Elementary Differential Equations


 Dale Barber
 1 years ago
 Views:
Transcription
1 Elementary Differential Equations EIGHTH EDITION Earl D. Rainville Late Professor of Mathematics University of Michigan Phillip E. Bedient Professor Emeritus of Mathematics Franklin and Marshall College Richard E. Bedient Professor of Mathematics Hamilton College PRENTICE HALL, UPPER SADDLE RIVER, NJ 07458
2 Preface / xiii 1 Definitions, Families of Curves / Examples of Differential Equations / Definitions / 2 / ' 1.3 Families of Solutions / Geometric Interpretation / The Isoclines of an Equation / An Existence Theorem / Computer Supplement / 15 2 Equations of Order One / Separation of Variables / Homogeneous Functions / Equations with Homogeneous Coefficients / Exact Equations / The Linear Equation of Order One / The General Solution of a Linear Equation / Computer Supplement / 43 3 Numerical Methods General Remarks / Euler's Method / A Modification of Euler's Method / 48
3 3.4 A Method of Successive Approximation / An Improvement on the Method of Successive Approximation / The Use of Taylor's Theorem / The RungeKutta Method /^ A Continuing Method / Computer Supplement / 60 Elementary Applications / Velocity of Escape from the Earth / Newton's Law of Cooling / Simple Chemical Conversion / Logistic Growth and the Price of Commodities / Computer Supplement / 73 Additional Topics on Equations of Order One / Integrating Factors Found by Inspection / The Determination of Integrating Factors / Substitution Suggested by the Equation / Bernoulli's Equation / Coefficients Linear in the Two Variables / Solutions Involving Nonelementary Integrals / Computer Supplement / 97 Linear Differential Equations / The General Linear Equation / An Existence and Uniqueness Theorem / Linear Independence / The Wronskian / General Solution of a Homogeneous Equation / General Solution of a Nonhomogeneous Equation / Differential Operators / The Fundamental Laws of Operation / Some Properties of Differential Operators / Computer Supplement / 115
4 7 Linear Equations with Constant Coefficients / Introduction / 117 ""7.2 The Auxiliary Equation: Distinct Roots / The Auxiliary Equation: Repeated Roots / A Definition of exp z for Imaginary z I The Auxiliary Equation: Imaginary Roots / A Note on Hyperbolic Functions / Computer Supplement / Nonhomogeneous Equations: Undetermined Coefficients / Construction of a Homogeneous Equation from a Specific Solution / 134 ' 8.2 Solution of a Nonhomogeneous Equation / The Method of Undetermined Coefficients / Solution by Inspection / Computer Supplement / Variation of Parameters / Introduction / Reduction of Order / Variation of Parameters / Solution of y"+y=f(x) I Computer Supplement / Applications / Vibration of a Spring / Undamped Vibrations / Resonance / Damped Vibrations / The Simple Pendulum / Newton's Laws and Planetary Motion / Central Force and Kepler's Second Law / Kepler's First Law / 180
5 Vlll Contents 10.9 Kepler's Third Law / Computer Supplement / 184 ~~" \ 11 Linear Systems of Equations / Introduction / FirstOrder Systems with Constant Coefficients / Solution of a FirstOrder System / Some Matrix Algebra / FirstOrder Systems Revisited / Complex Eigenvalues / Repeated Eigenvalues / The Phase Plane / Computer Supplement / Nonhomogeneous Systems of Equations / Nonhomogeneous Systems / Arms Races / Electric Circuits / Simple Networks / The Existence and Uniqueness of Solutions / Preliminary Remarks / An Existence and Uniqueness Theorem / A Lipschitz Condition / A Proof of the Existence Theorem / A Proof of the Uniqueness Theorem / Other Existence Theorems / The Laplace Transform / The Transform Concept / Definition of the Laplace Transform / Transforms of Elementary Functions / Sectionally Continuous Functions / ^ Functions of Exponential Order / Functions of Class A / 261
6 IX 14.7 Transforms of Derivatives / Derivatives of Transforms / The Gamma Function / Periodic Functions / Inverse Transforms / Definition of an Inverse Transform / Partial Fractions / Initial Value Problems / A Step Function / A Convolution Theorem / Special Integral Equations / Transform Methods and the Vibration offsprings / The Deflection of Beams / 307 "" 15.9 Systems of Equations / Computer Supplement / Nonlinear Equations / Preliminary Remarks / Factoring the Left Member / Singular Solutions / The cdiscriminant Equation / The pdiscriminant Equation / Eliminating the Dependent Variable / Clairaut's Equation / Dependent Variable Missing / Independent Variable Missing / The Catenary / Power Series Solutions / Linear Equations and Power Series / Convergence of Power Series / Ordinary Points and Singular Points / Validity of the Solutions Near an Ordinary Point / Solutions Near an Ordinary Point / Computer Supplement / 356
