Raman Spectroscopy. Can probe gases, liquids, and solids. Must use a laser source for excitation.

Size: px
Start display at page:

Download "Raman Spectroscopy. Can probe gases, liquids, and solids. Must use a laser source for excitation."

Transcription

1 Raman Spectroscopy Complementary to IR spectroscopy, it used to be somewhat specialized but is making a comeback with the development of new detectors for improved sensitivity.

2 Raman Spectroscopy Another spectroscopic technique which probes the rovibrational structure of molecules. C.V. Raman discovered in 1928; received Nobel Prize in Can probe gases, liquids, and solids. Must use a laser source for excitation. Resurgence in recent years due to the development of new detectors with improved sensitivity. Shift back away from FT-Raman to dispersive Raman with multichannel detector systems.

3 How It Works Excited electronic state 0 Excitation Rayleigh Scattering Raman Scattering Virtual electronic states Stokes Anti-Stokes Ground electronic state

4 The Spectrum A complete Raman spectrum consists of: a Rayleigh scattered peak (high intensity, same wavelength as excitation) a series of Stokes-shifted peaks (low intensity, longer wavelength) a series of anti-stokes shifted peaks (still lower intensity, shorter wavelength) spectrum independent of excitation wavelength (488, 632.8, or 1064 nm) Spectrum of CCl 4, using an Ar + laser at 488 nm.

5 Compare IR and Raman Spectra of PETN explosive. From D.N. Batchelder, Univ. of Leeds

6 Some Raman Advantages Here are some reasons why someone would prefer to use Raman Spectroscopy. Non-destructive to samples (minimal sample prep) Higher temperature studies possible (don t care about IR radiation) Easily examine low wavenumber region: 100 cm -1 readily achieved. Better microscopy; using visible light so can focus more tightly. Easy sample prep: water is an excellent solvent for Raman. Can probe sample through transparent containers (glass or plastic bag).

7 Origin of Raman Effect E = E 0 cos( ω ex t) ( ) µ induced = αe = αe 0 cos ω ex t α = α 0 + ( r r eq ) dα dr ( ) r r eq = r max cos ω vib t α = α 0 + dα dr r max cos ω vib t ( ) The oscillating electric field of the excitation light. The induced dipole moment from this oscillating field. The molecular polarizability changes with bond length. The bond length oscillates at vibrational frequency. Hence the polarizability oscillates at same frequency. µ induced = α 0 + dα dr r max cos( ω vib t) E 0 cos( ω ex t)= α 0 E 0 cos( ω ex t)+ E 0 r dα max dr cos ( ω ext)cos ω vib t [ ( ) ] cos x cosy = 1 2 cos ( x + y )+ cos x y µ induced = α 0 E 0 cos( ω ex t)+ E 0 r max 2 ( ) Remember trig identity. dα dr cos ( ω ex + ω vib )t )+ cos ( ω ex ω vib )t [ ( )] Substitute. Induced dipole has Rayleigh, Stokes, and anti-stokes components.

8 Watch for Fluorescence Spectrum of anthracene. A: using Ar + laser at nm. B: using Nd:YAG laser at 1064 nm. Want to use short wavelength because scattering depends on 4th power of frequency. BUT Want to use long wavelength to minimize chance of inducing fluorescence.

9 Sources Raman intensity is weak and the excitation source must be strong to generate sufficient signal. Source must be monochromatic so that spectrum is sufficiently uncomplicated. Intense lamps can work, but when monochromatized, have very little power. Scattering efficiency increases as ν 4 : the bluer the light, the more the scattering. The bluer the light, the greater the chance of producing fluorescence. Lasers are used almost exclusively: Ar + Ion: and nm Kr + Ion: and nm He:Ne: nm Diode Lasers: 782 and 830 nm Nd: YAG: 1064 (532 when doubled) nm I just checked. Here is a 500 mw Ar ion laser for sale on ebay for $1000.

10 Sources-Detectors Experiment used to require considerable excitation power Ion lasers, 40 W cw He:Ne, 10 W cw YAG (Yttrium aluminium garnet Y 3 Al 5 O 12 ), 1 J/10 ns pulse (100 MW average pulse) But detectors have improved so much, the source power requirements have been decreased Diode laser, 25 mw other lasers can be made correspondingly smaller

11 Resonance Raman Effect The Raman effect is quite weak; Rayleigh emission is 10 5 to 10 6 times more intense. If virtual state is close to a real molecular state, the transition probability is greatly enhanced. Resonance Raman is enhanced 10 2 to Can detect concentrations as low as 10-8 M. Resonance Raman spectra much simpler because enhancements only occur with transitions associated to the chromophore. All Raman processes are coherent; the excited state exists only during the time that the photon is there. It is not an absorption-reemission process as with fluorescence. Lifetime on order of sec.

12 FT-Raman Use a laser source in NIR or Visible, coupled with interferometer. Can perform FT-Raman studies. ( Advent of highly sensitive array detectors has cut into the FT-Raman territory. Most manufacturers going back to dispersive instruments. Instrument from Bruker

13 Multichannel Raman Spectroscopy Instrument of Hans Hallen in Phyiscs Dept. at North Carolina State.

14 NSOM Raman Imaging Spectrum of potassium titanyl phosphate. From Hans Hallen at NCSU. Squares are 5 x 5 µm square of this material doped with Rb. A near-field scanning microscope was used and the Raman signal was used to key the substrate response.

