Newton s Laws. A force is simply a push or a pull. Forces are vectors; they have both size and direction.


 Adele West
 2 years ago
 Views:
Transcription
1 Newton Law Newton firt law: An object will tay at ret or in a tate of uniform motion with contant velocity, in a traight line, unle acted upon by an external force. In other word, the bodie reit any change of their tate of motion. Thi reitance i called inertia, and the meaure of inertia of the body i it ma, a.k.a. the amount of matter in the body. The more ma a body ha, the harder it i to change it motion. Ma i an intrinic property of matter and doe not change a an object i moved from one location to the next. A force i imply a puh or a pull. Force are vector; they have both ize and direction. There are two major type of force. Contact force: Force that arie when two object are in contact (tenion, friction, and elatic force). Actionatditance force: Force that do not require the bodie to be in contact (gravitation, electromagnetic force, or the trong nuclear force). Force caue mae to accelerate. Newton econd law relate force acting upon a body to the ma of the body and the acceleration produced by thi force, Fnet = ma or F = ma. The um of the force acting on a body i equal to the object ma multiplied by it acceleration. The igma (Σ) i the ymbol for um. The reult of adding up all the force on an object i called the reultant or net force. Make ure you know that the Force in the problem in thi coure refer to the overall Net force acting on the object in the problem. Remember that force are vector, o we need to ue the rule of vector addition. F 1 + F 2 F 1 F 2
2 However, jut a it wa the cae with twodimenional motion, we can olve all problem by breaking down the force into component. For example, if there are three force acting on our object, and we know the component of thee three force vector [ F 1x, F 1y, F 1z,] [F 2x, F 2y, F 2z ] [F 3x, F 3y, F 3z ], then the net force in 'x' i F 1x + F 2x + F 3x, in 'y' the net force i F 1y + F 2y + F 3y, and in 'z' F 1z + F 2z + F 3z. If all of thee um are not equal to zero, then by Newton econd law, there will be an acceleration of the object on which the force act: a x = [F 1x + F 2x + F 3x ] /m, a y = [F 1y + F 2y + F 3y ]/m, a z = [F 1z + F 2z + F 3z ]/m where a x, a y, a z are component of the acceleration vector of the object of ma m. The origin of force i alway other object. For example, the force of gravity i exerted by Earth. The force acting on one body and exerted by another body i one ide of interaction between them. According to Newton Third Law of Motion, Whenever one object exert a force on a econd object, the econd exert an equal and oppoite force on the firt. Four force that we uually work with in Newtonian mechanic problem are 1. Gravitational Force 2. Normal Force 3. Tenion Force 4. Friction Force 1. The gravitational force on an object i attractive force. The gravitational force exerted by Earth i what we call weight. By Newton econd law, Weight = ma x acceleration. In thi cae, a i g = 9.8 m/ 2 and, therefore, W = mg. The direction of the weight vector i alway vertically downward. 2. Newton' third law i the reaction force on a body. Thi force reult from the contact between the body and another urface. The direction of normal i perpendicular to the urface with which the body i in contact.
