DNA REPLICATION. Genetica per Scienze Naturali a.a prof S. Presciuttini

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "DNA REPLICATION. Genetica per Scienze Naturali a.a prof S. Presciuttini"

Transcription

1 DNA REPLICATION This document is licensed under the Attribution-NonCommercial-ShareAlike 2.5 Italy license, available at

2 1. DNA Replication In both prokaryotes and eukaryotes, DNA replication occurs as a prelude to cell division. This DNA replication phase is called the S (synthesis) phase.. The two daughter DNA molecules formed from replication eventually become chromosomes in their own right in the daughter cells. As with all phenomena that involve nucleic acids, the basic machinery of DNA replication depends on complementarity of DNA molecules and on the ability of proteins to form specific interactions with DNA of specific sequences.

3 2. The model of Watson and Crick The model of DNA replication proposed by Watson and Crick is based on the hydrogen-bonded specificity of the base pairs. Complementary strands are shown in different colors. The fact that new strands can grow only in the 5 -to-3 direction adds complexities to the detailed mechanism of replication. If this model is correct, then each daughter molecule should contain one parental nucleotide chain and one newly synthesized nucleotide chain. This prediction has been tested in both prokaryotes and eukaryotes. A little thought shows that there are at least three different ways in which a parental DNA molecule might be related to the daughter molecules. These hypothetical modes are called semiconservative (the Watson-Crick model), conservative, and dispersive

4 3. Three alternative patterns for DNA replication In semiconservative replication, each daughter duplex contains one parental and one newly synthesized strand. However, in conservative replication, one daughter duplex consists of two newly synthesized strands, and the parent duplex is conserved. Dispersive replication results in daughter duplexes that consist of strands containing only segments of parental DNA and newly synthesized DNA

5 4. The Meselson-Stahl experiment In 1958, Matthew Meselson and Franklin Stahl set out to distinguish among the three models.. They grew E. coli cells in a medium containing the heavy isotope of nitrogen 15 N rather than the normal light ( 14 N) form. This isotope was inserted into the nitrogen bases, which then were incorporated into newly synthesized DNA strands. After many cell divisions in 15 N, the DNA of the cells were well labeled with the heavy isotope. The cells were then removed from the 15 N medium and put into a 14 N medium; after one and two cell divisions,, samples were taken. DNA was extracted from the cells in each of these samples and put into a solution of cesium chloride (CsCl) in an ultracentrifuge.

6 5. Centrifugation of DNA in a cesium chloride (CsCl) gradient If cesium chloride is spun in a centrifuge at tremendously high speeds (50,000 rpm) for many hours, the cesium and chloride ions tend to be pushed by centrifugal force toward the bottom of the tube. Ultimately, a gradient of Cs+ and Cl ions is established in the tube, with the highest ion concentration at the bottom. Molecules of DNA in the solution also are pushed toward the bottom by centrifugal force. But, as they travel down the tube, they encounter the increasing salt concentration, which tends to push them back up owing to the buoyancy of DNA (its tendency to float). Thus, the DNA finally "settles" at some point in the tube where the centrifugal forces just balance the buoyancy of the molecules in the cesium chloride gradient. The buoyancy of DNA depends on its density (which in turn depends on the ratio of GC to AT base pairs). The presence of the heavier isotope of nitrogen changes the buoyant density of DNA. The DNA extracted from cells grown for several generations on 15 N medium can be readily distinguished from the DNA of cells grown on 14 N medium by the equilibrium position reached in a cesium chloride gradient.. Such samples are commonly called heavy and light DNA, respectively.

7 6. The proof of the semiconservative model Meselson and Stahl found that, one generation after the heavy cells were moved to 14 N medium, the DNA formed a single band of an intermediate density between the densities of the heavy and light controls. After two generations in 14 N medium, the DNA formed two bands: one at the intermediate position, the other at the light position. This result would be expected from the semiconservative mode of replication; in fact, the result is compatible with only this mode if the experiment begins with chromosomes composed of individual double helices

8 7. Harlequin chromosomes With the use of a more modern staining technique, it is now possible to visualize the semiconservative replication of chromosomes at mitosis. In this procedure, the chromosomes go through two rounds of replication in the presence of bromodeoxyuridine (BUdR), which replaces thymidine in the newly synthesized DNA. The chromosomes are then stained with Giemsa stain, producing the appearance shown. (The light blue lines represent the BUdR-substituted strands.)

9 8. Visualizing sister chromatids If cells dividing in culture are treated with BrdU during S phase, the cells are fooled into incorporating it instead of thymidine into their DNA. One of the properties of the resulting DNA is that it fails to take up stain in a normal way. When cells are allowed to duplicate their chromosomes once in BrdU, the chromosome that appear at the next metaphase stain normally. However, when the cells duplicate their chromosomes a second time in BrdU, one of the sister chromatids that appears at the next metaphase stains normally, while its sister chromatid does not.