15 Chemical Mapping Focus laser to small spot. Tune spectrometer to particular Raman transition peak. Raster scan the sample under the laser beam, record intensity changes. Resultant map correlates with substance. Acquire an entire spectrum at every point, then choose the feature with which to key the image. Motorized stage from Renishaw for chemical mapping. This is a drug tablet. The yellow corresponds to the active ingredient. Particles are in the 10 s of µm range.

16 Chemical Imaging Now defocus the laser (not a small spot, but rather baths the sample in laser radiation). Pass the emitted radiation through a narrow bandpass filter, adjusted to a particular wavelength, chosen to be a certain Raman band. Focus this light on the CCD camera. Bright regions correspond to locations of substance giving rise to Raman signal. Mixture of cocaine and sugar. Bright spots are cocaine.

17 Primjena u restauraciji Ovo je freska iz 12. st. iz crkve u Italiji, koju je trebalo restaurirati. Koje boje upotrijebiti? Raman analiza pomoću Ramanove spektroskopije identificira boje i pigmente koji su prisutni u originalu, dozvoljavajući ispravan izbor materijala za čišćenje i ponovno bojanje nakon toga, kako bi se vratilo originalno stanje

18 Applications - Paint Chips Forensic analysis of paint chips in vehicle accidents. Often multiple layers. Can analyze with IR by stripping successive layers. Image edge with microraman. Layers 1 and 3 turned out to be rutile phase TiO 2 - a white paint. Layer 2 was a goethite, a red pigment and corrosion inhibitor. Layer 4 was molybdate orange, a common red paint in the 70 s in North America and still used in the U.K. today. Layer 5 was a silicate based paint. Data arising from a case investigated by LAPD.

19 Applications - Gem Forgery In 1999 a new process was developed called GE POL whereby brown type IIa diamonds could be treated to become indistinguishable from naturally clear diamonds. Raman presented way to distinguish them. Originally brown diamond Naturally clear diamond

20 Applications - Bullet Proof Glass Identify poly(carbonate) from poly(methylmethacrylate). Both used for shatter-proof glass

21 Applications - Sunscreen Formulations Here are the spectra of 5 common sunscreen ingredients. Raman is able to determine from a spectrum on the arm the nature of the sunscreen being used. A: ODPABA (octyl N,N-dimethyl-paminobenzoic acid) B: OMC (octyl p-methoxycinnamate) C: BZ3 (oxybenzone) D: OCS (octyl salicylate) E: DBM (dibenzoylmethane) G. R. Luppnow et al., J. Raman. Spec. 34, 743 (2003).

Raman Spectroscopy Basics

Raman Spectroscopy Basics Raman Spectroscopy Basics Introduction Raman spectroscopy is a spectroscopic technique based on inelastic scattering of monochromatic light, usually from a laser source. Inelastic scattering means that

More information

Raman spectroscopy Lecture

Raman spectroscopy Lecture Raman spectroscopy Lecture Licentiate course in measurement science and technology Spring 2008 10.04.2008 Antti Kivioja Contents - Introduction - What is Raman spectroscopy? - The theory of Raman spectroscopy

More information

Raman Scattering Theory David W. Hahn Department of Mechanical and Aerospace Engineering University of Florida (dwhahn@ufl.edu)

Raman Scattering Theory David W. Hahn Department of Mechanical and Aerospace Engineering University of Florida (dwhahn@ufl.edu) Introduction Raman Scattering Theory David W. Hahn Department of Mechanical and Aerospace Engineering University of Florida (dwhahn@ufl.edu) The scattering of light may be thought of as the redirection

More information

Raman Spectroscopy. 1. Introduction. 2. More on Raman Scattering. " scattered. " incident

Raman Spectroscopy. 1. Introduction. 2. More on Raman Scattering.  scattered.  incident February 15, 2006 Advanced Physics Laboratory Raman Spectroscopy 1. Introduction When light is scattered from a molecule or crystal, most photons are elastically scattered. The scattered photons have the

More information

Time out states and transitions

Time out states and transitions Time out states and transitions Spectroscopy transitions between energy states of a molecule excited by absorption or emission of a photon hn = DE = E i - E f Energy levels due to interactions between

More information

It has long been a goal to achieve higher spatial resolution in optical imaging and

It has long been a goal to achieve higher spatial resolution in optical imaging and Nano-optical Imaging using Scattering Scanning Near-field Optical Microscopy Fehmi Yasin, Advisor: Dr. Markus Raschke, Post-doc: Dr. Gregory Andreev, Graduate Student: Benjamin Pollard Department of Physics,

More information

GIANT FREQUENCY SHIFT OF INTRAMOLECULAR VIBRATION BAND IN THE RAMAN SPECTRA OF WATER ON THE SILVER SURFACE. M.E. Kompan

GIANT FREQUENCY SHIFT OF INTRAMOLECULAR VIBRATION BAND IN THE RAMAN SPECTRA OF WATER ON THE SILVER SURFACE. M.E. Kompan GIANT FREQUENCY SHIFT OF INTRAMOLECULAR VIBRATION BAND IN THE RAMAN SPECTRA OF WATER ON THE SILVER SURFACE M.E. Kompan Ioffe Institute, Saint-Peterburg, Russia kompan@mail.ioffe.ru The giant frequency

More information

Section 6 Raman Scattering (lecture 10)

Section 6 Raman Scattering (lecture 10) Section 6 Scattering (lecture 10) Previously: Quantum theory of atoms / molecules Quantum Mechanics Valence Atomic and Molecular Spectroscopy Scattering The scattering process Elastic (Rayleigh) and inelastic