7 \ 18 Solutions Near Regular Singular Points / Regular Singular Points / :2 The Indicial Equation / Form and Validity of the Solutions Near a Regular Singular Point / Indicial Equation with Difference of Roots Nonintegral / Differentiation of a Product of Functions / Indicial Equation with Equal Roots / Indicial Equation with Equal Roots: An Alternative / Indicial Equation with Difference of Roots a Positive Integer: Nonlogarithmic Case^ / Indicial Equation with Difference of Roots a Positive Integer: Logarithmic Case / Solution for Large x I ManyTerm Recurrence Relations / Summary / Equations of Hypergeometric Type / Equations to Be Treated in This Chapter / The Factorial Function / The Hypergeometric Function / Laguerre Polynomials / 399 ~" 19.5 Bessel's Equation with Index Not an Integer / Bessel's Equation with Index an Integer / Hermite Polynomials / Legendre Polynomials / Partial Differential Equations / Remarks on Partial Differential Equations / Some Partial Differential Equations of Applied Mathematics / Method of Separation of Variables / 406
8 \ 20.4 A Problem on the Conduction of Heat in a Slab / Computer Supplement / 416 xi 21 Orthogonal Sets of Functions / Orthogonality / Simple Sets of Polynomials / Orthogonal Polynomials / Zeros of Orthogonal Polynomials / Orthogonality of Legendre Polynomials / Other Orthogonal Sets / Fourier Series / Orthogonality of a Set of Sines and Cosines'/ Fourier Series: An Expansion Theorem / Numerical Examples of Fourier Series / Fourier Sine Series / Fourier Cosine Series / Numerical Fourier Analysis / Improvement in Rapidity of Convergence / Computer Supplement / Boundary Value Problems / The OneDimensional Heat Equation / Experimental Verification of the Validity of the Heat Equation / Surface Temperature Varying with Time / Heat Conduction in a Sphere / The Simple Wave Equation / Laplace's Equation in Two Dimensions / Computer Supplement / Additional Properties of the Laplace Transform / Power Series and Inverse Transforms / The Error Function / 471
9 24.3 Bessel Functions / Differential Equations with Variable Coefficients / 480 Contents 25 Partial Differential Equations Transform Methods / Boundary Value Problems / The Wave Equation / Diffusion in a SemiInfinite Solid / Canonical Variables / Diffusion in a Slab of Finite Width / Diffusion in a QuarterInfinite Solid / 496 Answers to Oddnumbered Exercises / 500 Index / 527
Elementary Differential Equations and Boundary Value Problems. 10th Edition International Student Version
Brochure More information from http://www.researchandmarkets.com/reports/3148843/ Elementary Differential Equations and Boundary Value Problems. 10th Edition International Student Version Description:
More informationContents. Gbur, Gregory J. Mathematical methods for optical physics and engineering digitalisiert durch: IDS Basel Bern
Preface page xv 1 Vector algebra 1 1.1 Preliminaries 1 1.2 Coordinate System invariance 4 1.3 Vector multiplication 9 1.4 Useful products of vectors 12 1.5 Linear vector Spaces 13 1.6 Focus: periodic media
More informationMean value theorem, Taylors Theorem, Maxima and Minima.
MA 001 Preparatory Mathematics I. Complex numbers as ordered pairs. Argand s diagram. Triangle inequality. De Moivre s Theorem. Algebra: Quadratic equations and expressions. Permutations and Combinations.
More informationChapter 3: Mathematical Models and Numerical Methods Involving FirstOrder Differential Equations
Massasoit Community College Instructor: Office: Email: Phone: Office Hours: Course: Differential Equations Course Number: MATH230XX Semester: Classroom: Day and Time: Course Description: This course is
More informationCOWLEY COLLEGE & Area Vocational Technical School
COWLEY COLLEGE & Area Vocational Technical School COURSE PROCEDURE FOR DIFFERENTIAL EQUATIONS MTH 4465 3 Credit Hours Student Level: This course is open to students on the college level in the sophomore
More informationR U S S E L L L. H E R M A N
R U S S E L L L. H E R M A N A N I N T R O D U C T I O N T O F O U R I E R A N D C O M P L E X A N A LY S I S W I T H A P P L I C AT I O N S T O T H E S P E C T R A L A N A LY S I S O F S I G N A L S R.
