# Sequential Logic Design

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Lab #4 Sequential Logic Design Objective: To study the behavior and applications of flip flops and basic sequential circuits including shift registers and counters. Preparation: Read the following experiment. It will save time if you enter the circuit designs for Parts 3, 4 and 5 using the graphic design editor before coming to the lab. Bring your textbook to the lab! Devices used: sn74ls00 Quad 2-input NAND sn74ls76 Dual JK Master-slave flip flop 2732A EPROM MAX3000 EPM3032ALC44-10 CPLD Digital-to-Analog converter (DAC) Op Amp Experiment: Latches and Flip-flops 1. The RS latch is the fundamental element in sequential logic design. Construct the circuits for the RS latches shown below using the 7400 TTL package. Using switches and LEDs, carefully verify their operation and write their function tables. S Q R Q

2 2. The JK flip flop is a widely used Master-slave device that features in the design of many sequential circuits. It is versatile in that it may be easily used as a toggle flipflop ( T-type) or a D flipflop (D-type) (a) (b) (c) Carefully verify the behavior of the JK flipflop (in the 7476 TTL package) and write out its characteristic table. Note carefully the clock edge to which it responds as well as the asynchronous operation of the preset and clear inputs. Use toggle switches for the inputs and LEDs on the outputs. Connect an inverter between the J and K inputs and verify that the operation is that of a D flip flop. Write its characteristic table. Connect the J and K inputs together and verify that it operates as a T flip flop and write its characteristic table. Registers and Counters A register is a group of n flip-flops operating together whose outputs are considered to represent an n-bit binary number. A single flip-flop can be considered to be a single-bit register. The simplest form of a register is used to just capture and hold a value applied to its inputs (eg. the D inputs of D flipflops) in response to a "write" command (the clock pulse). However, registers may also be considered to be operational meaning that the value they hold may be altered in response to an external input. For example, an n-bit counter may be considered a register with the capability to increment (or decrement) its value. Another common example is shifting in which the values of individual bits are passed from one position of the register to another. Shifting all bits one position to the left multiplies the register contents by 2; each shift to the right divides the register value by two. We will study the behavior of

3 some examples below. Registers can be forced to zero by the simultaneous application of a pulse to the asynchronous clear inputs of each flip flop that comprises the register. For the remainder of this lab, design the required circuit using the graphic design editor (Appendix B, page 832) included in the Quartus II design package. For each circuit, load into the MAX3000 chip and test on the bread board using LED's and switches.

4 3. Shift registers (a) Flip-flops can be connected in series to form shift registers in many ways. A simple left-to-right shift register can be constructed from JK flip-flops configured as D flip-flops as shown in the circuit below. Note that an inverter is required only for the left-most flip-flop; thereafter the Q' output is available instead. The preset inputs should be tied to logic HI. Experiment with this circuit using a low frequency clock input provided by the function generator so that you can observe the register output patterns Q 3 Q 2 Q 1 Q 0 on LEDs. Using toggle switches to provide the clear input as well as the serial input. Note that the JK flip-flop in the editor does not contain the output Q', but it can be obtained by inverting Q (attach an inverter to Q and use the output of the inverter as Q'). (b) Modify your circuit from part (a) as shown below to implement a "rotate" capability in the register by connecting the Q 0 output back to the input through an OR gate. This is also known as a ring counter. The serial input of the register is done with the toggle switch via the OR gate.

5 4. Asynchronous counter Implement the following circuit that uses JK flip-flops configured as T flip-flops( J = K = 1 ). Note that the clock input to the flip-flops for Q 1, Q 2 and Q 3 come from the output of the preceding stage; ie it is asynchronous because the changes in the output bits representing the state are cascaded in time. For this reason it is also known as a ripple counter. Write the sequence of output states observed on Q 3 Q 2, Q 1 and Q 0 starting with all flipflops cleared. 5. Synchronous counters An asynchronous counter can cause difficulties due to intermediate (short) output states caused by the time delays. For example, in changing from 0011 to 0100, the count value actually undergoes the sequence where the states 0010 and 0000 exist only for the time for the gate delays through a single flip-flop. The bits change in the order of LSB to MSB. Similarly, changing from state 0111 to 1000 gives short intermediate states at 0110, 0100 and A better design is the synchronous counter in which all flip-flops receive a common clock pulse:

6 Build the circuit for the synchronous up-counter as shown. Verify its timing and operation using the timing diagram shown below. Note that the count enable can be used to freeze the count at any time and that count transitions occur on positive edges of the clock. Increase the clock frequency to 100KHz and measure the frequency at each output: Frequency measured at: Q 0 : Q 2 : Q 1 : Q 3 : Carry Out: The design of this counter uses serial gating which means that, for example, in going from state 0111 to 1000, there are three delays through the AND gates required to generate the T-input to the final bit. This restricts the maximum count frequency. Parallel gating is analogous to look-ahead carry logic and allows for the design of faster counters.