More information

0 10 20 30 40 50 60 70 m/z

0 10 20 30 40 50 60 70 m/z Mass spectrum for the ionization of acetone MS of Acetone + Relative Abundance CH 3 H 3 C O + M 15 (loss of methyl) + O H 3 C CH 3 43 58 0 10 20 30 40 50 60 70 m/z It is difficult to identify the ions

More information

Nano-Spectroscopy. Solutions AFM-Raman, TERS, NSOM Chemical imaging at the nanoscale

Nano-Spectroscopy. Solutions AFM-Raman, TERS, NSOM Chemical imaging at the nanoscale Nano-Spectroscopy Solutions AFM-Raman, TERS, NSOM Chemical imaging at the nanoscale Since its introduction in the early 80 s, Scanning Probe Microscopy (SPM) has quickly made nanoscale imaging an affordable

More information

PUMPED Nd:YAG LASER. Last Revision: August 21, 2007

PUMPED Nd:YAG LASER. Last Revision: August 21, 2007 PUMPED Nd:YAG LASER Last Revision: August 21, 2007 QUESTION TO BE INVESTIGATED: How can an efficient atomic transition laser be constructed and characterized? INTRODUCTION: This lab exercise will allow

More information

ANALYSIS OF ASPIRIN INFRARED (IR) SPECTROSCOPY AND MELTING POINT DETERMINATION

ANALYSIS OF ASPIRIN INFRARED (IR) SPECTROSCOPY AND MELTING POINT DETERMINATION Chem 306 Section (Circle) M Tu W Th Name Partners Date ANALYSIS OF ASPIRIN INFRARED (IR) SPECTROSCOPY AND MELTING POINT DETERMINATION Materials: prepared acetylsalicylic acid (aspirin), stockroom samples

More information

Lecture 1: Basic Concepts on Absorption and Fluorescence

Lecture 1: Basic Concepts on Absorption and Fluorescence Lecture 1: Basic Concepts on Absorption and Fluorescence Nicholas G. James Cell and Molecular Biology University of Hawaii at Manoa, Honolulu The Goal The emission of light after absorption of an outside

More information

The Fundamentals of Infrared Spectroscopy. Joe Van Gompel, PhD

The Fundamentals of Infrared Spectroscopy. Joe Van Gompel, PhD TN-100 The Fundamentals of Infrared Spectroscopy The Principles of Infrared Spectroscopy Joe Van Gompel, PhD Spectroscopy is the study of the interaction of electromagnetic radiation with matter. The electromagnetic

More information

Infrared Spectroscopy 紅 外 線 光 譜 儀

Infrared Spectroscopy 紅 外 線 光 譜 儀 Infrared Spectroscopy 紅 外 線 光 譜 儀 Introduction Spectroscopy is an analytical technique which helps determine structure. It destroys little or no sample (nondestructive method). The amount of light absorbed

More information

Name Class Date. spectrum. White is not a color, but is a combination of all colors. Black is not a color; it is the absence of all light.

Name Class Date. spectrum. White is not a color, but is a combination of all colors. Black is not a color; it is the absence of all light. Exercises 28.1 The Spectrum (pages 555 556) 1. Isaac Newton was the first person to do a systematic study of color. 2. Circle the letter of each statement that is true about Newton s study of color. a.

More information

Group Theory and Chemistry

Group Theory and Chemistry Group Theory and Chemistry Outline: Raman and infra-red spectroscopy Symmetry operations Point Groups and Schoenflies symbols Function space and matrix representation Reducible and irreducible representation

More information

Copyright 1999 2010 by Mark Brandt, Ph.D. 12

Copyright 1999 2010 by Mark Brandt, Ph.D. 12 Introduction to Absorbance Spectroscopy A single beam spectrophotometer is comprised of a light source, a monochromator, a sample holder, and a detector. An ideal instrument has a light source that emits

More information

Fundamentals of modern UV-visible spectroscopy. Presentation Materials

Fundamentals of modern UV-visible spectroscopy. Presentation Materials Fundamentals of modern UV-visible spectroscopy Presentation Materials The Electromagnetic Spectrum E = hν ν = c / λ 1 Electronic Transitions in Formaldehyde 2 Electronic Transitions and Spectra of Atoms

More information

Lecture 20: Scanning Confocal Microscopy (SCM) Rationale for SCM. Principles and major components of SCM. Advantages and major applications of SCM.

Lecture 20: Scanning Confocal Microscopy (SCM) Rationale for SCM. Principles and major components of SCM. Advantages and major applications of SCM. Lecture 20: Scanning Confocal Microscopy (SCM) Rationale for SCM. Principles and major components of SCM. Advantages and major applications of SCM. Some limitations (disadvantages) of NSOM A trade-off

More information

SPECTROSCOPY. Light interacting with matter as an analytical tool

SPECTROSCOPY. Light interacting with matter as an analytical tool SPECTROSCOPY Light interacting with matter as an analytical tool Electronic Excitation by UV/Vis Spectroscopy : X-ray: core electron excitation UV: valance electronic excitation IR: molecular vibrations

More information

Recording the Instrument Response Function of a Multiphoton FLIM System

Recording the Instrument Response Function of a Multiphoton FLIM System Recording the Instrument Response Function of a Multiphoton FLIM System Abstract. FLIM data analysis in presence of SHG signals or extremely fast decay components requires the correct instrument response

More information

Introduction to Fourier Transform Infrared Spectrometry

Introduction to Fourier Transform Infrared Spectrometry Introduction to Fourier Transform Infrared Spectrometry What is FT-IR? I N T R O D U C T I O N FT-IR stands for Fourier Transform InfraRed, the preferred method of infrared spectroscopy. In infrared spectroscopy,