More informationMATHEMATICAL METHODS FOURIER SERIES
MATHEMATICAL METHODS FOURIER SERIES I YEAR B.Tech By Mr. Y. Prabhaker Reddy Asst. Professor of Mathematics Guru Nanak Engineering College Ibrahimpatnam, Hyderabad. SYLLABUS OF MATHEMATICAL METHODS (as
More informationORDINARY DIFFERENTIAL EQUATIONS
ORDINARY DIFFERENTIAL EQUATIONS GABRIEL NAGY Mathematics Department, Michigan State University, East Lansing, MI, 48824. SEPTEMBER 4, 25 Summary. This is an introduction to ordinary differential equations.
More informationContents. Bibliografische Informationen digitalisiert durch
1 Introduction 1 1.1 Introduction to Maple 1 1.1.1 Getting Started with Maple 1 1.1.2 Plotting with Maple 3 1.1.3 Solving Linear and Nonlinear Equations 5 1.1.4 Matrix Operations 6 1.1.5 Differential Equations
More informationMATH MathematicsNursing. MATH Remedial Mathematics IBusiness & Economics. MATH Remedial Mathematics IIBusiness and Economics
MATH 090  MathematicsNursing MATH 091  Remedial Mathematics IBusiness & Economics MATH 094  Remedial Mathematics IIBusiness and Economics MATH 095  Remedial Mathematics IScience (3 CH) MATH 096
More informationCONFLUENT HYPERGEOMETRIC FUNCTIONS
CONFLUENT HYPERGEOMETRIC FUNCTIONS BY L. J. SLATER, D.LIT., PH.D. Formerly Bateson Research Fellow Newnham College, Cambridge Institut fur theoretssche Physfk Technische Hochschule Darmstadt CAMBRIDGE
More informationMathematics (MAT) MAT 061 Basic Euclidean Geometry 3 Hours. MAT 051 PreAlgebra 4 Hours
MAT 051 PreAlgebra Mathematics (MAT) MAT 051 is designed as a review of the basic operations of arithmetic and an introduction to algebra. The student must earn a grade of C or in order to enroll in MAT
More informationSCHWEITZER ENGINEERING LABORATORIES, COMERCIAL LTDA.
Pocket book of Electrical Engineering Formulas Content 1. Elementary Algebra and Geometry 1. Fundamental Properties (real numbers) 1 2. Exponents 2 3. Fractional Exponents 2 4. Irrational Exponents 2 5.
More informationFurther Analytical Methods for Engineers
Unit 22: Unit code: Further Analytical Methods for Engineers J/601/1465 QCF level: 5 Credit value: 15 Aim This unit aims to further develop the analytical knowledge and techniques necessary to analyse
More informationCode: MATH 274 Title: ELEMENTARY DIFFERENTIAL EQUATIONS
Code: MATH 274 Title: ELEMENTARY DIFFERENTIAL EQUATIONS Institute: STEM Department: MATHEMATICS Course Description: This is an introductory course in concepts and applications of differential equations.
More informationNumerical Methods for Engineers
Steven C. Chapra Berger Chair in Computing and Engineering Tufts University RaymondP. Canale Professor Emeritus of Civil Engineering University of Michigan Numerical Methods for Engineers With Software
More informationLaplace Transforms. (This command loads the functions required for computing Laplace and Inverse Laplace transforms)
Laplace Transforms For the design of a control system, it is important to know how the system of interest behaves and how it responds to different controller designs. To do this, the dynamic equations
More informationADVANCED LINEAR ALGEBRA FOR ENGINEERS WITH MATLAB. Sohail A. Dianat. Rochester Institute of Technology, New York, U.S.A. Eli S.