7 6. Simple Function Generator In this part of the lab we will use the 4-bit synchronous counter to address an EPROM to implement a simple function generator. First using the toggle switches, examine the data that is stored in the top 16 locations of the EPROM and complete the following table. Note that these are the addresses (FF0 16 ) to (FFF 16 ). Address (A0-A11) Data (O0 - O7) Address (A0-A11) Data (O0 - O7) FF0 FF8 FF1 FF9 FF2 FFA FF3 FFB FF4 FFC FF5 FFD FF6 FFE FF7 FFF Now, plot the data from the table, on the following grid: Notice that the 8-bit data is a set of 16 samples that form one cycle of an approximated sine wave pattern. In fact, by simply reprogramming the EPROM we could generate any arbitrary waveform. By repetitively accessing each of the 16 sample values, the outputs of the EPROM would thus represent a periodic function, in this case the sine function. Increasing the speed at which we cycle through the

8 samples would increase the frequency of our sine wave output. This is, of course, the function of the counter. We can easily generate the 16 addresses required to repetitively access all 16 samples by driving the bottom four address inputs with a binary counter while the top 8 address lines are held HI. This will continuously generate addresses from FF0 16 to FFF 16 as shown in the circuit below. To observe our fabricated waveform on a scope, we convert the 8-bit digital samples on the output of the EPROM to analog by way of a Digital-to-Analog Converter (DAC). A DAC produces an analog voltage output that is proportional to the digital input. In this case, the minimum voltage output (0V) is given by digital input and the maximum voltage output (+5V) is given by digital input You will learn much more about the internal design and operation of DACs in later courses. Connect the output of the counter from part 5 of this lab to the lowest four address inputs of the EPROM as shown below, leaving the carry output unconnected. Connect the 8 data out lines of the EPROM to the DAC. Vary the counter clock frequency and observe the effect on the waveform that is generated. What is the peak-to-peak magnitude of the sine wave that is generated? What sine wave frequency is generated with the 50KHz counter clock? How is the sine wave frequency related to the counter clock frequency? Suggest ways that the waveform could be made smoother.

### Logic Design. Flip Flops, Registers and Counters

Logic Design Flip Flops, Registers and Counters Introduction Combinational circuits: value of each output depends only on the values of inputs Sequential Circuits: values of outputs depend on inputs and

### DIGITAL COUNTERS. Q B Q A = 00 initially. Q B Q A = 01 after the first clock pulse.

DIGITAL COUNTERS http://www.tutorialspoint.com/computer_logical_organization/digital_counters.htm Copyright tutorialspoint.com Counter is a sequential circuit. A digital circuit which is used for a counting

### Applications of Edge-Triggered D Flip-flop

Applications of Edge-Triggered D Flip-flop 1. Data Storage using D-flip-flop A Multiplexer based Parallel-to-Serial converter needs to have stable parallel data at its inputs as it converts it to serial

### CHAPTER 6 DESIGN OF SEQUENTIAL LOGIC CIRCUITS IN QCA

6 CHAPTER 6 DESIGN OF SEQUENTIAL LOGIC CIRCUITS IN QCA 6. INTRODUCTION The logic circuits whose outputs at any instant of time depend not only on the present inputs but also on the past outputs are known

### DIGITAL SYSTEM DESIGN LAB

EXPERIMENT NO: 7 STUDY OF FLIP FLOPS USING GATES AND IC S AIM: To verify various flip-flops like D, T, and JK. APPARATUS REQUIRED: Power supply, Digital Trainer kit, Connecting wires, Patch Chords, IC

### 1) For a RS flip flop constructed out of NAND gates complete the following table. R S Q Q\ State name Q Q\

Sequential logic tutorial Flip Flops 1) For a RS flip flop constructed out of NAND gates complete the following table R S Q Q\ State name 0 0 1 1 0 1 0 1 1 0 1 0 1 1 Q Q\ 2) Complete the following timing