More information

Back to Basics Fundamentals of Polymer Analysis

Back to Basics Fundamentals of Polymer Analysis Back to Basics Fundamentals of Polymer Analysis Using Infrared & Raman Spectroscopy Molecular Spectroscopy in the Polymer Manufacturing Process Process NIR NIR Production Receiving Shipping QC R&D Routine

More information

Scanning Near-Field Optical Microscopy for Measuring Materials Properties at the Nanoscale

Scanning Near-Field Optical Microscopy for Measuring Materials Properties at the Nanoscale Scanning Near-Field Optical Microscopy for Measuring Materials Properties at the Nanoscale Outline Background Research Design Detection of Near-Field Signal Submonolayer Chemical Sensitivity Conclusions

More information

5.33 Lecture Notes: Introduction to Spectroscopy

5.33 Lecture Notes: Introduction to Spectroscopy 5.33 Lecture Notes: ntroduction to Spectroscopy What is spectroscopy? Studying the properties of matter through its interaction with different frequency components of the electromagnetic spectrum. Latin:

More information

Problem Set 6 UV-Vis Absorption Spectroscopy. 13-1. Express the following absorbances in terms of percent transmittance:

Problem Set 6 UV-Vis Absorption Spectroscopy. 13-1. Express the following absorbances in terms of percent transmittance: Problem Set 6 UV-Vis Absorption Spectroscopy 13-1. Express the following absorbances in terms of percent transmittance: a 0.051 b 0.918 c 0.379 d 0.261 e 0.485 f 0.072 A = log P o /P = log1/t = - log T

More information

Molecular Spectroscopy

Molecular Spectroscopy Molecular Spectroscopy UV-Vis Spectroscopy Absorption Characteristics of Some Common Chromophores UV-Vis Spectroscopy Absorption Characteristics of Aromatic Compounds UV-Vis Spectroscopy Effect of extended

More information

Vibrational Raman Spectroscopy

Vibrational Raman Spectroscopy CHEM 3421 1 Background Vibrational Raman Spectroscopy The basic theory of Raman spectroscopy and a partial description of this experimental procedure are given in your lab text 1 as experiment 35. Much

More information

Physics 441/2: Transmission Electron Microscope

Physics 441/2: Transmission Electron Microscope Physics 441/2: Transmission Electron Microscope Introduction In this experiment we will explore the use of transmission electron microscopy (TEM) to take us into the world of ultrasmall structures. This

More information

Characterizing Quantum Dots and Color Centers in Nanodiamonds as Single Emitters

Characterizing Quantum Dots and Color Centers in Nanodiamonds as Single Emitters University of Rochester OPT253 Lab 3-4 Report Characterizing Quantum Dots and Color Centers in Nanodiamonds as Single Emitters Author: Nicholas Cothard Peter Heuer Professor: Dr. Svetlana Lukishova November

More information

Austin Peay State University Department of Chemistry Chem 1111. The Use of the Spectrophotometer and Beer's Law

Austin Peay State University Department of Chemistry Chem 1111. The Use of the Spectrophotometer and Beer's Law Purpose To become familiar with using a spectrophotometer and gain an understanding of Beer s law and it s relationship to solution concentration. Introduction Scientists use many methods to determine

More information

Spectroscopy. Biogeochemical Methods OCN 633. Rebecca Briggs

Spectroscopy. Biogeochemical Methods OCN 633. Rebecca Briggs Spectroscopy Biogeochemical Methods OCN 633 Rebecca Briggs Definitions of Spectrometry Defined by the method used to prepare the sample 1. Optical spectrometry Elements are converted to gaseous atoms or

More information

EXPERIMENT 11 UV/VIS Spectroscopy and Spectrophotometry: Spectrophotometric Analysis of Potassium Permanganate Solutions.

EXPERIMENT 11 UV/VIS Spectroscopy and Spectrophotometry: Spectrophotometric Analysis of Potassium Permanganate Solutions. EXPERIMENT 11 UV/VIS Spectroscopy and Spectrophotometry: Spectrophotometric Analysis of Potassium Permanganate Solutions. Outcomes After completing this experiment, the student should be able to: 1. Prepare

More information

Symmetric Stretch: allows molecule to move through space

Symmetric Stretch: allows molecule to move through space BACKGROUND INFORMATION Infrared Spectroscopy Before introducing the subject of IR spectroscopy, we must first review some aspects of the electromagnetic spectrum. The electromagnetic spectrum is composed

More information

Infrared Spectroscopy: Theory

Infrared Spectroscopy: Theory u Chapter 15 Infrared Spectroscopy: Theory An important tool of the organic chemist is Infrared Spectroscopy, or IR. IR spectra are acquired on a special instrument, called an IR spectrometer. IR is used

More information

Christine E. Hatch University of Nevada, Reno

Christine E. Hatch University of Nevada, Reno Christine E. Hatch University of Nevada, Reno Roadmap What is DTS? How Does it Work? What Can DTS Measure? Applications What is Distributed Temperature Sensing (DTS)? Temperature measurement using only

More information

LabRAM HR. Research Raman Made Easy! Raman Spectroscopy Systems. Spectroscopy Suite. Powered by:

LabRAM HR. Research Raman Made Easy! Raman Spectroscopy Systems. Spectroscopy Suite. Powered by: LabRAM HR Research Raman Made Easy! Raman Spectroscopy Systems Powered by: Spectroscopy Suite Cutting-Edge Applications with the LabRAM HR Deeply involved in Raman spectroscopy for decades, HORIBA Scientific

More information

LabRAM HR Evolution. Research Raman Made Easy!