ADVANCED LINEAR ALGEBRA FOR ENGINEERS WITH MATLAB Sohail A. Dianat Rochester Institute of Technology, New York, U.S.A. Eli S. Saber Rochester Institute of Technology, New York, U.S.A. (g) CRC Press Taylor
More informationMAT 242 Differential Equations Mathematics
MAT 242 Differential Equations Mathematics Catalog Course Description: This course includes the following topics: solution of linear and elementary nonlinear differential equations by standard methods
More informationPRESIDENCY UNIVERSITY, KOLKATA
PRESIDENCY UNIVERSITY, KOLKATA Syllabus for Three Year B.Sc. MATHEMATICS (GenEd) Course (With effect from the Academic Session 201314) Module Structure Semester Module No. Name of the Module Marks I M11
More informationFRACTIONAL INTEGRALS AND DERIVATIVES. Theory and Applications
FRACTIONAL INTEGRALS AND DERIVATIVES Theory and Applications Stefan G. Samko Rostov State University, Russia Anatoly A. Kilbas Belorussian State University, Minsk, Belarus Oleg I. Marichev Belorussian
More informationAN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS
AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS Revised Edition James Epperson Mathematical Reviews BICENTENNIAL 0, 1 8 0 7 z ewiley wu 2007 r71 BICENTENNIAL WILEYINTERSCIENCE A John Wiley & Sons, Inc.,
More informationNEW YORK CITY COLLEGE OF TECHNOLOGY The City University of New York
NEW YORK CITY COLLEGE OF TECHNOLOGY The City University of New York DEPARTMENT: Mathematics COURSE: MAT 2680 TITLE: Differential Equations DESCRIPTION: An introduction to solving ordinary differential
More informationEASTERN ARIZONA COLLEGE Differential Equations
EASTERN ARIZONA COLLEGE Differential Equations Course Design 20152016 Course Information Division Mathematics Course Number MAT 260 (SUN# MAT 2262) Title Differential Equations Credits 3 Developed by
More informationMath Department Student Learning Objectives Updated April, 2014
Math Department Student Learning Objectives Updated April, 2014 Institutional Level Outcomes: Victor Valley College has adopted the following institutional outcomes to define the learning that all students
More informationAn Introduction to Separation of Variables with Fourier Series Math 391w, Spring 2010 Tim McCrossen Professor Haessig
An Introduction to Separation of Variables with Fourier Series Math 391w, Spring 2010 Tim McCrossen Professor Haessig Abstract: This paper aims to give students who have not yet taken a course in partial
More informationNumerical Recipes in C
2008 AGIInformation Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Numerical Recipes in C The Art of Scientific Computing Second Edition
More informationtegrals as General & Particular Solutions
tegrals as General & Particular Solutions dy dx = f(x) General Solution: y(x) = f(x) dx + C Particular Solution: dy dx = f(x), y(x 0) = y 0 Examples: 1) dy dx = (x 2)2 ;y(2) = 1; 2) dy ;y(0) = 0; 3) dx
More informationCoffeyville Community College #MATH 202 COURSE SYLLABUS FOR DIFFERENTIAL EQUATIONS. Ryan Willis Instructor
Coffeyville Community College #MATH 202 COURSE SYLLABUS FOR DIFFERENTIAL EQUATIONS Ryan Willis Instructor COURSE NUMBER: MATH 202 COURSE TITLE: Differential Equations CREDIT HOURS: 3 INSTRUCTOR: OFFICE
More informationThe Quantum Harmonic Oscillator Stephen Webb
The Quantum Harmonic Oscillator Stephen Webb The Importance of the Harmonic Oscillator The quantum harmonic oscillator holds a unique importance in quantum mechanics, as it is both one of the few problems
More informationTable of Contents. Montessori Algebra for the Adolescent Michael J. Waski"
Table of Contents I. Introduction II. Chapter of Signed Numbers B. Introduction and Zero Sum Game C. Adding Signed Numbers D. Subtracting Signed Numbers 1. Subtracting Signed Numbers 2. Rewriting as Addition
More informationPrecalculus REVERSE CORRELATION. Content Expectations for. Precalculus. Michigan CONTENT EXPECTATIONS FOR PRECALCULUS CHAPTER/LESSON TITLES
Content Expectations for Precalculus Michigan Precalculus 2011 REVERSE CORRELATION CHAPTER/LESSON TITLES Chapter 0 Preparing for Precalculus 01 Sets There are no statemandated Precalculus 02 Operations
More informationAPPLIED MATHEMATICS ADVANCED LEVEL
APPLIED MATHEMATICS ADVANCED LEVEL INTRODUCTION This syllabus serves to examine candidates knowledge and skills in introductory mathematical and statistical methods, and their applications. For applications
More informationMethods of Solution of Selected Differential Equations Carol A. Edwards ChandlerGilbert Community College
Methods of Solution of Selected Differential Equations Carol A. Edwards ChandlerGilbert Community College Equations of Order One: Mdx + Ndy = 0 1. Separate variables. 2. M, N homogeneous of same degree:
More informationNumerical Methods for Differential Equations
Numerical Methods for Differential Equations Course objectives and preliminaries Gustaf Söderlind and Carmen Arévalo Numerical Analysis, Lund University Textbooks: A First Course in the Numerical Analysis
More informationMAT225 Differential Equations Spring 2016
MAT225 Differential Equations Spring 2016 General Information Meeting Time and Place Monday, Wednesday, and Friday: 8:00 9:00 a.m., KOSC 127. Professor Dr. Jonathan Senning, 246 Ken Olsen Science Center
More informationby the matrix A results in a vector which is a reflection of the given
Eigenvalues & Eigenvectors Example Suppose Then So, geometrically, multiplying a vector in by the matrix A results in a vector which is a reflection of the given vector about the yaxis We observe that
More informationFourier Series. A Fourier series is an infinite series of the form. a + b n cos(nωx) +
Fourier Series A Fourier series is an infinite series of the form a b n cos(nωx) c n sin(nωx). Virtually any periodic function that arises in applications can be represented as the sum of a Fourier series.