3 Ma and weight are often confued. It i important to realize that ma and weight are different quantitie. Ma i the meaure of inertia of the body; it i meaured in kilogram. Weight i the force of gravity on an object. The amount of matter in an object doe not change; hence, the ma of an object i alway the ame. However, 'g' varie from place to place on the Earth' urface, depending on the ditance from the center of the Earth, o weight doe change. If a body i on a horizontal urface, then a force, exerted by the upport, prevent it from falling down. The net force acting on the body at ret i the um of the weight caued by the force of gravity and the normal force, F + W = 0. Since the force in thi cae all act in a ingle vertical direction, intead of continuing to write thi a vector equation, we will imply write thi equation a F + W = 0 where the normal force will be poitive and acting upward and the weight will be a negative quantity acting downward. Normal force If the peron i not accelerating, then the net force i zero; thu, the normal force mut equal the weight. W = mg Note that an object' apparent weight will change if the upporting urface i accelerating, a i the cae with weight meaurement made in an elevator. In thi cae, the peron i accelerating down, Σ F = ma 0 or mg N = ma; N = mg  ma N < mg, o the peron feel lighter. Σ F = ma N W = mg a
4 3. Tenion force are exerted by tring, cable, cord, etc. when thee tring and cord are ued to apply force or make connection between object in the problem. In an ideal ituation, our tring and cord will be male and inextenible uch that force at one end are tranmitted undiminihed to the other end, keeping the tenion uniform throughout. Tenion i alway a pulling force; it i alway directed along the rope or cable or tring. If a pulling force T i exerted on a rope, thi force i tranmitted all the way along the rope to the other end. 4. Friction i a contact force. It i alway preent when two bodie touch. From an atomic perpective, when two urface are in contact with each other, intermolecular force form contact bond which momentarily bond the urface together. Static friction i friction between any two urface when they are not moving acro each other. Static friction alway reit a force that i trying to lide the urface acro each other. The direction of tatic friction i alway oppoite to that of the applied force. Another important thing about tatic friction i that it doe not have certain magnitude. A you puh on an object with increaing force, the force of tatic friction increae a well. If an object i not moving under an applied force F are equal., then f and the magnitude of the component of F that i parallel to the urface However, tatic friction cannot continue puhing back without limit. At ome point, tatic friction break down. When the component of F that i parallel to the urface exceed f,max, the object tart to move. Up until thi point, the force of tatic friction i equal to whatever the magnitude of the parallel to the urface component of F i, that i inufficient to move the object. Thi point indicate the maximum poible tatic friction force. Thi (maximum) force i proportional to the normal force N between the two urface: f μ N where μ i the coefficient of proportionality, called the coefficient of tatic friction. The tatic friction force i LESS THAN or equal to μ N. When the urface begin to lide acro one another, the force oppoing the motion i called kinetic or liding friction. The direction of liding friction i alway oppoite to that of the
5 velocity. Thi force i alo proportional to the normal force f = μ N, where i the coefficient of kinetic friction. The coefficient of kinetic friction i uually le than that of tatic friction. Thee coefficient depend only on the nature of the material in contact and their condition (roughne, wetne, dut, etc). Neither tatic nor liding friction depend on the total contact area between the urface. k k μ k Drag Force and Terminal Speed: When object are moving through a liquid or ga, a drag force D oppoe the object motion. The magnitude of the drag force motly depend on the object velocity and hape. In the cae of an object falling toward earth, there will be a peed V Terminal = V t for which the magnitude of D i equal to the object weight in kg.
A) When two objects slide against one another, the magnitude of the frictional force is always equal to μ
Phyic 100 Homewor 5 Chapter 6 Contact Force Introduced ) When two object lide againt one another, the magnitude of the frictional force i alway equal to μ B) When two object are in contact with no relative
More information6. Friction, Experiment and Theory
6. Friction, Experiment and Theory The lab thi wee invetigate the rictional orce and the phyical interpretation o the coeicient o riction. We will mae ue o the concept o the orce o gravity, the normal
More informationIncline and Friction Examples
Incline and riction Eample Phic 6A Prepared b Vince Zaccone riction i a force that oppoe the motion of urface that are in contact with each other. We will conider 2 tpe of friction in thi cla: KINETIC
More informationChapter mv2 = J. y (3,4) F d. 100 x. d = 3 2cos sin100 = 6.84J = 4.52J
Chapter 7. 7. If a Saturn V rocket with an Apollo pacecraft attached ha a combined ma of m =.9x10 5 kg and i to reach a peed of v = 11. km/ = 11. x10 3 m/, how much Kinetic Energy will it have K = 1 mv
More informationCHAPTER 3 NEWTON S LAWS OF MOTION
CHAPTER 3 NEWTON S LAWS OF MOTION NEWTON S LAWS OF MOTION 45 3.1 FORCE Forces are calssified as contact forces or gravitational forces. The forces that result from the physical contact between the objects
More informationCh. 22 Electromagnetic Induction
Ch. 22 Electromagnetic Induction 22.1 Induced emf So electric current (moving charge) create agnetic Field. I the revere true? Can magnetic field create current??? D Ye!!! ut it take a changing magnetic
More informationForces. Isaac Newton was the first to discover that the laws that govern motions on the Earth also applied to celestial bodies.