LabRAM HR Evolution. Research Raman Made Easy! LabRAM HR Evolution Research Raman Made Easy! Cutting-Edge Applications with the LabRAM HR LabRAM HR Deeply involved in Raman spectroscopy for decades, HORIBA Scientific has been providing an extensive

More information

Experiment 5. Lasers and laser mode structure

Experiment 5. Lasers and laser mode structure Northeastern University, PHYS5318 Spring 2014, 1 1. Introduction Experiment 5. Lasers and laser mode structure The laser is a very important optical tool that has found widespread use in science and industry,

More information

FTIR Instrumentation

FTIR Instrumentation FTIR Instrumentation Adopted from the FTIR lab instruction by H.-N. Hsieh, New Jersey Institute of Technology: http://www-ec.njit.edu/~hsieh/ene669/ftir.html 1. IR Instrumentation Two types of instrumentation

More information

Near-field scanning optical microscopy (SNOM)

Near-field scanning optical microscopy (SNOM) Adviser: dr. Maja Remškar Institut Jožef Stefan January 2010 1 2 3 4 5 6 Fluorescence Raman and surface enhanced Raman 7 Conventional optical microscopy-limited resolution Two broad classes of techniques

More information

5. Scanning Near-Field Optical Microscopy 5.1. Resolution of conventional optical microscopy

5. Scanning Near-Field Optical Microscopy 5.1. Resolution of conventional optical microscopy 5. Scanning Near-Field Optical Microscopy 5.1. Resolution of conventional optical microscopy Resolution of optical microscope is limited by diffraction. Light going through an aperture makes diffraction

More information

From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation?

From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation? From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation? From lowest energy to highest energy, which of the following correctly

More information

DNA Detection. Chapter 13

DNA Detection. Chapter 13 DNA Detection Chapter 13 Detecting DNA molecules Once you have your DNA separated by size Now you need to be able to visualize the DNA on the gel somehow Original techniques: Radioactive label, silver

More information

2. Molecular stucture/basic

2. Molecular stucture/basic 2. Molecular stucture/basic spectroscopy The electromagnetic spectrum Spectral region for atomic and molecular spectroscopy E. Hecht (2nd Ed.) Optics, Addison-Wesley Publishing Company,1987 Spectral regions

More information

Molecular Spectroscopy:

Molecular Spectroscopy: : How are some molecular parameters determined? Bond lengths Bond energies What are the practical applications of spectroscopic knowledge? Can molecules (or components thereof) be identified based on differences

More information

Experiment #5: Qualitative Absorption Spectroscopy

Experiment #5: Qualitative Absorption Spectroscopy Experiment #5: Qualitative Absorption Spectroscopy One of the most important areas in the field of analytical chemistry is that of spectroscopy. In general terms, spectroscopy deals with the interactions

More information

Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry

Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry Jon H. Hardesty, PhD and Bassam Attili, PhD Collin College Department of Chemistry Introduction: In the last lab

More information

(Nano)materials characterization

(Nano)materials characterization (Nano)materials characterization MTX9100 Nanomaterials Lecture 8 OUTLINE 1 -What SEM and AFM are good for? - What is the Atomic Force Microscopes Contribution to Nanotechnology? - What is Spectroscopy?

More information

INFRARED SPECTROSCOPY (IR)

INFRARED SPECTROSCOPY (IR) INFRARED SPECTROSCOPY (IR) Theory and Interpretation of IR spectra ASSIGNED READINGS Introduction to technique 25 (p. 833-834 in lab textbook) Uses of the Infrared Spectrum (p. 847-853) Look over pages

More information

Zecotek S Light Projection Network Marketing

Zecotek S Light Projection Network Marketing White Paper Zecotek Visible Fiber Laser Platform Enabling the future of laser technology Zecotek Photonics Inc. (TSX- V: ZMS; Frankfurt: W1I) www.zecotek.com is a Canadian photonics technology company

More information

Pump-probe experiments with ultra-short temporal resolution

Pump-probe experiments with ultra-short temporal resolution Pump-probe experiments with ultra-short temporal resolution PhD candidate: Ferrante Carino Advisor:Tullio Scopigno Università di Roma ƒla Sapienza 22 February 2012 1 Pump-probe experiments: generalities

More information

Advanced Research Raman System Raman Spectroscopy Systems

Advanced Research Raman System Raman Spectroscopy Systems T600 Advanced Research Raman System Raman Spectroscopy Systems T600 Advanced Research Raman System T600 Triple stage Raman Spectrometer: The only solution for unprecedented stability and performance! Robust

More information

THE INTENTION EXPERIMENT The Roy Water Experiment: April 26, 2008

THE INTENTION EXPERIMENT The Roy Water Experiment: April 26, 2008 THE INTENTION EXPERIMENT The Roy Water Experiment: April 26, 2008 With this study we wished to delve further into water, by testing whether intention can changes the molecular structure of water. This

More information

Simple Laser-Induced Fluorescence Setup to Explore Molecular Spectroscopy. Abstract

Simple Laser-Induced Fluorescence Setup to Explore Molecular Spectroscopy. Abstract Simple Laser-Induced Fluorescence Setup to Explore Molecular Spectroscopy S. B. Bayram and M.D. Freamat Miami University, Department of Physics, Oxford, OH 45056 (Dated: July 23, 2012) Abstract We will