### Module 3: Floyd, Digital Fundamental

Module 3: Lecturer : Yongsheng Gao Room : Tech - 3.25 Email : yongsheng.gao@griffith.edu.au Structure : 6 lectures 1 Tutorial Assessment: 1 Laboratory (5%) 1 Test (20%) Textbook : Floyd, Digital Fundamental

### Chapter 8. Sequential Circuits for Registers and Counters

Chapter 8 Sequential Circuits for Registers and Counters Lesson 3 COUNTERS Ch16L3- "Digital Principles and Design", Raj Kamal, Pearson Education, 2006 2 Outline Counters T-FF Basic Counting element State

### LAB MANUAL SUBJECT: DIGITAL LOGIC DESIGN AND APPLICATIONS SE (COMPUTERS) SEM III

LAB MANUAL SUBJECT: DIGITAL LOGIC DESIGN AND APPLICATIONS SE (COMPUTERS) SEM III 1 INDEX Sr. No Title of the Experiment 1 Study of BASIC Gates 3 2 Universal Gates 6 3 Study of Full & Half Adder & Subtractor

### Unit 4 Session - 15 Flip-Flops

Objectives Unit 4 Session - 15 Flip-Flops Usage of D flip-flop IC Show the truth table for the edge-triggered D flip-flop and edge-triggered JK flip-flop Discuss some of the timing problems related to

### SAMPLE OF THE STUDY MATERIAL PART OF CHAPTER 5. Combinational & Sequential Circuits

SAMPLE OF THE STUD MATERIAL PART OF CHAPTER 5 5. Introduction Digital circuits can be classified into two types: Combinational digital circuits and Sequential digital circuits. 5.2 Combinational Digital

### Sequential Circuits. Chapter 4 S. Dandamudi

Sequential Circuits Chapter 4 S. Dandamudi Outline Introduction Clock signal Propagation delay Latches SR latch Clocked SR latch D latch JK latch Flip flops D flip flop JK flip flop Example chips Example

### UNIVERSITI MALAYSIA PERLIS DKT DIGITAL SYSTEMS II. Lab 2 : Counter Design

UNIVERSITI MALAYSIA PERLIS DKT 212/3 : DIGITAL SYSTEM II Lab 2 : Counter Design Name : Matrix No. : Program : Date : OBJECTIVE 1. To understand state diagram in sequential circuit. 2. To build Karnaugh

### Experiment # 9. Clock generator circuits & Counters. Eng. Waleed Y. Mousa

Experiment # 9 Clock generator circuits & Counters Eng. Waleed Y. Mousa 1. Objectives: 1. Understanding the principles and construction of Clock generator. 2. To be familiar with clock pulse generation

### Digital Fundamentals

Digital Fundamentals Tenth Edition Floyd hapter 8 2009 Pearson Education, Upper 2008 Pearson Saddle River, Education NJ 07458. All Rights Reserved ounting in Binary As you know, the binary count sequence

### Contents COUNTER. Unit III- Counters

COUNTER Contents COUNTER...1 Frequency Division...2 Divide-by-2 Counter... 3 Toggle Flip-Flop...3 Frequency Division using Toggle Flip-flops...5 Truth Table for a 3-bit Asynchronous Up Counter...6 Modulo

### Counters and Decoders

Physics 3330 Experiment #10 Fall 1999 Purpose Counters and Decoders In this experiment, you will design and construct a 4-bit ripple-through decade counter with a decimal read-out display. Such a counter

### Final Exam review: chapter 4 and 5. Supplement 3 and 4

Final Exam review: chapter 4 and 5. Supplement 3 and 4 1. A new type of synchronous flip-flop has the following characteristic table. Find the corresponding excitation table with don t cares used as much

### Figure 2.4(f): A T flip flop

If the T input is in 0 state (i.e., J = K = 0) prior to a clock pulse, the Q output will not change with the clock pulse. On the other hand, if the T input is in 1 state (i.e., J = K = 1) prior to a clock

### BINARY CODED DECIMAL: B.C.D.

BINARY CODED DECIMAL: B.C.D. ANOTHER METHOD TO REPRESENT DECIMAL NUMBERS USEFUL BECAUSE MANY DIGITAL DEVICES PROCESS + DISPLAY NUMBERS IN TENS IN BCD EACH NUMBER IS DEFINED BY A BINARY CODE OF 4 BITS.