More informationAP Calculus BC. All students enrolling in AP Calculus BC should have successfully completed AP Calculus AB.
AP Calculus BC Course Description: Advanced Placement Calculus BC is primarily concerned with developing the students understanding of the concepts of calculus and providing experiences with its methods
More informationIntroduction to Partial Differential Equations. John Douglas Moore
Introduction to Partial Differential Equations John Douglas Moore May 2, 2003 Preface Partial differential equations are often used to construct models of the most basic theories underlying physics and
More informationSchool of Mathematics, Computer Science and Engineering. Mathematics* Associate in Arts Degree COURSES, PROGRAMS AND MAJORS
Mathematics School of Mathematics, Computer Science and Engineering Dean: Lianna Zhao, MD Academic Chair: Miriam Castroconde Faculty: Miriam Castroconde; Terry Cheng; Howard Dachslager, PhD; Ilknur Erbas
More informationNumerical Analysis An Introduction
Walter Gautschi Numerical Analysis An Introduction 1997 Birkhauser Boston Basel Berlin CONTENTS PREFACE xi CHAPTER 0. PROLOGUE 1 0.1. Overview 1 0.2. Numerical analysis software 3 0.3. Textbooks and monographs
More informationChapter 2. Fourier Analysis
Chapter 2. Fourier Analysis Reading: Kreyszig, Advanced Engineering Mathematics, 0th Ed., 20 Selection from chapter Prerequisites: Kreyszig, Advanced Engineering Mathematics, 0th Ed., 20 Complex numbers:
More informationSEMESTER PLANS FOR MATH COURSES, FOR MAJORS OUTSIDE MATH.
SEMESTER PLANS FOR MATH COURSES, FOR MAJORS OUTSIDE MATH. CONTENTS: AP calculus credit and Math Placement levels. List of semester math courses. Student pathways through the semester math courses Transition
More information4.5 Mass Demystified In the SI System Mass Demystified In the U.S. Customary System Mass Demystified In the English System (Part
Table of Contents Prologue... vii Preface... ix Chapter 1 Introduction... 1 1.1 Ideal Math Sequence... 1 1.2 Compressed Math Sequence... 1 Chapter 2 Equations of the Algebraic Kind... 3 2.1 Numbers...
More informationHigher Order Linear Differential Equations with Constant Coefficients
Higher Order Linear Differential Equations with Constant Coefficients Part I. Homogeneous Equations: Characteristic Roots Objectives: Solve nth order homogeneous linear equations where a n,, a 1, a 0
More informationDiploma Plus in Certificate in Advanced Engineering
Diploma Plus in Certificate in Advanced Engineering Mathematics New Syllabus from April 2011 Ngee Ann Polytechnic / School of Interdisciplinary Studies 1 I. SYNOPSIS APPENDIX A This course of advanced
More informationContents. The Real Numbers. Linear Equations and Inequalities in One Variable
dug33513_fm.qxd 11/20/07 3:21 PM Page vii Preface Guided Tour: Features and Supplements Applications Index 1 2 The Real Numbers 1.1 1.2 1.3 1.4 1.5 1.6 1 Sets 2 The Real Numbers 9 Operations on the Set
More information2.5 Complex Eigenvalues
1 25 Complex Eigenvalues Real Canonical Form A semisimple matrix with complex conjugate eigenvalues can be diagonalized using the procedure previously described However, the eigenvectors corresponding
More informationIntroduction to Engineering System Dynamics
CHAPTER 0 Introduction to Engineering System Dynamics 0.1 INTRODUCTION The objective of an engineering analysis of a dynamic system is prediction of its behaviour or performance. Real dynamic systems are
More informationCHAPTER 2 FOURIER SERIES
CHAPTER 2 FOURIER SERIES PERIODIC FUNCTIONS A function is said to have a period T if for all x,, where T is a positive constant. The least value of T>0 is called the period of. EXAMPLES We know that =
More informationThnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks
Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Welcome to Thinkwell s Homeschool Precalculus! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson
More informationLinear systems of ordinary differential equations
Linear systems of ordinary differential equations (This is a draft and preliminary version of the lectures given by Prof. Colin Atkinson FRS on 2st, 22nd and 25th April 2008 at Tecnun Introduction. This
More informationMATHEMATICAL METHODS OF STATISTICS
MATHEMATICAL METHODS OF STATISTICS By HARALD CRAMER TROFESSOK IN THE UNIVERSITY OF STOCKHOLM Princeton PRINCETON UNIVERSITY PRESS 1946 TABLE OF CONTENTS. First Part. MATHEMATICAL INTRODUCTION. CHAPTERS
More informationWeighted Residual Methods دانشگاه صنعتي اصفهان دانشكده مكانيك
Weighted Residual Methods 1 Formulation of FEM Model Direct Method Formulation of FEM Model Variational Method Weighted Residuals Several approaches can be used to transform the physical formulation of
More informationDOKUZ EYLUL UNIVERSITY GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES DIRECTORATE COURSE / MODULE / BLOCK DETAILS ACADEMIC YEAR / SEMESTER
Offered by: Fen Bilimleri Enstitüsü Course Title: Applied Mathematics Course Org. Title: Applied Mathematics Course Level: Lisansüstü Course Code: MAT 5001 Language of Instruction: İngilizce Form Submitting/Renewal
More informationChapter 11 Fourier Analysis
Chapter 11 Fourier Analysis Advanced Engineering Mathematics WeiTa Chu National Chung Cheng University wtchu@cs.ccu.edu.tw 1 2 11.1 Fourier Series Fourier Series Fourier series are infinite series that
More informationEngineering Mathematics II
PSUT Engineering Mathematics II Fourier Series and Transforms Dr. Mohammad Sababheh 4/14/2009 11.1 Fourier Series 2 Fourier Series and Transforms Contents 11.1 Fourier Series... 3 Periodic Functions...