More information

Ultraviolet Spectroscopy

Ultraviolet Spectroscopy Ultraviolet Spectroscopy The wavelength of UV and visible light are substantially shorter than the wavelength of infrared radiation. The UV spectrum ranges from 100 to 400 nm. A UV-Vis spectrophotometer

More information

Waves Sound and Light

Waves Sound and Light Waves Sound and Light r2 c:\files\courses\1710\spr12\wavetrans.doc Ron Robertson The Nature of Waves Waves are a type of energy transmission that results from a periodic disturbance (vibration). They are

More information

- thus, the total number of atoms per second that absorb a photon is

- thus, the total number of atoms per second that absorb a photon is Stimulated Emission of Radiation - stimulated emission is referring to the emission of radiation (a photon) from one quantum system at its transition frequency induced by the presence of other photons

More information

Aesthetic Plus LASER TRAINING MANUAL FOR MEDICAL PROFESSIONALS. presents

Aesthetic Plus LASER TRAINING MANUAL FOR MEDICAL PROFESSIONALS. presents Aesthetic Plus presents LASER TRAINING MANUAL FOR MEDICAL PROFESSIONALS INTRODUCTION More than ever before, people are turning to laser esthetics for cosmetic purposes. This is because lasers offer a number

More information

Basic principles and mechanisms of NSOM; Different scanning modes and systems of NSOM; General applications and advantages of NSOM.

Basic principles and mechanisms of NSOM; Different scanning modes and systems of NSOM; General applications and advantages of NSOM. Lecture 16: Near-field Scanning Optical Microscopy (NSOM) Background of NSOM; Basic principles and mechanisms of NSOM; Basic components of a NSOM; Different scanning modes and systems of NSOM; General

More information

13C NMR Spectroscopy

13C NMR Spectroscopy 13 C NMR Spectroscopy Introduction Nuclear magnetic resonance spectroscopy (NMR) is the most powerful tool available for structural determination. A nucleus with an odd number of protons, an odd number

More information

UV/VIS/IR SPECTROSCOPY ANALYSIS OF NANOPARTICLES

UV/VIS/IR SPECTROSCOPY ANALYSIS OF NANOPARTICLES UV/VIS/IR SPECTROSCOPY ANALYSIS OF NANOPARTICLES SEPTEMBER 2012, V 1.1 4878 RONSON CT STE K SAN DIEGO, CA 92111 858-565 - 4227 NANOCOMPOSIX.COM Note to the Reader: We at nanocomposix have published this

More information

4. Molecular spectroscopy. Basel, 2008

4. Molecular spectroscopy. Basel, 2008 4. Molecular spectroscopy Basel, 2008 4. Molecular spectroscopy Contents: 1. Introduction 2. Schema of a spectrometer 3. Quantification of molecules mouvements 4. UV-VIS spectroscopy 5. IR spectroscopy

More information

How Lasers Work by Matthew Weschler

How Lasers Work by Matthew Weschler How Lasers Work by Matthew Weschler Browse the article How Lasers Work Introduction to How Lasers Work "Star Wars," "Star Trek," "Battlestar Galactica" -- laser technology plays a pivotal role in science

More information

ILLUSTRATIVE EXAMPLE: Given: A = 3 and B = 4 if we now want the value of C=? C = 3 + 4 = 9 + 16 = 25 or 2

ILLUSTRATIVE EXAMPLE: Given: A = 3 and B = 4 if we now want the value of C=? C = 3 + 4 = 9 + 16 = 25 or 2 Forensic Spectral Anaylysis: Warm up! The study of triangles has been done since ancient times. Many of the early discoveries about triangles are still used today. We will only be concerned with the "right

More information

Near infrared spectroscopy as a tool for in-line control of process and material properties of PLA biopolymers

Near infrared spectroscopy as a tool for in-line control of process and material properties of PLA biopolymers Near infrared spectroscopy as a tool for in-line control of process and material properties of PLA biopolymers OMC conference Karlsruhe 18.3-19.3.2015 W. Becker Fraunhofer Institute for Chemical Technology

More information

The photoionization detector (PID) utilizes ultraviolet

The photoionization detector (PID) utilizes ultraviolet Chapter 6 Photoionization Detectors The photoionization detector (PID) utilizes ultraviolet light to ionize gas molecules, and is commonly employed in the detection of volatile organic compounds (VOCs).

More information

Organic Spectroscopy. UV - Ultraviolet-Visible Spectroscopy. !! 200-800 nm. Methods for structure determination of organic compounds:

Organic Spectroscopy. UV - Ultraviolet-Visible Spectroscopy. !! 200-800 nm. Methods for structure determination of organic compounds: Organic Spectroscopy Methods for structure determination of organic compounds: X-ray rystallography rystall structures Mass spectroscopy Molecular formula -----------------------------------------------------------------------------

More information

Asian Journal of Food and Agro-Industry ISSN 1906-3040 Available online at www.ajofai.info

Asian Journal of Food and Agro-Industry ISSN 1906-3040 Available online at www.ajofai.info As. J. Food Ag-Ind. 008, (0), - Asian Journal of Food and Agro-Industry ISSN 906-00 Available online at www.ajofai.info Research Article Analysis of NIR spectral reflectance linearization and gradient

More information

What s in the Mix? Liquid Color Spectroscopy Lab (Randy Landsberg & Bill Fisher)

What s in the Mix? Liquid Color Spectroscopy Lab (Randy Landsberg & Bill Fisher) What s in the Mix? Liquid Color Spectroscopy Lab (Randy Landsberg & Bill Fisher) Introduction: There is more to a color than a name. Color can tell us lots of information. In this lab you will use a spectrophotometer