### Experiment # 8 Latches And Flip Flops Characteristics

Digital Design LAB Islamic University Gaza Engineering Faculty Department of Computer Engineering Fall 2012 ECOM 2112: Digital Design LAB Eng: Ahmed M. Ayash Experiment # 8 Latches And Flip Flops Characteristics

### Counters & Shift Registers Chapter 8 of R.P Jain

Chapter 3 Counters & Shift Registers Chapter 8 of R.P Jain Counters & Shift Registers Counters, Syllabus Design of Modulo-N ripple counter, Up-Down counter, design of synchronous counters with and without

### Asynchronous counters, except for the first block, work independently from a system clock.

Counters Some digital circuits are designed for the purpose of counting and this is when counters become useful. Counters are made with flip-flops, they can be asynchronous or synchronous and they can

### Module 5A2: Laboratory: Flip-Flops

Excelsior College ELEC201 Digital Electronics Module 5A2: Laboratory: Flip-Flops Objectives The objectives of this experiment are to: 1. Examine the operation of the RS latch. 2. Examine the operation

### Lab 1 Physics 430 Laboratory Manual 1. LAB 1 Logic Gates, Flip Flops and Registers

Lab Physics 430 Laboratory Manual LAB Logic Gates, Flip Flops and Registers In this first lab we assume that you know a little about logic gates and using them. The first experiment is an exericse to help

### Karnaugh Maps. Example A B C X 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 1 0 0 1 1 0 1 0 1 1 0 1 1 1 1 1. each 1 here gives a minterm e.g.

Karnaugh Maps Yet another way of deriving the simplest Boolean expressions from behaviour. Easier than using algebra (which can be hard if you don't know where you're going). Example A B C X 0 0 0 0 0

### REGISTERS. Consists of a set of flip-flops (each flip-flop stores one bit of information)

REGISTERS Sequential circuit used to store binary word Consists of a set of flip-flops (each flip-flop stores one bit of information) External gates may be used to control the inputs of the flip-flops:

### Shift registers. 1.0 Introduction

Shift registers 1.0 Introduction Shift registers are a type of sequential logic circuit, mainly for storage of digital data. They are a group of flip-flops connected in a chain so that the output from

### Flip-Flops. Outline: 2. Timing noise

Outline: 2. Timing noise Flip-Flops Signal races, glitches FPGA example ( assign bad) Synchronous circuits and memory Logic gate example 4. Flip-Flop memory RS-latch example D and JK flip-flops Flip-flops

### Digital Logic Design Sequential circuits

Digital Logic Design Sequential circuits Dr. Eng. Ahmed H. Madian E-mail: ahmed.madian@guc.edu.eg Dr. Eng. Rania.Swief E-mail: rania.swief@guc.edu.eg Dr. Eng. Ahmed H. Madian Registers An n-bit register

### Latches and Flip-Flops characterestics & Clock generator circuits

Experiment # 7 Latches and Flip-Flops characterestics & Clock generator circuits OBJECTIVES 1. To be familiarized with D and JK flip-flop ICs and their characteristic tables. 2. Understanding the principles

### Counters. Non-synchronous (asynchronous) counters A 2-bit asynchronous binary counter High

Counters Learning objectives Understanding the operation and characteristics of asynchronous and synchronous counters Analyze counter circuits and counter timing diagrams Determine the sequence of a counter

### FACULTY OF ENGINEERING LAB SHEET EEE1036 DIGITAL LOGIC DESIGN TRIMESTER 3, 2015_2016

EEE06: Digital Logic Design, Lab Exp. DL FACULTY OF ENGINEERING LAB SHEET EEE06 DIGITAL LOGIC DESIGN TRIMESTER, 05_06 DL - Flip-Flops and Their Applications *Note: On-the-spot evaluation may be carried

### Figure (1): Decade Counter Output Waveforms.

DIGITAL COUNTER AND APPLICATIONS A digital counter is a device that generates binary numbers in a specified count sequence. The counter progresses through the specified sequence of numbers when triggered

### Overview. Ripple Counter Synchronous Binary Counters

Counters Overview Ripple Counter Synchronous Binary Counters Design with D Flip-Flops Design with J-K Flip-Flops Serial Vs. Parallel Counters Up-down Binary Counter Binary Counter with Parallel Load BCD

### ECE 433: JK Flip-Flop Design

1 ECE 433: JK Flip-Flop Design Abstract This report describes the process, from start to finish, of building a JK flip-flop. It includes the digital logic associated with the flip flop and the physical

### Digital Systems Based on Principles and Applications of Electrical Engineering/Rizzoni (McGraw Hill

Digital Systems Based on Principles and Applications of Electrical Engineering/Rizzoni (McGraw Hill Objectives: Analyze the operation of sequential logic circuits. Understand the operation of digital counters.