More informationME 433 STATE SPACE CONTROL. Dynamic Model
ME 433 STATE SPACE CONTROL Lecture 3 31 Dynamic Model MECHANICAL SYSTEM: Newton s law damping coefficient angular velocity angular acceleration moment of inertia Which are the equilibrium points when T
More informationSecond Order Linear Differential Equations
CHAPTER 2 Second Order Linear Differential Equations 2.. Homogeneous Equations A differential equation is a relation involving variables x y y y. A solution is a function f x such that the substitution
More informationINTRODUCTION TO FOURIER ANALYSIS AND WAVELETS
#. INTRODUCTION TO FOURIER ANALYSIS AND WAVELETS Mark A. Pinsky Northwestern University BROOKS/COLE * THOMSON LEARNING Australia Canada Mexico Singapore Spain United Kingdom United States 1 FOURIER SERIES
More informationSmarthinking provides help in a wide variety of Mathematics & Statistics topics
TOPIC LIST: MATHEMATICS & STATISTICS Smarthinking provides help in a wide variety of Mathematics & Statistics topics Algebra Algebraic Expressions: simplifying, combining like terms, properties, exponents
More informationMATHEMATICS (MATH) 3. Provides experiences that enable graduates to find employment in sciencerelated
194 / Department of Natural Sciences and Mathematics MATHEMATICS (MATH) The Mathematics Program: 1. Provides challenging experiences in Mathematics, Physics, and Physical Science, which prepare graduates
More informationPURE MATHEMATICS AM 27
AM Syllabus (015): Pure Mathematics AM SYLLABUS (015) PURE MATHEMATICS AM 7 SYLLABUS 1 AM Syllabus (015): Pure Mathematics Pure Mathematics AM 7 Syllabus (Available in September) Paper I(3hrs)+Paper II(3hrs)
More informationPURE MATHEMATICS AM 27
AM SYLLABUS (013) PURE MATHEMATICS AM 7 SYLLABUS 1 Pure Mathematics AM 7 Syllabus (Available in September) Paper I(3hrs)+Paper II(3hrs) 1. AIMS To prepare students for further studies in Mathematics and
More informationTwo massthree spring system. Math 216 Differential Equations. Forces on mass m 1. Forces on mass m 2. Kenneth Harris
Two massthree spring system Math 6 Differential Equations Kenneth Harris kaharri@umich.edu m, m > 0, two masses k, k, k 3 > 0, spring elasticity t), t), displacement of m, m from equilibrium. Positive
More informationDynamics. Figure 1: Dynamics used to generate an exemplar of the letter A. To generate
Dynamics Any physical system, such as neurons or muscles, will not respond instantaneously in time but will have a timevarying response termed the dynamics. The dynamics of neurons are an inevitable constraint
More informationLimit processes are the basis of calculus. For example, the derivative. f f (x + h) f (x)
SEC. 4.1 TAYLOR SERIES AND CALCULATION OF FUNCTIONS 187 Taylor Series 4.1 Taylor Series and Calculation of Functions Limit processes are the basis of calculus. For example, the derivative f f (x + h) f
More informationPrerequsites: Math 1A1B, 53 (lower division calculus courses)
Math 151 Prerequsites: Math 1A1B, 53 (lower division calculus courses) Development of the rational number system. Use the number line (real line), starting with the concept of parts of a whole : fractions,
More informationMathematics (MAT) Faculty Mary Hayward, Chair Charles B. Carey Garnet Hauger, Affiliate Tim Wegner
Mathematics (MAT) Faculty Mary Hayward, Chair Charles B. Carey Garnet Hauger, Affiliate Tim Wegner About the discipline The number of applications of mathematics has grown enormously in the natural, physical