10 9. DNA polymerases In the late 1950s, Arthur Kornberg successfully identified and purified the first DNA polymerase, an enzyme that catalyzes the replication reaction. This reaction works only with the triphosphate forms of the nucleotides (such as deoxyadenosine triphosphate, or datp).

11 10. DNA polymerases in E. coli We now know that there are three DNA polymerases in E. coli. The first enzyme that Kornberg purified is called DNA polymerase I or pol I. This enzyme has three activities, which appear to be located in different parts of the molecule: 1. a polymerase activity, which catalyzes chain growth in the direction; 2. a exonuclease activity, which removes mismatched bases; and 3. a exonuclease activity, which degrades double-stranded DNA. Subsequently, two additional polymerases, pol II and pol III,, were identified in E. coli. Pol II may repair damaged DNA. Pol III, together with pol I, has a role in the replication of E. coli DNA

12 11. DNA replication fork The complete complex, or holoenzyme, of pol III contains at least 20 different polypeptide subunits,, although the catalytic "core" consists of only three subunits. The pol III complex will complete the replication of single-stranded DNA if there is at least a short segment of duplex already present.

13 12. Prokaryotic origins of replication E. coli replication begins from a fixed origin, termed oric, but then proceeds bidirectionally (with moving forks at both ends of the replicating piece). It is 245 bp long and has several components. First, there is a side-by-side, or tandem, set of 13- bp sequences, which are nearly identical.. There is also a set of binding sites for a protein, the DnaA protein.. An initial step in DNA synthesis is the unwinding of the DNA at the origin in response to binding of the DnaA protein.

14 13. A replicating E. coli chromosome The DNA has been labeled with 3H-deoxythymidine, and the radioactivity has been detected by overlaying the replicating chromosome with photographic emulsion. The autoradiograph shows that the E. coli chromosome has two replication forks. Although there seem to be two bubbles of replication, actually the point where the two smaller bubbles meet is actually just where two strands of DNA are laying across one another

15 14. Eukaryotic origins of replication Bacteria such as E. coli usually require a 40-minute replication-division cycle, but, in eukaryotes, the cycle can vary from 1.4 hours in yeast to 24 hours in cultured animal cells and may last from 100 to 200 hours in some cells. Eukaryotes have to solve the problem of coordinating the replication of more than one chromosome, as well as replicating the complex structure of the chromosome itself. In eukaryotes, replication proceeds from multiple points of origin. Experiments in yeast indicate the existence of about 400 replication origins distributed among the 17 chromosomes, and in humans there are estimated to be more than 10,000 growing forks

16 15. Replication bubbles in the fruit fly Electron micrograph of replicating DNA in the embryo of the fruit fly D. melanogaster At least 20 different bubbles, therefore with at least 40 different replication forks, can be observed in this electron micrograph (and accompanying drawn representation of the electron micrograph.) The large number of replication origins in eukaryotic chromosomes vs. E. coli's one, enables the slower replication apparatus to copy the larger eukaryotic genome in approximately the same amount of time as the prokaryotic genome is replicated

17 16. Replication bubbles Electron micrograph of DNA extracted from rapidly dividing nuclei of early D. Melanogaster embryos. The arrows mark replication bubbles; the diameters of DNA chain in both arms of these bubbles indicate that they are double- stranded.

18 17. Priming DNA synthesis DNA polymerases can extend a chain but cannot start a chain.. Therefore, DNA synthesis must first be initiated with a primer,, or short oligonucleotide, that generates a segment of duplex DNA. RNA primers are synthesized either by RNA polymerase or by an enzyme termed primase. Primase synthesizes a short (approximately 30 bp long) stretch of RNA complementary to a specific region of the chromosome. The RNA chain is then extended with DNA by DNA polymerase. E. coli primase forms a complex with the template DNA, and additional proteins, such as DnaB, DnaT, Pri A, Pri B, and Pri C. The entire complex is termed a primosome.

19 18. Leading strand and lagging strand DNA polymerases synthesize new chains only in the 5 3 direction and therefore, because of the antiparallel nature of the DNA molecule, move in a 3 5 direction on the template strand. The consequence of this polarity is that while one new strand, the leading strand, is synthesized continuously, the other, the lagging strand, must be synthesized in short, discontinuous segments. The addition of nucleotides along the template for the lagging strand must proceed toward the template's 5 end (because replication always moves along the template in a direction so that the new strand can grow ). Thus, the new strand must grow in a direction opposite that of the movement of the replication fork.

20 19. Discontinuous synthesis As fork movement exposes a new section of lagging-strand template, a new lagging- strand fragment is begun and proceeds away from the fork until it is stopped by the preceding fragment. In E. coli, pol III carries out most of the DNA synthesis on both strands, and pol I fills in the gaps left in the lagging strand, which are then sealed by the enzyme DNA ligase. DNA ligases join broken pieces of DNA by catalyzing the formation of a phosphodiester bond between the 5 5 phosphate end of a hydrogen-bonded nucleotide and an adjacent 3 3 OH group. It is the only enzyme that can seal DNA chains.