### Lecture 8: Synchronous Digital Systems

Lecture 8: Synchronous Digital Systems The distinguishing feature of a synchronous digital system is that the circuit only changes in response to a system clock. For example, consider the edge triggered

### Sequential Circuits: Latches & Flip-Flops

Sequential Circuits: Latches & Flip-Flops Sequential Circuits Combinational Logic: Output depends only on current input Able to perform useful operations (add/subtract/multiply/encode/decode/ select[mux]/etc

### Counters In this lesson, the operation and design of Synchronous Binary Counters will be studied.

Counters In this lesson, the operation and design of Synchronous Binary Counters will be studied. Synchronous Binary Counters (SBC) Description and Operation In its simplest form, a synchronous binary

### Module-3 SEQUENTIAL LOGIC CIRCUITS

Module-3 SEQUENTIAL LOGIC CIRCUITS Till now we studied the logic circuits whose outputs at any instant of time depend only on the input signals present at that time are known as combinational circuits.

### DIGITAL ELECTRONICS. Counters. By: Electrical Engineering Department

Counters By: Electrical Engineering Department 1 Counters Upon completion of the chapter, students should be able to:.1 Understand the basic concepts of asynchronous counter and synchronous counters, and

### Counters. Present State Next State A B A B Henry Hexmoor 1

Counters are a specific type of sequential circuit. Like registers, the state, or the flipflop values themselves, serves as the output. The output value increases by one on each clock cycle. After the

### J-K flip-flop circuit with potential timing problem. Timing diagram of J-K flip-flop circuit with potential timing problem

The 555 Timer The 555 Timer is a versatile and widely used device which can be configured as a mono-stable One-Shot or as an Astable multivibrator. An Astable multivibrator is known as an Oscillator which

### ASYNCHRONOUS COUNTERS

LB no.. SYNCHONOUS COUNTES. Introduction Counters are sequential logic circuits that counts the pulses applied at their clock input. They usually have 4 bits, delivering at the outputs the corresponding

### Sequential Logic. (Materials taken from: Principles of Computer Hardware by Alan Clements )

Sequential Logic (Materials taken from: Principles of Computer Hardware by Alan Clements ) Sequential vs. Combinational Circuits Combinatorial circuits: their outputs are computed entirely from their present

### Today. Sequential logic Latches Flip-flops Counters. Andrew H. Fagg: Embedded Real-Time Systems: Sequential Logic

Today Sequential logic Latches Flip-flops Counters Time Until now: we have essentially ignored the issue of time We have assumed that our digital logic circuits perform their computations instantaneously

### Lecture 10: Analog/Digital Conversion

Lecture 0: Analog/Digital onversion Example: ounter made from two JK flip-flops. This circuit counts from 0 3 0 3 0 is the lowest order bit, is the higher order bit. The output is a binary number =. The

### 1. Realization of gates using Universal gates

1. Realization of gates using Universal gates Aim: To realize all logic gates using NAND and NOR gates. Apparatus: S. No Description of Item Quantity 1. IC 7400 01 2. IC 7402 01 3. Digital Trainer Kit

### the circuit requirements and the design. The content of shift register can be serially transferred to other register

5-18 Serial Data Transfer: Shift Registers When FFs are arranged as a shift register, bits will shift with each clock pulse. JK FFs are used for 4-bit shift register, Data In is shifted into X3, X3 transfers

### Digital Logic Design. Basics Combinational Circuits Sequential Circuits. Pu-Jen Cheng

Digital Logic Design Basics Combinational Circuits Sequential Circuits Pu-Jen Cheng Adapted from the slides prepared by S. Dandamudi for the book, Fundamentals of Computer Organization and Design. Introduction

### 28. Minimize the following using Tabular method. f(a, b, c, d, e)= m(0,1,9,15,24,29,30) + d(8,11,31) 29. Minimize the following using K-map method.