Forces Now we will discuss the part of mechanics known as dynamics. We will introduce Newton s three laws of motion which are at the heart of classical mechanics. We must note that Newton s laws describe
More informationSerway_ISM_V1 1 Chapter 4
Serway_ISM_V1 1 Chapter 4 ANSWERS TO MULTIPLE CHOICE QUESTIONS 1. Newton s second law gives the net force acting on the crate as This gives the kinetic friction force as, so choice (a) is correct. 2. As
More informationCollege Physics 140 Chapter 4: Force and Newton s Laws of Motion
College Physics 140 Chapter 4: Force and Newton s Laws of Motion We will be investigating what makes you move (forces) and how that accelerates objects. Chapter 4: Forces and Newton s Laws of Motion Forces
More informationLinear Momentum and Collisions
Chapter 7 Linear Momentum and Colliion 7.1 The Important Stuff 7.1.1 Linear Momentum The linear momentum of a particle with ma m moving with velocity v i defined a p = mv (7.1) Linear momentum i a vector.
More informationPhysics 111: Lecture 4: Chapter 4  Forces and Newton s Laws of Motion. Physics is about forces and how the world around us reacts to these forces.
Physics 111: Lecture 4: Chapter 4  Forces and Newton s Laws of Motion Physics is about forces and how the world around us reacts to these forces. Whats a force? Contact and noncontact forces. Whats a
More informationCh.4 Forces. Conceptual questions #1, 2, 12 Problem 1, 2, 5, 6, 7, 10, 12, 15, 16, 19, 20, 21, 23, 24, 26, 27, 30, 38, 39, 41, 42, 47, 50, 56, 66
Ch.4 Forces Conceptual questions #1, 2, 12 Problem 1, 2, 5, 6, 7, 10, 12, 15, 16, 19, 20, 21, 23, 24, 26, 27, 30, 38, 39, 41, 42, 47, 50, 56, 66 Forces Forces  vector quantity that changes the velocity
More informationPhysics 111. Exam #1. January 24, 2014
Phyic 111 Exam #1 January 24, 2014 Name Pleae read and follow thee intruction carefully: Read all problem carefully before attempting to olve them. Your work mut be legible, and the organization clear.
More informationChapter 4. Forces and Newton s Laws of Motion. continued
Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting
More information322 CHAPTER 11 Motion and Momentum Telegraph Colour Library/FPG/Getty Images
Standard 7.7.4: Ue ymbolic equation to how how the quantity of omething change over time or in repone to change in other quantitie. Alo cover: 7.2.6, 7.2.7 (Detailed tandard begin on page IN8.) What i
More informationNewton's laws of motion
Newton's laws of motion Forces Forces as vectors Resolving vectors Explaining motion  Aristotle vs Newton Newton s first law Newton s second law Weight Calculating acceleration Newton s third law Moving
More informationMECH 2110  Statics & Dynamics
Chapter D Problem 3 Solution 1/7/8 1:8 PM MECH 11  Static & Dynamic Chapter D Problem 3 Solution Page 7, Engineering Mechanic  Dynamic, 4th Edition, Meriam and Kraige Given: Particle moving along a traight
More informationv = x t = x 2 x 1 t 2 t 1 The average speed of the particle is absolute value of the average velocity and is given Distance travelled t
Chapter 2 Motion in One Dimenion 2.1 The Important Stuff 2.1.1 Poition, Time and Diplacement We begin our tudy of motion by conidering object which are very mall in comparion to the ize of their movement
More informationChapter Test. Teacher Notes and Answers Forces and the Laws of Motion. Assessment
Assessment Chapter Test A Teacher Notes and Answers Forces and the Laws of Motion CHAPTER TEST A (GENERAL) 1. c 2. d 3. d 4. c 5. c 6. c 7. c 8. b 9. d 10. d 11. c 12. a 13. d 14. d 15. b 16. d 17. c 18.