More informationCONTENTS. (Entries in small print at the end of the contents of each chapter refer to subiects discussed incidentally in the examples) CHAPTER I
12. 37. 8. 9. 1011. 12. 1314. 15. 16. 17. 18. 19. 20. 21. 22. 23. 2425. 2627. 2829. 30. 31. 32. 33. CONTENTS (Entries in small print at the end of the contents of each chapter refer to subiects
More informationThinkwell s Homeschool Algebra 2 Course Lesson Plan: 34 weeks
Thinkwell s Homeschool Algebra 2 Course Lesson Plan: 34 weeks Welcome to Thinkwell s Homeschool Algebra 2! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson
More informationCopyright 2011 Casa Software Ltd. www.casaxps.com
Table of Contents Variable Forces and Differential Equations... 2 Differential Equations... 3 Second Order Linear Differential Equations with Constant Coefficients... 6 Reduction of Differential Equations
More informationpp. 4 8: Examples 1 6 Quick Check 1 6 Exercises 1, 2, 20, 42, 43, 64
Semester 1 Text: Chapter 1: Tools of Algebra Lesson 11: Properties of Real Numbers Day 1 Part 1: Graphing and Ordering Real Numbers Part 1: Graphing and Ordering Real Numbers Lesson 12: Algebraic Expressions
More informationAdvanced Higher Mathematics Course Assessment Specification (C747 77)
Advanced Higher Mathematics Course Assessment Specification (C747 77) Valid from August 2015 This edition: April 2016, version 2.4 This specification may be reproduced in whole or in part for educational
More informationFourier Series Chapter 3 of Coleman
Fourier Series Chapter 3 of Coleman Dr. Doreen De eon Math 18, Spring 14 1 Introduction Section 3.1 of Coleman The Fourier series takes its name from Joseph Fourier (1768183), who made important contributions
More informationLecture 31: Second order homogeneous equations II
Lecture 31: Second order homogeneous equations II Nathan Pflueger 21 November 2011 1 Introduction This lecture gives a complete description of all the solutions to any differential equation of the form
More informationANALYSIS AND APPLICATIONS OF LAPLACE /FOURIER TRANSFORMATIONS IN ELECTRIC CIRCUIT
www.arpapress.com/volumes/vol12issue2/ijrras_12_2_22.pdf ANALYSIS AND APPLICATIONS OF LAPLACE /FOURIER TRANSFORMATIONS IN ELECTRIC CIRCUIT M. C. Anumaka Department of Electrical Electronics Engineering,
More informationIntroduction to SturmLiouville Theory
Introduction to Ryan C. Trinity University Partial Differential Equations April 10, 2012 Inner products with weight functions Suppose that w(x) is a nonnegative function on [a,b]. If f (x) and g(x) are
More information4. Factor polynomials over complex numbers, describe geometrically, and apply to realworld situations. 5. Determine and apply relationships among syn
I The Real and Complex Number Systems 1. Identify subsets of complex numbers, and compare their structural characteristics. 2. Compare and contrast the properties of real numbers with the properties of
More informationMath Course: Algebra II Grade 10
MATH 401 Algebra II 1/2 credit 5 times per week (1 st Semester) Taught in English Math Course: Algebra II Grade 10 This is a required class for all 10 th grade students in the Mexican and/or U.S. Diploma
More informationESSENTIAL COMPUTATIONAL FLUID DYNAMICS
ESSENTIAL COMPUTATIONAL FLUID DYNAMICS Oleg Zikanov WILEY JOHN WILEY & SONS, INC. CONTENTS PREFACE xv 1 What Is CFD? 1 1.1. Introduction / 1 1.2. Brief History of CFD / 4 1.3. Outline of the Book / 6 References
More informationNumerical Methods. Numerical Methods. for Engineers. for Engineers. Steven C. Chapra Raymond P. Canale. Chapra Canale. Sixth Edition.