21 20. Steps in DNA synthesis a) The primers for the discontinuous synthesis on the lagging strand are synthesized by primase. b) The primers are extended by DNA polymerase to yield DNA fragments that were first detected by Reiji Okazaki and are termed Okazaki fragments. c) The exonuclease activity of pol I removes the primers and fills in the gaps with DNA, d) which are sealed by DNA ligase.

22 21. A comprehensive view of the replication fork

23 22. Other DNA-modifying enzymes Helicases are enzymes that disrupt the hydrogen bonds that hold the two DNA strands together in a double helix. Among E. coli helicases are the DnaB protein and the Rep protein. The Rep protein may help to unwind the double helix ahead of the polymerase. The unwound DNA is stabilized by the single-stranded binding (SSB) protein, which binds to the single-stranded DNA and retards reformation of the duplex. The action of helicases during DNA replication generates twists in the circular DNA that need to be removed to allow replication to continue. Circular DNA can be twisted and coiled,, much like the extra coils that can be introduced into a rubber band. This supercoiling can be created or relaxed by enzymes termed topoisomerases. There are two basic types of isomerases. Type I enzymes induce a single-stranded break into the DNA duplex. Type II enzymes cause a break in both strands.. In E. coli,, topo I and topo III are examples of type I enzymes, whereas gyrase is an example of a type II enzyme.

24 23. The action of topoisomerases Untwisting of the DNA strands to open the replication fork causes extra twisting at other regions, and the supercoiling releases the strain of the extra twisting. During replication, gyrase is needed to remove positive supercoils ahead of the replication fork Swivel function of topoisomerase during replication. Extra-twisted (positively supercoiled) regions accumulate ahead of the fork as the parental strands separate for replication. A topoisomerase is required to remove these regions, acting as a swivel to allow extensive replication.

CHAPTER 3 Molecular Genetics DNA Replication

CHAPTER 3 Molecular Genetics DNA Replication CHAPTER 3 Molecular Genetics DNA Replication Watson and Crick DNA model implies a mechanism for replication: a. Unwind the DNA molecule. b. Separate the two strands. c. Make a complementary copy for each

More information

Chapter 6: DNA: Hereditary Molecules of Life pg : DNA Replication and Repair pg

Chapter 6: DNA: Hereditary Molecules of Life pg : DNA Replication and Repair pg UNIT 3: Molecular Genetics Chapter 6: DNA: Hereditary Molecules of Life pg. 268-6.4: DNA Replication and Repair pg. 282-290 The DNA molecule is capable of replicating on its own. This is important for

More information

DNA Replication. (CHAPTER 11- Brooker Text) Sept 16 & 18, 2008 BIO 184 Dr. Tom Peavy. Sequence Complexity in the Genome

DNA Replication. (CHAPTER 11- Brooker Text) Sept 16 & 18, 2008 BIO 184 Dr. Tom Peavy. Sequence Complexity in the Genome DNA Replication (CHAPTER 11- Brooker Text) Sept 16 & 18, 2008 BIO 184 Dr. Tom Peavy Sequence Complexity in the Genome 60-70% of human DNA fragments are unique DNA sequences 1 What are the structural features

More information

4. DNA replication Pages: 979-984 Difficulty: 2 Ans: C Which one of the following statements about enzymes that interact with DNA is true?

4. DNA replication Pages: 979-984 Difficulty: 2 Ans: C Which one of the following statements about enzymes that interact with DNA is true? Chapter 25 DNA Metabolism Multiple Choice Questions 1. DNA replication Page: 977 Difficulty: 2 Ans: C The Meselson-Stahl experiment established that: A) DNA polymerase has a crucial role in DNA synthesis.

More information

1. True or False? At the DNA level, recombination is initiated by a single stranded break in a DNA molecule. False

1. True or False? At the DNA level, recombination is initiated by a single stranded break in a DNA molecule. False 1. True or False? At the DNA level, recombination is initiated by a single stranded break in a DNA molecule. False 2. True or False? Dideoxy sequencing is a chain initiation method of DNA sequencing. False

More information

DNA Replication in Prokaryotes

DNA Replication in Prokaryotes OpenStax-CNX module: m44488 1 DNA Replication in Prokaryotes OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 By the end of this section,

More information

DNA Replication Activity Guide

DNA Replication Activity Guide DNA Replication Activity Guide Teacher Key Deoxyribonucleic Acid (DNA) Exploring DNA 1. List at least three reasons why a cell must undergo division. Answers may vary but may include: growth, repair, reproduction,

More information

DNA: Structure and Replication

DNA: Structure and Replication 7 DNA: Structure and Replication WORKING WITH THE FIGURES 1. In Table 7-1, why are there no entries for the first four tissue sources? For the last three entries, what is the most likely explanation for