More informationWhat is a force? Identifying forces. What is the connection between force and motion? How are forces related when two objects interact?
Chapter 4: Forces What is a force? Identifying forces. What is the connection between force and motion? How are forces related when two objects interact? Application different forces (field forces, contact
More informationAP Physics Newton's Laws Practice Test
AP Physics Newton's Laws Practice Test Answers: A,D,C,D,C,E,D,B,A,B,C,C,A,A 15. (b) both are 2.8 m/s 2 (c) 22.4 N (d) 1 s, 2.8 m/s 16. (a) 12.5 N, 3.54 m/s 2 (b) 5.3 kg 1. Two blocks are pushed along a
More informationv v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )
Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution
More information2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration.
2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration. Dynamics looks at the cause of acceleration: an unbalanced force. Isaac Newton was
More informationNewton s Law of Motion
chapter 5 Newton s Law of Motion Static system 1. Hanging two identical masses Context in the textbook: Section 5.3, combination of forces, Example 4. Vertical motion without friction 2. Elevator: Decelerating
More informationNewton s Laws of Motion
Physics Newton s Laws of Motion Newton s Laws of Motion 4.1 Objectives Explain Newton s first law of motion. Explain Newton s second law of motion. Explain Newton s third law of motion. Solve problems
More informationLesson 04: Newton s laws of motion
www.scimsacademy.com Lesson 04: Newton s laws of motion If you are not familiar with the basics of calculus and vectors, please read our freely available lessons on these topics, before reading this lesson.
More informationGround Rules. PC1221 Fundamentals of Physics I. Force. Zero Net Force. Lectures 9 and 10 The Laws of Motion. Dr Tay Seng Chuan
PC1221 Fundamentals of Physics I Lectures 9 and 10 he Laws of Motion Dr ay Seng Chuan 1 Ground Rules Switch off your handphone and pager Switch off your laptop computer and keep it No talking while lecture
More informationChapter 5 Newton s Laws of Motion
Chapter 5 Newton s Laws of Motion Sir Isaac Newton (1642 1727) Developed a picture of the universe as a subtle, elaborate clockwork slowly unwinding according to welldefined rules. The book Philosophiae
More informationChapter 4 Newton s Laws: Explaining Motion
Chapter 4 Newton s s Laws: Explaining Motion Newton s Laws of Motion The concepts of force, mass, and weight play critical roles. A Brief History! Where do our ideas and theories about motion come from?!
More informationGeneral Physics (PHY 2130)
General Physics (PHY 2130) Lecture 8 Forces Newton s Laws of Motion http://www.physics.wayne.edu/~apetrov/phy2130/ Classical Mechanics Describes the relationship between the motion of objects in our everyday
More informationChapter 5 Newton s Laws of Motion
Chapter 5 Newton s Laws of Motion Force and Mass Units of Chapter 5 Newton s First Law of Motion Newton s Second Law of Motion Newton s Third Law of Motion The Vector Nature of Forces: Forces in Two Dimensions
More informationHW#4b Page 1 of 6. I ll use m = 100 kg, for parts bc: accelerates upwards, downwards at 5 m/s 2 A) Scale reading is the same as person s weight (mg).
HW#4b Page 1 of 6 Problem 1. A 100 kg person stands on a scale. a.) What would be the scale readout? b.) If the person stands on the scale in an elevator accelerating upwards at 5 m/s, what is the scale
More informationVELOCITY, ACCELERATION, FORCE
VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how
More informationChapter 4  Forces and Newton s Laws of Motion w./ QuickCheck Questions
Chapter 4  Forces and Newton s Laws of Motion w./ QuickCheck Questions 2015 Pearson Education, Inc. Anastasia Ierides Department of Physics and Astronomy University of New Mexico September 8, 2015 Review
More informationNewton's Law of Inertia (Newton s first Law of Motion) Every object continues in a state of rest, or of motion in a straight line at constant speed,
Newton's Law of Inertia (Newton s first Law of Motion) Every object continues in a state of rest, or of motion in a straight line at constant speed, unless it is compelled to change that state by forces
More informationDynamics Why do objects move as they do? What makes an object at rest, begin to move? What makes a body accelerate or decelerate?