More information

Determination of Molecular Structure by MOLECULAR SPECTROSCOPY

Determination of Molecular Structure by MOLECULAR SPECTROSCOPY Determination of Molecular Structure by MOLEULAR SPETROSOPY hemistry 3 B.Z. Shakhashiri Fall 29 Much of what we know about molecular structure has been learned by observing and analyzing how electromagnetic

More information

Proton Nuclear Magnetic Resonance Spectroscopy

Proton Nuclear Magnetic Resonance Spectroscopy CHEM 334L Organic Chemistry Laboratory Revision 2.0 Proton Nuclear Magnetic Resonance Spectroscopy In this laboratory exercise we will learn how to use the Chemistry Department's Nuclear Magnetic Resonance

More information

6.772/SMA5111 - Compound Semiconductors Lecture 18 - Light Emitting Diodes - Outline

6.772/SMA5111 - Compound Semiconductors Lecture 18 - Light Emitting Diodes - Outline 6.772/SMA5111 - Compound Semiconductors Lecture 18 - Light Emitting Diodes - Outline Recombination Processes (continued from Lecture 17) Radiative vs. non-radiative Relative carrier lifetimes Light emitting

More information

The excitation in Raman spectroscopy is usually. Practical Group Theory and Raman Spectroscopy, Part II: Application of Polarization

The excitation in Raman spectroscopy is usually. Practical Group Theory and Raman Spectroscopy, Part II: Application of Polarization Electronically reprinted from March 214 Molecular Spectroscopy Workbench Practical Group Theory and Raman Spectroscopy, Part II: Application of Polarization In this second installment of a two-part series

More information

Light as a Wave. The Nature of Light. EM Radiation Spectrum. EM Radiation Spectrum. Electromagnetic Radiation

Light as a Wave. The Nature of Light. EM Radiation Spectrum. EM Radiation Spectrum. Electromagnetic Radiation The Nature of Light Light and other forms of radiation carry information to us from distance astronomical objects Visible light is a subset of a huge spectrum of electromagnetic radiation Maxwell pioneered

More information

Electromagnetic Radiation (EMR) and Remote Sensing

Electromagnetic Radiation (EMR) and Remote Sensing Electromagnetic Radiation (EMR) and Remote Sensing 1 Atmosphere Anything missing in between? Electromagnetic Radiation (EMR) is radiated by atomic particles at the source (the Sun), propagates through

More information

Katharina Lückerath (AG Dr. Martin Zörnig) adapted from Dr. Jörg Hildmann BD Biosciences,Customer Service

Katharina Lückerath (AG Dr. Martin Zörnig) adapted from Dr. Jörg Hildmann BD Biosciences,Customer Service Introduction into Flow Cytometry Katharina Lückerath (AG Dr. Martin Zörnig) adapted from Dr. Jörg Hildmann BD Biosciences,Customer Service How does a FACS look like? FACSCalibur FACScan What is Flow Cytometry?

More information

Infrared Spectroscopy

Infrared Spectroscopy Infrared Spectroscopy 1 Chap 12 Reactions will often give a mixture of products: OH H 2 SO 4 + Major Minor How would the chemist determine which product was formed? Both are cyclopentenes; they are isomers.

More information

12.4 FUNCTIONAL-GROUP INFRARED ABSORPTIONS

12.4 FUNCTIONAL-GROUP INFRARED ABSORPTIONS 552 APTER 12 INTRODUTION TO SPETROSOPY. INFRARED SPETROSOPY AND MASS SPETROMETRY PROBLEM 12.9 Which of the following vibrations should be infrared-active and which should be infrared-inactive (or nearly

More information

Determining the Structure of an Organic Compound

Determining the Structure of an Organic Compound Determining the Structure of an Organic Compound The analysis of the outcome of a reaction requires that we know the full structure of the products as well as the reactants In the 19 th and early 20 th

More information

Chapter 28: High-Performance Liquid Chromatography (HPLC)

Chapter 28: High-Performance Liquid Chromatography (HPLC) Chapter 28: High-Performance Liquid Chromatography (HPLC) Scope Instrumentation eluants, injectors, columns Modes of HPLC Partition chromatography Adsorption chromatography Ion chromatography Size exclusion

More information

Status of the FERMI@Elettra Free Electron Laser

Status of the FERMI@Elettra Free Electron Laser Status of the FERMI@Elettra Free Electron Laser E. Allaria on behalf of the FERMI team Work partially supported by the Italian Ministry of University and Research under grants FIRB-RBAP045JF2 and FIRB-RBAP06AWK3

More information

DETERMINACIÓN DE ESTRUCTURAS ORGÁNICAS (ORGANIC SPECTROSCOPY) IR SPECTROSCOPY

DETERMINACIÓN DE ESTRUCTURAS ORGÁNICAS (ORGANIC SPECTROSCOPY) IR SPECTROSCOPY DETERMINACIÓN DE ESTRUCTURAS ORGÁNICAS (ORGANIC SPECTROSCOPY) IR SPECTROSCOPY Hermenegildo García Gómez Departamento de Química Instituto de Tecnología Química Universidad Politécnica de Valencia 46022

More information

How To Read A Fiber Optic Sensor

How To Read A Fiber Optic Sensor 2572-17 Winter College on Optics: Fundamentals of Photonics - Theory, Devices and Applications 10-21 February 2014 Optical Fiber Sensors Basic Principles Scuola Superiore Sant'Anna Pisa Italy Optical Fiber