More information

Bio 102 Practice Problems Chromosomes and DNA Replication

Bio 102 Practice Problems Chromosomes and DNA Replication Bio 102 Practice Problems Chromosomes and DNA Replication Multiple choice: Unless otherwise directed, circle the one best answer: 1. Which one of the following enzymes is NT a key player in the process

More information

DNA synthesis_pic Basic requirements for DNA synthesis Substrates. The four deoxynucleoside triphosphates (dntps) deoxyadenosine triphosphate (datp),

DNA synthesis_pic Basic requirements for DNA synthesis Substrates. The four deoxynucleoside triphosphates (dntps) deoxyadenosine triphosphate (datp), Basic requirements for DNA synthesis Substrates. The four deoxynucleoside triphosphates (dntps) deoxyadenosine triphosphate (datp), deoxyguanosine triphosphate (dgtp), deoxycytidine triphos-phate (dctp),

More information

Part III. Genetic information replication and flow

Part III. Genetic information replication and flow Part III Genetic information replication and flow Chapter 16 DNA Biosynthesis and Recombination The biological function of DNA Store genetic information Replicate genetic information Express genetic information

More information

During DNA replication, a cell uses a variety of proteins to create a new copy of its genome.

During DNA replication, a cell uses a variety of proteins to create a new copy of its genome. Principles of Biology contents 45 DNA Replication During DNA replication, a cell uses a variety of proteins to create a new copy of its genome. DNA replication is a set of timed processes involving many

More information

1.5 page 3 DNA Replication S. Preston 1

1.5 page 3 DNA Replication S. Preston 1 AS Unit 1: Basic Biochemistry and Cell Organisation Name: Date: Topic 1.5 Nucleic Acids and their functions Page 3 l. DNA Replication 1. Go through PowerPoint 2. Read notes p2 and then watch the animation

More information

Reminder. The genetic information in a gene is encoded in the sequence of bases on one strand of DNA.

Reminder. The genetic information in a gene is encoded in the sequence of bases on one strand of DNA. DNA Replication Genes are DNA. Reminder DNA is a double-stranded molecule. The genetic information in a gene is encoded in the sequence of bases on one strand of DNA. 1 10 20 30 40 50 60 70 80 90 100 AcatttgcttctgacacaactgtgttcactagcaactcaaacagacaccATGGTGCACCTGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTGGGGC

More information

3/23/2012. DNA Replication. DNA Replication. DNA Replication. Steps in DNA Replication. SBI4U1 Molecular Genetics

3/23/2012. DNA Replication. DNA Replication. DNA Replication. Steps in DNA Replication. SBI4U1 Molecular Genetics SBI4U1 Molecular Genetics Recall: mitosis requires that each daughter cell has an exact copy of parent DNA. Ms. Ponvia The Watson-Crick model suggests how this occurs: Parent DNA molecule unzips, creating

More information

DNA Replication. Introduction... 1 The Mechanism of Replication... 2 DNA Replication Rates... 4 References... 5

DNA Replication. Introduction... 1 The Mechanism of Replication... 2 DNA Replication Rates... 4 References... 5 DNA Replication Contents Introduction... 1 The Mechanism of Replication... 2 DNA Replication Rates... 4 References... 5 Introduction In their report announcing the structure of the DNA molecule, Watson

More information

2. Why did biologists used to think that proteins are the genetic material?

2. Why did biologists used to think that proteins are the genetic material? Chapter 16: DNA: The Genetic Material 1. What must genetic material do? 2. Why did biologists used to think that proteins are the genetic material? 3. Describe Griffith s experiments with genetic transformation

More information

2. The work of Messelson & Stahl showed semi-conservative replication. 4. Cairn's experiments showed chromosomes are semi-conservatively replicated.

2. The work of Messelson & Stahl showed semi-conservative replication. 4. Cairn's experiments showed chromosomes are semi-conservatively replicated. BIOLOGY 207 - Dr.McDermid Lecture#2/3 DNA Structure & Replication Readings: Griffiths et al, 7 th Edition: Ch. 8 pp 243-259 (corrected) Problems: Griffiths et al, 7 th Edition: Ch. 8 Tier 1: # 2,3,5,9,13

More information

DNA. Form and Function

DNA. Form and Function DNA Form and Function DNA: Structure and replication Understanding DNA replication and the resulting transmission of genetic information from cell to cell, and generation to generation lays the groundwork

More information

DNA replication. DNA RNA Protein

DNA replication. DNA RNA Protein DNA replication The central dogma of molecular biology transcription translation DNA RNA Protein replication Revers transcriptase The information stored by DNA: - protein structure - the regulation of

More information

Chapter 6 DNA Replication

Chapter 6 DNA Replication Chapter 6 DNA Replication Each strand of the DNA double helix contains a sequence of nucleotides that is exactly complementary to the nucleotide sequence of its partner strand. Each strand can therefore

More information

Bio Factsheet. How Science Works: Meselson and Stahl s Classic Experiment. Number 207.