Dynamics Why do objects move as they do? What makes an object at rest, begin to move? What makes a body accelerate or decelerate? What makes an object move in a circle? Force A Force is simply a push
More informationPhysics 101 Prof. Ekey. Chapter 5 Force and motion (Newton, vectors and causing commotion)
Physics 101 Prof. Ekey Chapter 5 Force and motion (Newton, vectors and causing commotion) Goal of chapter 5 is to establish a connection between force and motion This should feel like chapter 1 Questions
More informationForces & Newton s Laws. Teacher Packet
AP * PHYSICS B Forces & Newton s Laws eacher Packet AP* is a trademark of the College Entrance Examination Board. he College Entrance Examination Board was not involved in the production of this material.
More informationPHYSICS 151 Notes for Online Lecture #11
PHYSICS 151 ote for Online Lecture #11 A freebod diagra i a wa to repreent all of the force that act on a bod. A freebod diagra ake olving ewton econd law for a given ituation eaier, becaue ou re odeling
More informationChapter 4 Dynamics: Newton s Laws of Motion. Copyright 2009 Pearson Education, Inc.
Chapter 4 Dynamics: Newton s Laws of Motion Force Units of Chapter 4 Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal
More informationphysics 111N forces & Newton s laws of motion
physics 111N forces & Newton s laws of motion forces (examples) a push is a force a pull is a force gravity exerts a force between all massive objects (without contact) (the force of attraction from the
More informationPhysics Notes Class 11 CHAPTER 5 LAWS OF MOTION
1 P a g e Inertia Physics Notes Class 11 CHAPTER 5 LAWS OF MOTION The property of an object by virtue of which it cannot change its state of rest or of uniform motion along a straight line its own, is
More informationUnit 11 Using Linear Regression to Describe Relationships
Unit 11 Uing Linear Regreion to Decribe Relationhip Objective: To obtain and interpret the lope and intercept of the leat quare line for predicting a quantitative repone variable from a quantitative explanatory
More informationPhysics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion
Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckleup? A) the first law
More informationNewton s First Law (Law of Inertia) An object will remain at rest or in a constant state of motion unless acted upon by net external forces.
Newton s Third Law Newton s First Law (Law of Inertia) F = 0 An object will remain at rest or in a constant state of motion unless acted upon by net external forces. Newton s First Law If F = 0 => No Change
More informationPH2213 : Examples from Chapter 4 : Newton s Laws of Motion. Key Concepts
PH2213 : Examples from Chapter 4 : Newton s Laws of Motion Key Concepts Newton s First and Second Laws (basically Σ F = m a ) allow us to relate the forces acting on an object (lefthand side) to the motion
More informationChapter 4 Dynamics: Newton s Laws of Motion
Chapter 4 Dynamics: Newton s Laws of Motion Units of Chapter 4 Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal
More information5. Forces and MotionI. Force is an interaction that causes the acceleration of a body. A vector quantity.