More information

Homeland Security, Medical, Pharmaceutical and Non-destructive Testing Applications of Terahertz Radiation

Homeland Security, Medical, Pharmaceutical and Non-destructive Testing Applications of Terahertz Radiation Applications of THz Radiation APS March Meeting, March 23, 2005 Homeland Security, Medical, Pharmaceutical and Non-destructive Testing Applications of Terahertz Radiation Colin Baker colin.baker@teraview.com

More information

Chapter 13 Spectroscopy NMR, IR, MS, UV-Vis

Chapter 13 Spectroscopy NMR, IR, MS, UV-Vis Chapter 13 Spectroscopy NMR, IR, MS, UV-Vis Main points of the chapter 1. Hydrogen Nuclear Magnetic Resonance a. Splitting or coupling (what s next to what) b. Chemical shifts (what type is it) c. Integration

More information

AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light

AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light Name: Period: Date: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Reflection,

More information

In this column installment, we present results of tablet. Raman Microscopy for Detecting Counterfeit Drugs A Study of the Tablets Versus the Packaging

In this column installment, we present results of tablet. Raman Microscopy for Detecting Counterfeit Drugs A Study of the Tablets Versus the Packaging Electronically reprinted from June 214 Molecular Spectroscopy Workbench Raman Microscopy for Detecting Counterfeit Drugs A Study of the Tablets Versus the Packaging With the increasing proliferation of

More information

Polarization Dependence in X-ray Spectroscopy and Scattering. S P Collins et al Diamond Light Source UK

Polarization Dependence in X-ray Spectroscopy and Scattering. S P Collins et al Diamond Light Source UK Polarization Dependence in X-ray Spectroscopy and Scattering S P Collins et al Diamond Light Source UK Overview of talk 1. Experimental techniques at Diamond: why we care about x-ray polarization 2. How

More information

How To Perform Raman Spectroscopy

How To Perform Raman Spectroscopy Spettroscopia Raman in campo prossimo Salvatore Patanè (1) and Pietro G. Gucciardi (2) (1) Dip. di Fisica della Materia e Tecnologie Fisiche Avanzate, Università di Messina, Salita Sperone 31, 98166 Messina,

More information

CREOL, College of Optics & Photonics, University of Central Florida

CREOL, College of Optics & Photonics, University of Central Florida OSE6650 - Optical Properties of Nanostructured Materials Optical Properties of Nanostructured Materials Fall 2013 Class 3 slide 1 Challenge: excite and detect the near field Thus far: Nanostructured materials

More information

Treasure Hunt. Lecture 2 How does Light Interact with the Environment? EMR Principles and Properties. EMR and Remote Sensing

Treasure Hunt. Lecture 2 How does Light Interact with the Environment? EMR Principles and Properties. EMR and Remote Sensing Lecture 2 How does Light Interact with the Environment? Treasure Hunt Find and scan all 11 QR codes Choose one to watch / read in detail Post the key points as a reaction to http://www.scoop.it/t/env202-502-w2

More information

Undergraduate Research Academy (URA) Cover Sheet

Undergraduate Research Academy (URA) Cover Sheet Winkler 1 STUDENT_Amy Winkler Undergraduate Research Academy (URA) Cover Sheet SEND TO CAMPUS BOX 1300 BY NOON, WEDNESDAY, MARCH 16, 2004 (Please type) MENTOR_Dr. Hamad and Dr. Noble PROJECT TITLE_Design

More information

Flame Tests & Electron Configuration

Flame Tests & Electron Configuration Flame Tests & Electron Configuration INTRODUCTION Many elements produce colors in the flame when heated. The origin of this phenomenon lies in the arrangement, or configuration of the electrons in the

More information

Review Questions Photosynthesis

Review Questions Photosynthesis Review Questions Photosynthesis 1. Describe a metabolic pathway. In a factory, labor is divided into small individual jobs. A carmaker, for example, will have one worker install the front windshield, another

More information

Keywords: Planar waveguides, sol-gel technology, transmission electron microscopy

Keywords: Planar waveguides, sol-gel technology, transmission electron microscopy Structural and optical characterisation of planar waveguides obtained via Sol-Gel F. Rey-García, C. Gómez-Reino, M.T. Flores-Arias, G.F. De La Fuente, W. Assenmacher, W. Mader ABSTRACT Planar waveguides

More information

Raman Spectroscopy Study of the Pyrochlore Superconductors KOs 2 O 6 and RbOs 2 O 6

Raman Spectroscopy Study of the Pyrochlore Superconductors KOs 2 O 6 and RbOs 2 O 6 Raman Spectroscopy Study of the Pyrochlore Superconductors KOs 2 O 6 and RbOs 2 O 6 and Joachim Schoenes Institut für Physik der Kondensierten Materie,TU Braunschweig in collaboration with Klaus Doll 1,

More information

Lecture Series. Modern Methods in Heterogeneous Catalysis. Script to Lecture Raman Spectroscopy

Lecture Series. Modern Methods in Heterogeneous Catalysis. Script to Lecture Raman Spectroscopy Lecture Series Modern Methods in Heterogeneous Catalysis Script to Lecture Raman Spectroscopy Raimund Horn Fritz-Haber-Institute of the MPG Department of Inorganic Chemistry Faradayweg 4-6 14195 Berlin

More information

Spectral Measurement Solutions for Industry and Research

Spectral Measurement Solutions for Industry and Research Spectral Measurement Solutions for Industry and Research Hamamatsu Photonics offers a comprehensive range of products for spectroscopic applications, covering the, Visible and Infrared regions for Industrial,

More information