Unit-1 1. Show Karnaugh map for equation Y = F(A,B,C) = S m(1, 2, 3, 6, 7) 2. Show Karnaugh map for equation Y = F(A,B,C,D) = S m(1, 2, 3, 6, 8, 9, 10, 12, 13, 14) 3. Give SOP form of Y = F(A,B,C,D) =

### The Storage or Data Register

The Storage or Data Register All sequential logic circuits in the computer CPU are based on the latch or flip-flop. A significant part of the ALU is the register complement. In the MIPS R-2000 computer

### Digital Circuits Laboratory LAB no. 9. Flip flops

(FF) are sequential logic circuits with 2 distinct stable states. hey have control inputs that cause the outputs to switch from one stable state to the other. hey are circuits with memory, because one

### Lecture 9: Flip-flops

Points Addressed in this Lecture Properties of synchronous and asynchronous sequential circuits Overview of flip-flops and latches Lecture 9: Flip-flops Professor Peter Cheung Department of EEE, Imperial

### LECTURE #11: Flip-Flops and Basic Sequential Design EEL 3701: Digital Logic and Computer Systems Based on lecture notes by Dr. Eric M.

LECTURE #: Flip-Flops and Basic Sequential Design EEL 370: Digital Logic and Computer Systems Based on lecture notes by Dr. Eric M. Schwartz Problem with Enabled Latches: - Consider an SR Latch controlling

### Chapter - 5 FLIP-FLOPS AND SIMPLE FLIP-FLOP APPLICATIONS

Chapter - 5 FLIP-FLOPS AND SIMPLE FLIP-FLOP APPLICATIONS Introduction : Logic circuit is divided into two types. 1. Combinational Logic Circuit 2. Sequential Logic Circuit Definition : 1. Combinational

### Lecture 9: Flip-Flops, Registers, and Counters

Lecture 9: Flip-Flops, Registers, and Counters 1. T Flip-Flops toggles its output on a rising edge, and otherwise keeps its present state. 1.1. Since the toggle from high to low to high takes two clock

### DEPARTMENT OF INFORMATION TECHNLOGY

DRONACHARYA GROUP OF INSTITUTIONS, GREATER NOIDA Affiliated to Mahamaya Technical University, Noida Approved by AICTE DEPARTMENT OF INFORMATION TECHNLOGY Lab Manual for Computer Organization Lab ECS-453

### To design digital counter circuits using JK-Flip-Flop. To implement counter using 74LS193 IC.

8.1 Objectives To design digital counter circuits using JK-Flip-Flop. To implement counter using 74LS193 IC. 8.2 Introduction Circuits for counting events are frequently used in computers and other digital

### Chapter 4: One-Shots, Counters, and Clocks

Chapter 4: One-Shots, Counters, and Clocks I. The Monostable Multivibrator (One-Shot) The timing pulse is one of the most common elements of laboratory electronics. Pulses can control logical sequences

### Sequential Circuits Sequential circuits combinational circuits clocked sequential circuits gate delay

Sequential Circuits Sequential circuits are those with memory, also called feedback. In this, they differ from combinational circuits, which have no memory. The stable output of a combinational circuit

### The NOT Gate The NOT gate outputs a logical 0 if its input is a logical 1 and outputs a 1 if its input is a 0. The symbol is given.

Gates and Flip-Flops Pádraig Ó Conbhuí 08531749 SF WED Abstract This experiment was carried out to construct (with the exception of the AND and NOT gates) and investigate the outputs of AND, NAND, OR,

### Chapter 7. Registers & Register Transfers. J.J. Shann. J. J. Shann

Chapter 7 Registers & Register Transfers J. J. Shann J.J. Shann Chapter Overview 7- Registers and Load Enable 7-2 Register Transfers 7-3 Register Transfer Operations 7-4 A Note for VHDL and Verilog Users

### 3 Flip-Flops. The latch is a logic block that has 2 stable states (0) or (1). The RS latch can be forced to hold a 1 when the Set line is asserted.

3 Flip-Flops Flip-flops and latches are digital memory circuits that can remain in the state in which they were set even after the input signals have been removed. This means that the circuits have a memory

### COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design

PH-315 COMINATIONAL and SEUENTIAL LOGIC CIRCUITS Hardware implementation and software design A La Rosa I PURPOSE: To familiarize with combinational and sequential logic circuits Combinational circuits

### WEEK 8.1 Registers and Counters. ECE124 Digital Circuits and Systems Page 1

WEEK 8.1 egisters and Counters ECE124 igital Circuits and Systems Page 1 Additional schematic FF symbols Active low set and reset signals. S Active high set and reset signals. S ECE124 igital Circuits

### COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design

PH-315 COMINATIONAL and SEUENTIAL LOGIC CIRCUITS Hardware implementation and software design A La Rosa I PURPOSE: To familiarize with combinational and sequential logic circuits Combinational circuits