5. Forces and MotionI 1 Force is an interaction that causes the acceleration of a body. A vector quantity. Newton's First Law: Consider a body on which no net force acts. If the body is at rest, it will
More informationPhysics 11 Assignment KEY Dynamics Chapters 4 & 5
Physics Assignment KEY Dynamics Chapters 4 & 5 ote: for all dynamics problemsolving questions, draw appropriate free body diagrams and use the aforementioned problemsolving method.. Define the following
More informationRotation of an Object About a Fixed Axis
Chapter 1 Rotation of an Object About a Fixed Axi 1.1 The Important Stuff 1.1.1 Rigid Bodie; Rotation So far in our tudy of phyic we have (with few exception) dealt with particle, object whoe patial dimenion
More informationChapter 4: Newton s Laws of Motion
Chapter 4: Newton s Laws of Motion Dynamics: Study of motion and its causes. orces cause changes in the motion of an object. orce and Interactions Definition ( loose ): A force is a push or pull exerted
More informationChapter 12  Forces and Motion
Chapter 12  Forces and Motion A. What is a force? 1. It is a push or pull. 2. Force can cause resting objects to move. 3. Force can cause acceleration by changing the object s speed or direction. 4. Newtons
More informationCOURSE CONTENT. Introduction. Definition of a Force Effect of Forces Measurement of forces. Newton s Laws of Motion
CHAPTER 13  FORCES COURSE CONTENT Introduction Newton s Laws of Motion Definition of a Force Effect of Forces Measurement of forces Examples of Forces A force is just a push or pull. Examples: an object
More informationForce. Net Force Mass. Acceleration = Section 1: Weight. Equipment Needed Qty Equipment Needed Qty Force Sensor 1 Mass and Hanger Set 1 Balance 1
Department of Physics and Geology Background orce Physical Science 1421 A force is a vector quantity capable of producing motion or a change in motion. In the SI unit system, the unit of force is the Newton
More informationStatespace analysis of control systems: Part I
Why a different approach? Statepace analyi of control ytem: Part I Uing a tatevariable approach give u a traightforward way to analyze MIM multipleinput, multiple output ytem. A tate variable model
More informationLecture 6. Weight. Tension. Normal Force. Static Friction. Cutnell+Johnson: 4.84.12, second half of section 4.7
Lecture 6 Weight Tension Normal Force Static Friction Cutnell+Johnson: 4.84.12, second half of section 4.7 In this lecture, I m going to discuss four different kinds of forces: weight, tension, the normal
More informationNewton s Laws PreTest
Newton s Laws PreTest 1.) Consider the following two statements and then select the option below that is correct. (i) It is possible for an object move in the absence of forces acting on the object. (ii)
More informationDiscussion Session 4 Projectile Motion Week 05. The Plan
PHYS Dicuion Seion 4 Projectile Motion Week 5 The Plan Thi week your group will practice analyzing projectile otion ituation. Why do we pend a whole eion on thi topic? The anwer i that projectile otion
More informationExplaining Motion:Forces
Explaining Motion:Forces Chapter Overview (Fall 2002) A. Newton s Laws of Motion B. Free Body Diagrams C. Analyzing the Forces and Resulting Motion D. Fundamental Forces E. Macroscopic Forces F. Application
More informationChapter 6. Work and Energy
Chapter 6 Work and Energy The concept of forces acting on a mass (one object) is intimately related to the concept of ENERGY production or storage. A mass accelerated to a nonzero speed carries energy
More informationLecture Outline Chapter 5. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.
Lecture Outline Chapter 5 Physics, 4 th Edition James S. Walker Chapter 5 Newton s Laws of Motion Dynamics Force and Mass Units of Chapter 5 Newton s 1 st, 2 nd and 3 rd Laws of Motion The Vector Nature
More informationPhysics I Honors: Chapter 4 Practice Exam
Physics I Honors: Chapter 4 Practice Exam Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Which of the following statements does not describe
More informationSection Review Answers. Chapter 12
Section Review Answers Chapter 12 Section 1 1. Answers may vary. Students should say in their own words that an object at rest remains at rest and an object in motion maintains its velocity unless it experiences
More information041. Newton s First Law Newton s first law states: Sections Covered in the Text: Chapters 4 and 8 F = ( F 1 ) 2 + ( F 2 ) 2.
Force and Motion Sections Covered in the Text: Chapters 4 and 8 Thus far we have studied some attributes of motion. But the cause of the motion, namely force, we have essentially ignored. It is true that
More informationNewton s Laws are empirical laws, deduced from experiment; they cannot be derived from anything more fundamental!
NEWTON S LAWS O OTION Newton s Laws are the foundation of Classical (Newtonian) echanics. They were published by Isaac Newton in 1687 along with the law of gravitation in the Principia. They have far reaching
More informationGeneral Physics I Can Statements
General Physics I Can Statements Motion (Kinematics) 1. I can describe motion in terms of position (x), displacement (Δx), distance (d), speed (s), velocity (v), acceleration (a), and time (t). A. I can
More informationChapter 10 Velocity, Acceleration, and Calculus
Chapter 10 Velocity, Acceleration, and Calculu The firt derivative of poition i velocity, and the econd derivative i acceleration. Thee derivative can be viewed in four way: phyically, numerically, ymbolically,
More informationTHE NATURE OF FORCES Forces can be divided into two categories: contact forces and noncontact forces.