Bio Factsheet. How Science Works: Meselson and Stahl s Classic Experiment. Number 207. Number 207 How Science Works: Meselson and Stahl s lassic Experiment n 1953 James Watson and Francis rick built their model of the structure of DNA, which is still accepted today: DNA is an anti-parallel

More information

DNA replication (Lecture 28,29)

DNA replication (Lecture 28,29) DNA replication (Lecture 28,29) 1. DNA replication and the cell cycle 2. DNA is Reproduced by Semiconservative Replication 2.1 Conservation of the Original Helix 2.2 The Meselson-Stahl Experiment 2.3 Semiconservative

More information

BCMB Chapters 34 & 35 DNA Replication and Repair

BCMB Chapters 34 & 35 DNA Replication and Repair BCMB 3100 - Chapters 34 & 35 DNA Replication and Repair Semi-conservative DNA replication DNA polymerase DNA replication Replication fork; Okazaki fragments Sanger method for DNA sequencing DNA repair

More information

BCMB Chapters 34 & 35 DNA Replication and Repair

BCMB Chapters 34 & 35 DNA Replication and Repair BCMB 3100 - Chapters 34 & 35 DNA Replication and Repair Semi-conservative DNA replication DNA polymerase DNA replication Replication fork; Okazaki fragments Sanger method for DNA sequencing DNA repair

More information

Every time a cell divides the genome must be duplicated and passed on to the offspring. That is:

Every time a cell divides the genome must be duplicated and passed on to the offspring. That is: DNA Every time a cell divides the genome must be duplicated and passed on to the offspring. That is: Original molecule yields 2 molecules following DNA replication. Our topic in this section is how is

More information

DNA AND IT S ROLE IN HEREDITY

DNA AND IT S ROLE IN HEREDITY DNA AND IT S ROLE IN HEREDITY Lesson overview and objectives - DNA/RNA structural properties What are DNA and RNA made of What are the structural differences between DNA and RNA What is the structure of

More information

I) DNA STRUCTURE AND REPLICATION B) DNA REPLICATION

I) DNA STRUCTURE AND REPLICATION B) DNA REPLICATION I) DN SRUURE ND REPLIION B) DN REPLIION I) DN Structure and Replication DN Replication for mitosis and meiosis to occur the DN must make an exact copy itself first (S Phase) this is called DN replication

More information

POGIL Cell Biology Activity 6 DNA Replication MODEL 1: "Replication Bubble"

POGIL Cell Biology Activity 6 DNA Replication MODEL 1: Replication Bubble POGIL Cell Biology Activity 6 DNA Replication MODEL 1: "Replication Bubble" The circle is an E. coli chromosome at the beginning of DNA synthesis. The original DNA strands are called "parental strands".

More information

DNA. Discovery of the DNA double helix

DNA. Discovery of the DNA double helix DNA Replication DNA Discovery of the DNA double helix A. 1950 s B. Rosalind Franklin - X-ray photo of DNA. C. Watson and Crick - described the DNA molecule from Franklin s X-ray. What is DNA? Question:

More information

Chapter 16: DNA Structure & Replication

Chapter 16: DNA Structure & Replication hapter 16: DN Structure & Replication 1. DN Structure 2. DN Replication 1. DN Structure hapter Reading pp. 313-318 enetic Material: Protein or DN? Until the early 1950 s no one knew for sure, but it was

More information

Chromosome Mapping by Recombination

Chromosome Mapping by Recombination Chromosome Mapping by Recombination Genes on the same chromosome are said to be linked. Crossing over: the physical exchange of homologous chromosome segments A given crossover generates two reciprocal

More information

TTGGHTGUTGG CCAAACACCAA AACCCACAACC HHUUTHUGHUU

TTGGHTGUTGG CCAAACACCAA AACCCACAACC HHUUTHUGHUU Conceptual Questions C1. Answer: It is a double-stranded structure that follows the AT/GC rule. C2. Answer: Bidirectional replication refers to DNA replication in both directions starting from one origin.

More information

Lectures 19 and 20. Chapter 12: DNA Replication and Recombination. Problem set 3A: due at beginning of lecture on Monday, Oct.

Lectures 19 and 20. Chapter 12: DNA Replication and Recombination. Problem set 3A: due at beginning of lecture on Monday, Oct. Lectures 19 and 20 Chapter 12: DNA Replication and Recombination DNA Replication is semiconservative Meselson-Stahl experiment: 15 N-labeling and CsCl density gradient centrifugation. Problem set 3A: due

More information

Study Guide Chapter 12

Study Guide Chapter 12 Study Guide Chapter 12 1. Know ALL of your vocabulary words! 2. Name the following scientists with their contributions to Discovering DNA: a. Strains can be transformed (or changed) into other forms while

More information

Chapter 4.2 (textbook: Molecular Cell Biology 6 ed, Lodish section: ) DNA Replication, Repair, and Recombination