### Flip-Flops, Registers, Counters, and a Simple Processor

June 8, 22 5:56 vra235_ch7 Sheet number Page number 349 black chapter 7 Flip-Flops, Registers, Counters, and a Simple Processor 7. Ng f3, h7 h6 349 June 8, 22 5:56 vra235_ch7 Sheet number 2 Page number

### ETEC 2301 Programmable Logic Devices. Chapter 10 Counters. Shawnee State University Department of Industrial and Engineering Technologies

ETEC 2301 Programmable Logic Devices Chapter 10 Counters Shawnee State University Department of Industrial and Engineering Technologies Copyright 2007 by Janna B. Gallaher Asynchronous Counter Operation

### Basic Bit Memory: Latches and Flip Flops

Basic Bit Memory: Latches and Flip Flops Topics: 1. General description of bit memory, also called a memory cell. 2. Definition of sequential and combinational circuits. Memory devices are sequential devices.

### Digital Logic Design Laboratory

Digital Logic Design Laboratory EE2731 Gabriel Augusto Marques Tarquinio de Souza Department of Electrical and Computer Engineering Louisiana State University and Agricultural and Mechanical College Baton

### Counters are sequential circuits which "count" through a specific state sequence.

Counters Counters are sequential circuits which "count" through a specific state sequence. They can count up, count down, or count through other fixed sequences. Two distinct types are in common usage:

### 4.0 Design of Synchronous Counters

4.0 Design of Synchronous Counters This section begins our study of designing an important class of clocked sequential logic circuits-synchronous finite-state machines. Like all sequential circuits, a

### CHAPTER IX REGISTER BLOCKS COUNTERS, SHIFT, AND ROTATE REGISTERS

CHAPTER IX-1 CHAPTER IX CHAPTER IX COUNTERS, SHIFT, AN ROTATE REGISTERS REA PAGES 249-275 FROM MANO AN KIME CHAPTER IX-2 INTROUCTION -INTROUCTION Like combinational building blocks, we can also develop

### NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter

NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter Description: The NTE2053 is a CMOS 8 bit successive approximation Analog to Digital converter in a 20 Lead DIP type package which uses a differential

### DIGITAL TECHNICS II. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute. 2nd (Spring) term 2012/2013

DIGITAL TECHNICS II Dr. Bálint Pődör Óbuda University, Microelectronics and Technology Institute 4. LECTURE: COUNTERS AND RELATED 2nd (Spring) term 2012/2013 1 4. LECTURE: COUNTERS AND RELATED 1. Counters,

### EC1261 DIGITAL LOGIC CIRCUITS UNIT I BOOLEAN ALGEBRA AND COMBINATIONAL CIRCUITS PART-A 1. What do you mean by literal? 2. What is logic gate? 3.

EC1261 DIGITAL LOGIC CIRCUITS UNIT I BOOLEAN ALGEBRA AND COMBINATIONAL CIRCUITS PART-A 1. What do you mean by literal? 2. What is logic gate? 3. What is demultiplexer? How does it differ from a decoder?

### In Module 9, 10, 11, you have been introduced to examples of combinational logic circuits whereby the outputs are entirely dependent on the current

Module 12 In Module 9, 10, 11, you have been introduced to examples of combinational logic circuits whereby the outputs are entirely dependent on the current inputs. The following topics will be on sequential

### ET398 LAB 6. Flip-Flops in VHDL

ET398 LAB 6 Flip-Flops in VHDL Flip-Flops March 3, 2013 Tiffany Turner OBJECTIVE The objectives of this lab are for you to begin the sequential and memory programming using flip flops in VHDL program.

### Flip-Flops. Revision of lecture notes written by Dr. Timothy Drysdale

Flip-Flops Revision of lecture notes written by Dr. Timothy Drysdale Objectives of Lecture The objectives of this lecture are: to discuss the difference between combinational and sequential logic as well

### Asynchronous Counters. Asynchronous Counters

Counters and State Machine Design November 25 Asynchronous Counters ENGI 25 ELEC 24 Asynchronous Counters The term Asynchronous refers to events that do not occur at the same time With respect to counter

### Having read this workbook you should be able to: recognise the arrangement of NAND gates used to form an S-R flip-flop.

