17 Centripetal Acceleration on a Turntable As a child, you may remember the challenge of spinning a playground merry-go-round so you could scare the unfortunate riders as they traveled around

### Pulleys, Work, and Energy

Pulleys, Work, and Energy In this laboratory, we use pulleys to study work and mechanical energy. Make sure that you have the following pieces of equipment. two triple-pulley assemblies apparatus from

### GENERAL SCIENCE LABORATORY 1110L Lab Experiment 6: Ohm s Law

GENERAL SCIENCE LABORATORY 1110L Lab Experiment 6: Ohm s Law OBJECTIVES: To verify Ohm s law, the mathematical relationship among current, voltage or potential difference, and resistance, in a simple circuit.

### Motion 1. 1 Introduction. 2 The Motion Sensor

Motion 1 Equipment: DataStudio, motion sensor mounted about 25 cm above lab bench, Data studio files mot1.ds and mot2.ds. Lab Report: Describe procedures not given in the write up. Submit data graphs where

### Learning to Use a Magnetic Field Sensor

Learning to Use a Magnetic Field Sensor Have you ever played with magnets? One reason why they are fun and interesting is that they can have an effect on objects around them. This is because magnets are

### Dynamics Track. Mechanical Force, Impulse and Momentum

Dynamics Track Mechanical Force, Impulse and Momentum An object subjected to unbalanced forces undergoes acceleration, which changes the velocity of the object in question. This change in motion can be

### Experiment: Series and Parallel Circuits

Phy203: General Physics Lab page 1 of 6 Experiment: Series and Parallel Circuits OBJECTVES MATERALS To study current flow and voltages in series and parallel circuits. To use Ohm s law to calculate equivalent

### Exploring Magnetism. DataQuest

Exploring Magnetism Magnetism is the force of attraction or repulsion between a magnet and something else. Magnets attract materials made of iron, nickel, or cobalt. Can you think of five things to which

### Applications of Newton's Laws

Applications of Newton's Laws Purpose: To apply Newton's Laws by applying forces to objects and observing their motion; directly measuring these forces that we will apply. Apparatus: Pasco track, Pasco

### Physics 201. Fall 2009. Two Dimensional Motion Due Friday November 6, 2009

Physics 201 Fall 2009 Two Dimensional Motion Due Friday November 6, 2009 Points: 30 Name Partners This is a more detailed lab experiment than the exercises you have done in the class in the past. You will

### Buggy Car Lab Questions to be investigated Objectives Materials Teacher Notes Experimental Design:

Buggy Car Lab Questions to be investigated 1. How do we describe the motion of an object? 2. What characterizes constant velocity? 3. What type of graph best illustrates constant velocity? 4. What does

### Bungee Jump Accelerations

2 Bungee Jump Accelerations Experiment 7 In this experiment, you will investigate the accelerations that occur during a bungee jump. The graph below records the acceleration vs. time for an actual bungee

### Experiment 4 Analysis by Gas Chromatography

Experiment 4 Analysis by Gas Chromatography In this experiment we will study the method of gas chromatography. Gas chromatography (GC) is one of the most important analytical tools that the chemist has.

### Lab 3 - Projectile Motion Scientific Data Collection and Analysis (with some experimental design)

Partner 1: Lab 3 - Scientific Data Collection and Analysis (with some experimental design) Purpose: This Minilab is designed help you apply the skills you learned in the homework; that is, to collect data

### Introduction to the Vernier Photogate: Part 1 Gate Timing

PHY 7a Introduction to the Vernier Photogate: Part 1 Gate Timing The Vernier Photogate is a general sensor used for measuring speeds, accelerations, and periods of moving objects. It can also be used for

Radioactivity and Half Life NOTE: The data collection portion of this experiment is worth points. Please follow all instructions!! The activity (A) of a radioactive samples is the number of decays per

### Newton s Second Law. Evaluation copy

Newton s Second Law Experiment 4 INTRODUCTION In your discussion of Newton s first law, you learned that when the sum of the forces acting on an object is zero, its velocity does not change. However, when

### ENDOTHERMIC AND EXOTHERMIC REACTIONS

ENDOTHERMIC AND EXOTHERMIC REACTIONS LAB THC 2.PALM INTRODUCTION Many chemical reactions give off energy. Chemical reactions that release energy are called exothermic reactions. Some chemical reactions