SESSION 2: NEWTON S LAWS Key Concepts In this session we Examine different types of forces Review and apply Newton's Laws of motion Use Newton's Law of Universal Gravitation to solve problems Xplanation
More informationWeight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N)
Gravitational Field A gravitational field as a region in which an object experiences a force due to gravitational attraction Gravitational Field Strength The gravitational field strength at a point in
More informationNewton s Laws of Motion
Section 3.2 Newton s Laws of Motion Objectives Analyze relationships between forces and motion Calculate the effects of forces on objects Identify force pairs between objects New Vocabulary Newton s first
More informationF = ma. F = mg. Forces. Forces. Free Body Diagrams. Find the unknown forces!! Ex. 1 Ex N. Newton s First Law. Newton s Second Law
Forces Free Body Diagrams Push or pull on an object Causes acceleration Measured in Newtons N = Kg m s Shows all forces as vectors acting on an object Vectors always point away from object Used to help
More informationThis week s homework. 2 parts Quiz on Friday, Ch. 4 Today s class: Newton s third law Friction Pulleys tension. PHYS 2: Chap.
This week s homework. 2 parts Quiz on Friday, Ch. 4 Today s class: Newton s third law Friction Pulleys tension PHYS 2: Chap. 19, Pg 2 1 New Topic Phys 1021 Ch 7, p 3 A 2.0 kg wood box slides down a vertical
More informationConcept Review. Physics 1
Concept Review Physics 1 Speed and Velocity Speed is a measure of how much distance is covered divided by the time it takes. Sometimes it is referred to as the rate of motion. Common units for speed or
More information2. (b). The newton is a unit of weight, and the quantity (or mass) of gold that weighs 1 newton is m 1 N
QUICK QUIZZS 1. Newton s second law says that the acceleration of an object is directly proportional to the resultant (or net) force acting on. Recognizing this, consider the given statements one at a
More informationLAB 6: GRAVITATIONAL AND PASSIVE FORCES
55 Name Date Partners LAB 6: GRAVITATIONAL AND PASSIVE FORCES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies by the attraction
More informationAt the skate park on the ramp
At the skate park on the ramp 1 On the ramp When a cart rolls down a ramp, it begins at rest, but starts moving downward upon release covers more distance each second When a cart rolls up a ramp, it rises
More informationForces. using a consistent system of units, such as the metric system, we can define force as:
Forces Force: physical property which causes masses to accelerate (change of speed or direction) a push or pull vector possessing both a magnitude and a direction and adds according to the Parallelogram
More informationHow does the net force change between scenario 1 and 2?
How does the net force change between scenario 1 and 2? A) The magnitude decreases, the direction stays the same B) The magnitude stays the same, the direction changes C) The magnitude decreases AND the
More informationLAB 6  GRAVITATIONAL AND PASSIVE FORCES
L061 Name Date Partners LAB 6  GRAVITATIONAL AND PASSIVE FORCES OBJECTIVES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies
More informationNewton s Laws of Motion
Newton s Laws of Motion Newton s Laws and the Mousetrap Racecar Simple version of Newton s three laws of motion 1 st Law: objects at rest stay at rest, objects in motion stay in motion 2 nd Law: force
More informationMOTION AND FORCE: DYNAMICS
MOTION AND FORCE: DYNAMICS We ve been dealing with the fact that objects move. Velocity, acceleration, projectile motion, etc. WHY do they move? Forces act upon them, that s why! The connection between
More informationForces. Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy
Forces Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy Definition of Force Force = a push or pull that causes a change
More informationThere are three different properties associated with the mass of an object:
Mechanics Notes II Forces, Inertia and Motion The mathematics of calculus, which enables us to work with instantaneous rates of change, provides a language to describe motion. Our perception of force is
More informationMass, energy, power and time are scalar quantities which do not have direction.