Sixth Edition Features include: which are based on exciting new areas such as bioengineering. and differential equations. students using this text will be able to apply their new skills to their chosen
More informationFigure 1  UnsteadyState Heat Conduction in a Onedimensional Slab
The Numerical Method of Lines for Partial Differential Equations by Michael B. Cutlip, University of Connecticut and Mordechai Shacham, BenGurion University of the Negev The method of lines is a general
More informationText: A Graphical Approach to College Algebra (Hornsby, Lial, Rockswold)
Students will take Self Tests covering the topics found in Chapter R (Reference: Basic Algebraic Concepts) and Chapter 1 (Linear Functions, Equations, and Inequalities). If any deficiencies are revealed,
More information1.2. Mathematical Models: A Catalog of Essential Functions
1.2. Mathematical Models: A Catalog of Essential Functions Mathematical model A mathematical model is a mathematical description (often by means of a function or an equation) of a realworld phenomenon
More informationCalculus C/Multivariate Calculus Advanced Placement G/T Essential Curriculum
Calculus C/Multivariate Calculus Advanced Placement G/T Essential Curriculum UNIT I: The Hyperbolic Functions basic calculus concepts, including techniques for curve sketching, exponential and logarithmic
More informationAlgebra II. Larson, Boswell, Kanold, & Stiff (2001) Algebra II, Houghton Mifflin Company: Evanston, Illinois. TI 83 or 84 Graphing Calculator
Algebra II Text: Supplemental Materials: Larson, Boswell, Kanold, & Stiff (2001) Algebra II, Houghton Mifflin Company: Evanston, Illinois. TI 83 or 84 Graphing Calculator Course Description: The purpose
More informationOrdinary Differential Equations
Course Title Ordinary Differential Equations Course Number MATHUA 9262001 SAMPLE SYLLABUS ACTUAL SYLLABUS MAY VARY Instructor Contact Information Mark de Longueville mark.de.longueville@nyu.edu Course
More informationCAN WE INTEGRATE x 2 e x2 /2? 1. THE PROBLEM. xe x2 /2 dx
CAN WE INTEGRATE x 2 e x2 /2? MICHAEL ANSHELEVICH ABSTRACT. Not every nice function has an integral given by a formula. The standard example is e x 2 /2 dx which is not an elementary function. On the other
More informationA C O U S T I C S of W O O D Lecture 3
Jan Tippner, Dep. of Wood Science, FFWT MU Brno jan. tippner@mendelu. cz Content of lecture 3: 1. Damping 2. Internal friction in the wood Content of lecture 3: 1. Damping 2. Internal friction in the wood
More informationEXAM. Practice Questions for Exam #2. Math 3350, Spring April 3, 2004 ANSWERS
EXAM Practice Questions for Exam #2 Math 3350, Spring 2004 April 3, 2004 ANSWERS i Problem 1. Find the general solution. A. D 3 (D 2)(D 3) 2 y = 0. The characteristic polynomial is λ 3 (λ 2)(λ 3) 2. Thus,
More informationNumerical Analysis Introduction. Student Audience. Prerequisites. Technology.
Numerical Analysis Douglas Faires, Youngstown State University, (Chair, 20122013) Elizabeth Yanik, Emporia State University, (Chair, 20132015) Graeme Fairweather, Executive Editor, Mathematical Reviews,
More informationCHAPTER 3. Fourier Series
`A SERIES OF CLASS NOTES FOR 20052006 TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS DE CLASS NOTES 4 A COLLECTION OF HANDOUTS ON PARTIAL DIFFERENTIAL
More informationLecture L19  Vibration, Normal Modes, Natural Frequencies, Instability
S. Widnall 16.07 Dynamics Fall 2009 Version 1.0 Lecture L19  Vibration, Normal Modes, Natural Frequencies, Instability Vibration, Instability An important class of problems in dynamics concerns the free
More informationConstruction of the Real Line 2 Is Every Real Number Rational? 3 Problems Algebra of the Real Numbers 7
About the Author v Preface to the Instructor xiii WileyPLUS xviii Acknowledgments xix Preface to the Student xxi 1 The Real Numbers 1 1.1 The Real Line 2 Construction of the Real Line 2 Is Every Real Number
More informationFourier Series. Chapter Some Properties of Functions Goal Preliminary Remarks
Chapter 3 Fourier Series 3.1 Some Properties of Functions 3.1.1 Goal We review some results about functions which play an important role in the development of the theory of Fourier series. These results
More informationNUMERICAL METHODS TOPICS FOR RESEARCH PAPERS
Faculty of Civil Engineering Belgrade Master Study COMPUTATIONAL ENGINEERING Fall semester 2004/2005 NUMERICAL METHODS TOPICS FOR RESEARCH PAPERS 1. NUMERICAL METHODS IN FINITE ELEMENT ANALYSIS  Matrices
More informationOverview of Math Standards
Algebra 2 Welcome to math curriculum design maps for Manhattan Ogden USD 383, striving to produce learners who are: Effective Communicators who clearly express ideas and effectively communicate with diverse
More informationSequence of Mathematics Courses
Sequence of ematics Courses Where do I begin? Associates Degree and Nontransferable Courses (For math course below prealgebra, see the Learning Skills section of the catalog) MATH M09 PREALGEBRA 3 UNITS
More information