### Work and Energy. W =!KE = KE f

Activity 19 PS-2826 Work and Energy Mechanics: work-energy theorem, conservation of energy GLX setup file: work energy Qty Equipment and Materials Part Number 1 PASPORT Xplorer GLX PS-2002 1 PASPORT Motion

### Appendix C. Vernier Tutorial

C-1. Vernier Tutorial Introduction: In this lab course, you will collect, analyze and interpret data. The purpose of this tutorial is to teach you how to use the Vernier System to collect and transfer

### ACCELERATION DUE TO GRAVITY

ACCELERATION DUE TO GRAVITY Objective: To measure the acceleration of a freely falling body due to gravitational attraction. Apparatus: Computer with Logger Pro, green Vernier interface box, picket fence

### Time Period: Approx. 90 min, (can be completed in two 45 min. sessions).

Teacher: Richard Matthews Unit: Forces and Motion Physics Lesson Plan Grade Level: 8 Time Period: Approx. 90 min, (can be completed in two 45 min. sessions). Pennsylvania Academic Standards for Science

### Capacitors. Evaluation copy

Capacitors Computer 24 The charge q on a capacitor s plate is proportional to the potential difference V across the capacitor. We express this relationship with q V =, C where C is a proportionality constant

### Simple Harmonic Motion

Simple Harmonic Motion 9M Object: Apparatus: To determine the force constant of a spring and then study the harmonic motion of that spring when it is loaded with a mass m. Force sensor, motion sensor,

### Magnetic Fields and Their Effects

Name Date Time to Complete h m Partner Course/ Section / Grade Magnetic Fields and Their Effects This experiment is intended to give you some hands-on experience with the effects of, and in some cases

### Introduction to Data Collection. Evaluation copy

Introduction to Data Collection Computer 1 Data collection is a very important part of science. Meteorologists collect weather data over time to keep an historical record and to help make forecasts. Oceanographers

### Chapter 4. Kinematics - Velocity and Acceleration. 4.1 Purpose. 4.2 Introduction

Chapter 4 Kinematics - Velocity and Acceleration 4.1 Purpose In this lab, the relationship between position, velocity and acceleration will be explored. In this experiment, friction will be neglected.

### The quest to find how x(t) and y(t) depend on t is greatly simplified by the following facts, first discovered by Galileo:

Team: Projectile Motion So far you have focused on motion in one dimension: x(t). In this lab, you will study motion in two dimensions: x(t), y(t). This 2D motion, called projectile motion, consists of

### Unit 2 Kinematics Worksheet 1: Position vs. Time and Velocity vs. Time Graphs

Name Physics Honors Pd Date Unit 2 Kinematics Worksheet 1: Position vs. Time and Velocity vs. Time Graphs Sketch velocity vs. time graphs corresponding to the following descriptions of the motion of an

### Pendulum Force and Centripetal Acceleration

Pendulum Force and Centripetal Acceleration 1 Objectives 1. To calibrate and use a force probe and motion detector. 2. To understand centripetal acceleration. 3. To solve force problems involving centripetal

### LAB 1 Graphing techniques and the acceleration of objects in free fall on Planet 'X'- by R.E.Tremblay

Purpose: To learn how to make position and velocity verses time graphs when given the position of an object at various times. You will also learn how to determine initial velocity and acceleration from

### PHYS 2426 Engineering Physics II EXPERIMENT 5 CAPACITOR CHARGING AND DISCHARGING

PHYS 2426 Engineering Physics II EXPERIMENT 5 CAPACITOR CHARGING AND DISCHARGING I. OBJECTIVE: The objective of this experiment is the study of charging and discharging of a capacitor by measuring the

### Run! 8. Suggested Grade Range: Approximate Time: 1 hour. State of California Content Standards:

8 Students will practice creating and analyzing distance-time graphs by engaging in timed runs and using their collected data to plot distance-time graphs. They will recognize the slope of a line on a

### PHYS 2425 Engineering Physics I EXPERIMENT 9 SIMPLE HARMONIC MOTION

PHYS 2425 Engineering Physics I EXPERIMENT 9 SIMPLE HARMONIC MOTION I. INTRODUCTION The objective of this experiment is the study of oscillatory motion. In particular the springmass system and the simple