Dynamics Worksheet Answers (a) Answers: A vector quantity has direction while a scalar quantity does not have direction. Answers: (D) Velocity, weight and friction are vector quantities. Note: weight and
More informationExample (1): Motion of a block on a frictionless incline plane
Firm knowledge of vector analysis and kinematics is essential to describe the dynamics of physical systems chosen for analysis through ewton s second law. Following problem solving strategy will allow
More informationA Review of Vector Addition
Motion and Forces in Two Dimensions Sec. 7.1 Forces in Two Dimensions 1. A Review of Vector Addition. Forces on an Inclined Plane 3. How to find an Equilibrant Vector 4. Projectile Motion Objectives Determine
More informationNewton s Laws of Motion. Chapter 4
Newton s Laws of Motion Chapter 4 Changes in Motion Section 4.1 Force is simply a push or pull It is an interaction between two or more objects Force is a vector so it has magnitude and direction In the
More informationNewton s Laws of Motion
Chapter 4 Newton s Laws of Motion PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Modified by P. Lam 7_8_2016 Goals for Chapter 4
More informationSTATICS. Introduction VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.
Eighth E CHAPTER VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Introduction Lecture Notes: J. Walt Oler Texas Tech University Contents What is Mechanics? Fundamental
More informationChapter 4. Forces and Newton s Laws of Motion. continued
Chapter 4 Forces and Newton s Laws of Motion continued Clicker Question 4.3 A mass at rest on a ramp. How does the friction between the mass and the table know how much force will EXACTLY balance the gravity
More informationPhysics 11 Chapter 4 HW Solutions
Physics 11 Chapter 4 HW Solutions Chapter 4 Conceptual Question: 5, 8, 10, 18 Problems: 3, 3, 35, 48, 50, 54, 61, 65, 66, 68 Q4.5. Reason: No. If you know all of the forces than you know the direction
More informationPHYS101 The Laws of Motion Spring 2014
The Laws of Motion 1. An object of mass m 1 = 55.00 kg placed on a frictionless, horizontal table is connected to a string that passes over a pulley and then is fastened to a hanging object of mass m 2
More informationChapter 32. OPTICAL IMAGES 32.1 Mirrors
Chapter 32 OPTICAL IMAGES 32.1 Mirror The point P i called the image or the virtual image of P (light doe not emanate from it) The leftright reveral in the mirror i alo called the depth inverion (the
More informationPhysics 101. Chapter 5: Newton s Third Law
Physics 101 Today Chapter 5: Newton s Third Law First, let s clarify notion of a force: Previously defined force as a push or pull. Better to think of force as an interaction between two objects. You can
More informationPH 2211D Spring Force and Motion II. Lecture Chapter 6 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition)
PH 2211D Spring 2013 Force and Motion II Lecture 1213 Chapter 6 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition) Chapter 6 Force and Motion II In this chapter we will cover the following
More informationVectors and the Inclined Plane
Vectors and the Inclined Plane Introduction: This experiment is designed to familiarize you with the concept of force as a vector quantity. The inclined plane will be used to demonstrate how one force
More informationSolved Problems Chapter 3: Mechanical Systems
ME 43: Sytem Dynamic and Contro Probem A38 Soved Probem Chapter 3: Mechanica Sytem In Figure 33, the impe penduum hown conit of a phere of ma m upended by a tring of negigibe ma. Negecting the eongation
More informationNewton s Laws of Motion
Chapter 4 Newton s Laws of Motion PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 4 To understand the meaning
More informationSOLUTIONS TO PROBLEM SET 4
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01X Fall Term 2002 SOLUTIONS TO PROBLEM SET 4 1 Young & Friedman 5 26 A box of bananas weighing 40.0 N rests on a horizontal surface.
More informationOhm s Law. Ohmic relationship V=IR. Electric Power. Non Ohmic devises. Schematic representation. Electric Power
Ohm Law Ohmic relationhip V=IR Ohm law tate that current through the conductor i directly proportional to the voltage acro it if temperature and other phyical condition do not change. In many material,
More information