Chapter 4.2 (textbook: Molecular Cell Biology 6 ed, Lodish section: ) DNA Replication, Repair, and Recombination Chapter 4.2 (textbook: Molecular Cell Biology 6 ed, Lodish section: 4.5-4.6) DNA Replication, Repair, and Recombination Cell division - mitosis S-phase is tightly regulated by kinases Mitosis can be divided

More information

Some comments on biochemistry

Some comments on biochemistry BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 13: DNA replication and repair http://compbio.uchsc.edu/hunter/bio5099 Larry.Hunter@uchsc.edu Some comments on biochemistry The last

More information

INTRODUCTION TO DNA Replication

INTRODUCTION TO DNA Replication INTRODUCTION TO DNA Replication - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Chapter 13 covers a descriptive explanation of Deoxyribose nucleic Acid

More information

Chapter 6: Cell Growth and Reproduction Lesson 2: Chromosomes and DNA Replication

Chapter 6: Cell Growth and Reproduction Lesson 2: Chromosomes and DNA Replication Chapter 6: Cell Growth and Reproduction Lesson 2: Chromosomes and DNA Replication Cell reproduction involves a series of steps that always begin with the processes of interphase. During interphase the

More information

DNA Structure and Replication. Chapter Nine

DNA Structure and Replication. Chapter Nine DNA Structure and Replication Chapter Nine 2005 We know: DNAis the hereditary material DNAhas a double helix structure Made of four bases; A,T,C,G Sugar-Phosphate backbone DNAreplication is semi-conservative

More information

Appendix C DNA Replication & Mitosis

Appendix C DNA Replication & Mitosis K.Muma Bio 6 Appendix C DNA Replication & Mitosis Study Objectives: Appendix C: DNA replication and Mitosis 1. Describe the structure of DNA and where it is found. 2. Explain complimentary base pairing:

More information

Semiconservative DNA replication. Meselson and Stahl

Semiconservative DNA replication. Meselson and Stahl DNA replication Semiconservative DNA replication Meselson and Stahl Hartl Replication of DNA New nucleotides are added to DNA only during replication in the 5-3 direction How double helix unwind DNA synthesis

More information

The Central Dogma. Replication as a Process. DNA Replication is Semi-discontinuous!

The Central Dogma. Replication as a Process. DNA Replication is Semi-discontinuous! The Central Dogma DNA structure and DNA replication DNA replication (continued) RNA Synthesis rotein synthesis rof. David McConnell Smurfit Institute of Genetics DNA an emblem of the 20 th century. 1.!

More information

The Flow of Genetic Information. MBLG1001 Lecture 9. Replication. Is the process : The Messelson Stahl Experiment. The Messelson Stahl Experiment

The Flow of Genetic Information. MBLG1001 Lecture 9. Replication. Is the process : The Messelson Stahl Experiment. The Messelson Stahl Experiment The Flow of Genetic Information MBLG1001 Lecture 9 Replication Chapter 7 Malacinski Chapter 5 Clark Transcription Translation DNA RNA rotein replication DNA Folding, modification, translocation Functional

More information

Nucleic Acids and DNA Replication. I. Biological Background

Nucleic Acids and DNA Replication. I. Biological Background Lecture 14: Nucleic Acids and DNA Replication I. Biological Background A. Types of nucleic acids: 1. Deoxyribonucleic acid (DNA) a. Makes up genes that indirectly direct protein synthesis b. Contain information

More information

Lecture 9 DNA Structure & Replication

Lecture 9 DNA Structure & Replication Lecture 9 DNA Structure & Replication What is a Gene? Mendel s work left a key question unanswered: What is a gene? The work of Sutton and Morgan established that genes reside on chromosomes But chromosomes

More information

Sample Questions for Exam 3

Sample Questions for Exam 3 Sample Questions for Exam 3 1. All of the following occur during prometaphase of mitosis in animal cells except a. the centrioles move toward opposite poles. b. the nucleolus can no longer be seen. c.

More information

Semiconservative DNA replication (Meselson-Stahl experiment)

Semiconservative DNA replication (Meselson-Stahl experiment) DNA replication Semiconservative DNA replication (Meselson-Stahl experiment) Replication of DNA 3 5 3 3-5 3 5 3 5 Hartl New nucleotides are added to DNA only during replication in the 5-3 direction DNA

More information

Frederick Griffith Dna Is The Genetic Material 11/24/2015. Important Scientists in the Discovery of DNA

Frederick Griffith Dna Is The Genetic Material 11/24/2015. Important Scientists in the Discovery of DNA hapter 16 P. 305-324 16.1 Dna Is he enetic Material.H Morgan s group: showed that genes are located along chromosomes. wo chemical components of chromosomes are DN and protein. Little was known about nucleic

More information

MBLG1001 Lectures 9 & 10 page 1. University of Sydney Library Electronic Item COURSE: MBLG1001. Lecturer: Dale Hancock Lectures 9 & 10

MBLG1001 Lectures 9 & 10 page 1. University of Sydney Library Electronic Item COURSE: MBLG1001. Lecturer: Dale Hancock Lectures 9 & 10 MBLG1001 Lectures 9 & 10 page 1 University of Sydney Library Electronic Item CURSE: MBLG1001 Lecturer: Dale ancock Lectures 9 & 10 CMMNWEALT F AUSTRALIA Copyright Regulation WARNING This material has been

More information

Complementary Base Pairs: A and T. DNA contains complementary base pairs in which adenine is always linked by two hydrogen bonds to thymine (A T).