### : Lab 1: Measurement and Uncertainty Pendulum Period

Introduction : Lab 1: Measurement and Uncertainty Pendulum Period Physics is primarily an experimental science. Physics theories are tested and refined and are only retained when they are proven to be

### Lab 3: The Force Plate and Vertical Jump

3 Lab 3: The Force Plate and Vertical Jump I. Introduction A. In this lab, you'll explore Newtonian mechanics of an extended, non-rigid object: your own body. Whenever your center of mass accelerates,

### Photosynthesis and Respiration

Photosynthesis and Respiration Experiment 31C Plants make sugar, storing the energy of the sun into chemical energy, by the process of photosynthesis. When they require energy, they can tap the stored

### Motion in One-Dimension

This test covers one-dimensional kinematics, including speed, velocity, acceleration, motion graphs, with some problems requiring a knowledge of basic calculus. Part I. Multiple Choice 1. A rock is released

### Evaluation copy. Bungee Jump Accelerations. computer OBJECTIVES MATERIALS

Bungee Jump Accelerations Computer 7 In this experiment, you will investigate the accelerations that occur during a bungee jump. The graph below records the acceleration vs. time for an actual bungee jump,

### BUNGEE JUMP ACCELERATIONS

2 BUNGEE JUMP ACCELERATIONS LAB MECH 25.COMP From Physics with Computers, Vernier Software and Technology, 2003 INTRODUCTION In this experiment, you will investigate the accelerations that occur during

### Experiment P007: Acceleration due to Gravity (Free Fall Adapter)

Experiment P007: Acceleration due to Gravity (Free Fall Adapter) EQUIPMENT NEEDED Science Workshop Interface Clamp, right angle Base and support rod Free fall adapter Balls, 13 mm and 19 mm Meter stick

### Walk the Line: Straight Line Distance Graphs

Walk the Line: Straight Line Distance Graphs Activity When one quantity changes at a constant rate with respect to another, we say they are linearly related. Mathematically, we describe this relationship

### TEMPERATURE SCALES AND FREEZING POINT DEPRESSION

TEMPERATURE SCALES AND FREEZING POINT DEPRESSION LAB PP 6.PALM INTRODUCTION Temperature tells us the relative warmth or coolness of a substance. This warmth or coolness is actually our sensation of the

### Transfer of Energy Forms of Energy: Multiple Transformations

Transfer of Energy Forms of Energy: Multiple Transformations Discovery Question What energy transformations are used in everyday devices? Introduction Thinking About the Question Materials Safety Trial

### Acceleration of Gravity

Acceleration of Gravity Introduction: In this experiment, several objects' motion are studied by making several measurements of the objects position (or displacement) at different times. Since the objects

### Bungee Jump Accelerations

2 Bungee Jump Accelerations Experiment 7 In this experiment, you will investigate the accelerations that occur during a bungee jump. The graph below records the acceleration vs. time for an actual bungee

### The fairy tale Hansel and Gretel tells the story of a brother and sister who

Piecewise Functions Developing the Graph of a Piecewise Function Learning Goals In this lesson, you will: Develop the graph of a piecewise function from a contet with or without a table of values. Represent

### Capacitors. V=!f_. Figure 1

Computer Capacitors 24 The charge q on a capacitor's plate is proportional to the potential difference V across the capacitor. We express this relationship with V=!f_ c where C is a proportionality constant

### SERIES AND PARALELL CIRCUITS

SERES AND PARALELL CRCUTS LAB ELEC 2.COMP From Physics with Computers, Vernier Software & Technology, 2003 NTRODUCTON Components in an electrical circuit are in series when they are connected one after

### Pressure -Temperature Relationship in Gases. Evaluation copy. Figure 1. 125 ml Erlenmeyer flask. Vernier computer interface

Pressure -Temperature Relationship in Gases Computer 7 Gases are made up of molecules that are in constant motion and exert pressure when they collide with the walls of their container. The velocity and

### Maximum value. resistance. 1. Connect the Current Probe to Channel 1 and the Differential Voltage Probe to Channel 2 of the interface.