Objectives Having read this workbook you should be able to: recognise the arrangement of NAND gates used to form an S-R flip-flop. describe how such a flip-flop can be SET and RESET. describe the disadvantage

### TUTORIAL 1: Overview of a Digital Logic

Questions 3 TUTORIAL : Overview of a Digital Logic. Fill in the terms for the definition. Term Definition i) Being continuous or having continuous values. ii) iii) iv) v) vi) A basic logic operation in

### The components. E3: Digital electronics. Goals:

E3: Digital electronics Goals: Basic understanding of logic circuits. Become familiar with the most common digital components and their use. Equipment: 1 st. LED bridge 1 st. 7-segment display. 2 st. IC

### Lecture 11. Registers and Counters

Logic Design Lecture 11. Registers and Counters Prof. Hyung Chul Park & Seung Eun Lee 12.1 Registers and Register Transfers Register- a collection of binary storage elements In theory, a register is sequential

### Part IA Engineering. Contents of Handout 2. Digital Circuits & Information Processing. Handout 2. Sequential Logic

Part IA Engineering Contents of Handout 2 Digital Circuits & Information Processing Handout 2 Sequential Logic ichard Prager Tim Flack anuary 29 Section A Section B Section C Section D Section E Binary

### SYNCHRONOUS COUNTERS

SYNCHRONOUS COUNTERS Synchronous digital counters have a common clock signal that controls all flip-flop stages. Since a common clock controls all flip-flops simultaneously, there are no cumulative delays

### Index i xi xv xxvi. Abstract List of Tables List of Figures Glossary. Page.No CHAPTER 1 INTRODUCTION

iv Abstract List of Tables List of Figures Glossary Index i xi xv xxvi CHAPTER 1 INTRODUCTION 1.1 Introduction 1.2 Formulation of the problem 1.3 Objectives 1.4 Methodology 1.5 Contribution of the Thesis

### Lecture 22: Sequential Circuits. Sequential Circuits. Characteristic Table, SR Latch. S-R Latch (Clocked) Latches:

Lecture 22: Sequential Circuits Latches: SR D JK Flip-Flops Memory Sequential Circuits In sequential circuits, new state depends on not only the input, but also on the previous state. Devices like registers

### Flip-Flops and Sequential Circuit Design. ECE 152A Winter 2012

Flip-Flops and Sequential Circuit Design ECE 52 Winter 22 Reading ssignment Brown and Vranesic 7 Flip-Flops, Registers, Counters and a Simple Processor 7.5 T Flip-Flop 7.5. Configurable Flip-Flops 7.6

### Flip-Flops and Sequential Circuit Design

Flip-Flops and Sequential Circuit Design ECE 52 Winter 22 Reading ssignment Brown and Vranesic 7 Flip-Flops, Registers, Counters and a Simple Processor 7.5 T Flip-Flop 7.5. Configurable Flip-Flops 7.6

### Chapter 9 Latches, Flip-Flops, and Timers

ETEC 23 Programmable Logic Devices Chapter 9 Latches, Flip-Flops, and Timers Shawnee State University Department of Industrial and Engineering Technologies Copyright 27 by Janna B. Gallaher Latches A temporary

### DESCRIPTIONS OF IC S USED IN DIGITAL LABS (ic_specs.doc jgl 11/25/12)

DESCRIPTIONS OF IC S USED IN DIGITAL LABS (ic_specs.doc jgl 11/25/12) (These do not include gate chips: 7400, 02, 04, 08, 10, 32, and 86. Notational note: on the Standard IC Symbol sheet, a bubbled pin

### Latches and Flip-flops

Latches and Flip-flops Latches and flip-flops are circuits with memory function. They are part of the computer's memory and processor s registers. SR latch is basically the computer memory cell Q=1 Q=0

### Digital Electronics. 5.0 Sequential Logic. Module 5

Module 5 www.learnabout-electronics.org Digital Electronics 5.0 Sequential Logic What you ll learn in Module 5 Section 5.0 Introduction to Sequential Logic Circuits. Section 5.1 Clock Circuits. RC Clock

### Memory Elements. Combinational logic cannot remember

Memory Elements Combinational logic cannot remember Output logic values are function of inputs only Feedback is needed to be able to remember a logic value Memory elements are needed in most digital logic

INTEGRATED CIRCUITS DATA SHEET For a complete data sheet, please also download: The IC6 74HC/HCT/HCU/HCMOS Logic Family Specifications The IC6 74HC/HCT/HCU/HCMOS Logic Package Information The IC6 74HC/HCT/HCU/HCMOS