Complementary Base Pairs: A and T. DNA contains complementary base pairs in which adenine is always linked by two hydrogen bonds to thymine (A T). Complementary Base Pairs: A and T DNA contains complementary base pairs in which adenine is always linked by two hydrogen bonds to thymine (A T). Complementary Base Pairs: G and C DNA contains complementary

More information

Ch. 12: DNA and RNA 12.1 DNA Chromosomes and DNA Replication

Ch. 12: DNA and RNA 12.1 DNA Chromosomes and DNA Replication Ch. 12: DNA and RNA 12.1 DNA A. To understand genetics, biologists had to learn the chemical makeup of the gene Genes are made of DNA DNA stores and transmits the genetic information from one generation

More information

Introduction. Chapter 11 DNA replication, repair and recombination. Overview. DNA replication is essential for life. Short on DNA structure

Introduction. Chapter 11 DNA replication, repair and recombination. Overview. DNA replication is essential for life. Short on DNA structure Chapter 11 DNA replication, repair and recombination Overview Brief introduction DNA replication DNA repair DNA recombination DNA replication is essential for life Introduction Cells divide and make copies

More information

MOLECULAR BIOLOGY OVERVIEW NUCLEIC ACIDS: THE BASICS

MOLECULAR BIOLOGY OVERVIEW NUCLEIC ACIDS: THE BASICS MOLECULAR BIOLOGY OVERVIEW NUCLEIC ACIDS: THE BASICS Richard L. Hodinka, Ph.D. University of South Carolina School of Medicine Greenville Greenville Health System, Greenville, SC hodinka@greenvillemed.sc.edu

More information

Choose the response which best answers the question or completes the statement.

Choose the response which best answers the question or completes the statement. Choose the response which best answers the question or completes the statement. 1. The process of transformation in bacteria involves (1.) transfer of genes for making a capsule. (2.) infection with a

More information

Structure. Structural Components of Nucleotides Base. Introduction Nucleotide to Cells & Microscopy and Nucleic Acid. Sugar. Phosphate Glycosidic bond

Structure. Structural Components of Nucleotides Base. Introduction Nucleotide to Cells & Microscopy and Nucleic Acid. Sugar. Phosphate Glycosidic bond 11 Introduction Nucleotide to Cells & Microscopy and Nucleic Acid Structure Structural Components of Nucleotides Base Sugar Phosphate Glycosidic bond H NUCLEOTIDE H 1 RNA DNA Table 3-1 Nucleic acid polymer

More information

Proteomics: Principles and Techniques Prof: Sanjeeva Srivastava Department of Biosciences and Bioengineering Indian Institute of Technology, Bombay

Proteomics: Principles and Techniques Prof: Sanjeeva Srivastava Department of Biosciences and Bioengineering Indian Institute of Technology, Bombay (Refer Slide Time: 00:29) Proteomics: Principles and Techniques Prof: Sanjeeva Srivastava Department of Biosciences and Bioengineering Indian Institute of Technology, Bombay Lecture No. # 02 Central Dogma:

More information

NPTEL VIDEO COURSE PROTEOMICS PROF. SANJEEVA SRIVASTAVA

NPTEL VIDEO COURSE PROTEOMICS PROF. SANJEEVA SRIVASTAVA LECTURE-02 CENTRAL DOGMA: BASICS OF DNA, RNA AND PROTEIN TRANSCRIPT Welcome to the proteomics of course. Today we will talk about central dogma: basics of DNA, RNA and proteins. So lecture outline is,

More information

Chapter 25 Homework Assignment

Chapter 25 Homework Assignment Chapter 25 Homework Assignment The following problems will be due once we finish the chapter: 4, 5, 8, 9, 11 Minimal Coverage of Section 25.3 Chapter 25 1 Chapter 25 DNA Metabolism DNA Polymerase III 1

More information

These machines catalyze some of the most rapid and accurate processes that take place within cells and Their mechanisms clearly demonstrate the

These machines catalyze some of the most rapid and accurate processes that take place within cells and Their mechanisms clearly demonstrate the DNA Replication: The ability of cells to maintain a high degree of order in a chaotic universe depends upon the accurate duplication of vast quantities of genetic information carried in chemical form as