Series and Parallel Circuits Computer 23 Components in an electrical circuit are in series when they are connected one after the other, so that the same current flows through both of them. Components are

### Institute for Teaching through Technology and Innovative Practices at Longwood University Grade 8

Institute for Teaching through Technology and Innovative Practices at Longwood University Grade 8 Speed, Velocity, and Acceleration Major Topic and SOL: Science SOL Length of Unit: Speed, Velocity, and

### Objectives. Materials TI-73 CBL 2

. Objectives Activity 9 To measure the motion and calculate the acceleration of a simple pendulum To understand the effect that gravity has on the motion of a pendulum Materials How Can a Clock Part Measure

### Ohm s Law. Electrical Quantity Description Unit Water Analogy Voltage or Potential Difference

Ohm s Law Experiment 25 The fundamental relationship among the three important electrical quantities current, voltage, and resistance was discovered by Georg Simon Ohm. The relationship and the unit of

### Experiment: RC Circuits

Phy23: General Physics III Lab page 1 of 5 OBJETIVES Experiment: ircuits Measure the potential across a capacitor as a function of time as it discharges and as it charges. Measure the experimental time

### Determining the Acceleration Due to Gravity

Chabot College Physics Lab Scott Hildreth Determining the Acceleration Due to Gravity Introduction In this experiment, you ll determine the acceleration due to earth s gravitational force with three different

### LAB ELEC3.COMP From Physics with Computers, Vernier Software and Technology, 2003

APAITORS LAB ELE3.OMP From Physics with omputers, Vernier Software and Technology, 2003 INTRODUTION The charge q on a capacitor s plate is proportional to the potential difference V across the capacitor.

### PHYSICS 183 Acceleration of Gravity Lab (Picket Fence)

PHYSICS 183 Acceleration of Gravity Lab (Picket Fence) Object: To measure the acceleration of a freely falling body due to gravitational attraction. Apparatus: IBM compatible computer running Windows 98SE,

### WEEK 6: FORCE, MASS, AND ACCELERATION

Name Date Partners WEEK 6: FORCE, MASS, AND ACCELERATION OBJECTIVES To develop a definition of mass in terms of an object s acceleration under the influence of a force. To find a mathematical relationship

### Lab 5: Conservation of Energy

Lab 5: Conservation of Energy Equipment SWS, 1-meter stick, 2-meter stick, heavy duty bench clamp, 90-cm rod, 40-cm rod, 2 double clamps, brass spring, 100-g mass, 500-g mass with 5-cm cardboard square

### Acceleration of Gravity Lab Basic Version

Acceleration of Gravity Lab Basic Version In this lab you will explore the motion of falling objects. As an object begins to fall, it moves faster and faster (its velocity increases) due to the acceleration

### Computer 5. Background Radiation Sources

Background Radiation Sources Computer 5 When a Geiger counter is operated it will usually record an event every few seconds, even if no obvious radioactive source is placed nearby. Where do these counts

### EXPERIMENT 3 Analysis of a freely falling body Dependence of speed and position on time Objectives

EXPERIMENT 3 Analysis of a freely falling body Dependence of speed and position on time Objectives to verify how the distance of a freely-falling body varies with time to investigate whether the velocity

### Logger Pro User s Manual

Logger Pro User s Manual Version 2.1 COPYRIGHT 1997-2000 Tufts University and Vernier Software & Technology ISBN 1-929075-10-3 Distributed by Vernier Software & Technology 13979 SW Millikan Way Beaverton,

### The Magnetic Field in a Slinky

V mv The Magnetic Field in a Slinky Experiment 29 A solenoid is made by taking a tube and wrapping it with many turns of wire. A metal Slinky is the same shape and will serve as our solenoid. When a current

### PLOTTING DATA AND INTERPRETING GRAPHS

PLOTTING DATA AND INTERPRETING GRAPHS Fundamentals of Graphing One of the most important sets of skills in science and mathematics is the ability to construct graphs and to interpret the information they

### Simple Harmonic Motion

Simple Harmonic Motion Simple harmonic motion is one of the most common motions found in nature and can be observed from the microscopic vibration of atoms in a solid to rocking of a supertanker on the

### Lab 5: Projectile Motion

Description Lab 5: Projectile Motion In this lab, you will examine the motion of a projectile as it free falls through the air. This will involve looking at motion under constant velocity, as well as motion

### Sound Waves and Beats

Sound Waves and Beats Sound waves consist of a series of air pressure variations. A Microphone diaphragm records these variations by moving in response to the pressure changes. The diaphragm motion is