More information

1. In the experiments of Griffith, the conversion of nonlethal R-strain bacteria to lethal S- strain bacteria:

1. In the experiments of Griffith, the conversion of nonlethal R-strain bacteria to lethal S- strain bacteria: Name Chapter 12: DNA: The Carrier of Genetic Information Mrs. Laux AP Biology Take home test #10 on Chaps. 12 and 13 DUE: MONDAY, DECEMBER 14, 2009 MULTIPLE CHOICE QUESTIONS 1. In the experiments of Griffith,

More information

1. Which of the following correctly organizes genetic material from the broadest category to the most specific category?

1. Which of the following correctly organizes genetic material from the broadest category to the most specific category? DNA and Genetics 1. Which of the following correctly organizes genetic material from the broadest category to the most specific category? A. genome chromosome gene DNA molecule B. genome chromosome DNA

More information

BCOR 011, Exam 3. Multiple Choice: Select the best possible answer. Name KEY Section

BCOR 011, Exam 3. Multiple Choice: Select the best possible answer. Name KEY Section BCOR 011, Exam 3 Name KEY Section Multiple Choice: Select the best possible answer. 1. A parent cell divides to form two genetically identical daughter cells in the nuclear process of mitosis. For mitosis

More information

Central Dogma. Lecture 10. Discussing DNA replication. DNA Replication. DNA mutation and repair. Transcription

Central Dogma. Lecture 10. Discussing DNA replication. DNA Replication. DNA mutation and repair. Transcription Central Dogma transcription translation DNA RNA Protein replication Discussing DNA replication (Nucleus of eukaryote, cytoplasm of prokaryote) Recall Replication is semi-conservative and bidirectional

More information

2.7 DNA replication, transcription and translation

2.7 DNA replication, transcription and translation 2.7 DNA replication, transcription and translation Essential Idea: Genetic information in DNA can be accurately copied and can be translated to make the proteins needed by the cell. The image shows an

More information

DNA Replication & Protein Synthesis. This isn t a baaaaaaaddd chapter!!!

DNA Replication & Protein Synthesis. This isn t a baaaaaaaddd chapter!!! DNA Replication & Protein Synthesis This isn t a baaaaaaaddd chapter!!! The Discovery of DNA s Structure Watson and Crick s discovery of DNA s structure was based on almost fifty years of research by other

More information

7. 3. replication. Unit 7: Molecular biology and genetics

7. 3. replication. Unit 7: Molecular biology and genetics 7. 3 DN replication he fact that DN is a self-replicating molecule and can make copies of itself is the basis of all life forms. It is the essence of what life is. Indeed, according to Richard Dawkins

More information

Ch 16 and Introduction of Ch 17. This PowerPoint is posted. Replication Transcription Translation Protein!

Ch 16 and Introduction of Ch 17. This PowerPoint is posted. Replication Transcription Translation Protein! Ch 16 and Introduction of Ch 17 This PowerPoint is posted. Replication Transcription Translation Protein! In the start of things lin the 1950 s scientists knew that chromosomes carry hereditary material

More information

2. The number of different kinds of nucleotides present in any DNA molecule is A) four B) six C) two D) three

2. The number of different kinds of nucleotides present in any DNA molecule is A) four B) six C) two D) three Chem 121 Chapter 22. Nucleic Acids 1. Any given nucleotide in a nucleic acid contains A) two bases and a sugar. B) one sugar, two bases and one phosphate. C) two sugars and one phosphate. D) one sugar,

More information

INTRODUCTION TO DNA. DNA, CHROMOSOMES AND GENES How do these terms relate to one another?

INTRODUCTION TO DNA. DNA, CHROMOSOMES AND GENES How do these terms relate to one another? INTRODUCTION TO DNA You've probably heard the term a million times. You know that DNA is something inside cells; you probably know that DNA has something to do with who we are and how we get to look the

More information

The Watson-Crick Proposal. DNA Replication. Semiconservative DNA replication

The Watson-Crick Proposal. DNA Replication. Semiconservative DNA replication Cell and Molecular Biology The Watson-Crick Proposal DNA Replication DNA strands are complementary Nucleotides are lined up on templates according to base pair rules Kanokporn Boonsirichai ksatima@live.com

More information

Problem Set 6. Answer Key

Problem Set 6. Answer Key MCB 102 University of California, Berkeley July 28, 2009 Isabelle Philipp Online Document Problem Set 6 Answer Key 1. A double-stranded DNA molecule contains 20% adenine. Determine the number of cytosine

More information

The Structure, Replication, and Chromosomal Organization of DNA

The Structure, Replication, and Chromosomal Organization of DNA Michael Cummings Chapter 8 The Structure, Replication, and Chromosomal Organization of DNA David Reisman University of South Carolina History of DNA Discoveries Friedrich Miescher Isolated nuclein from

More information

DNA AND IT S STRUCTURE, FUNCTION, TYPES, MODES OF REPLICATION AND REPAIR

DNA AND IT S STRUCTURE, FUNCTION, TYPES, MODES OF REPLICATION AND REPAIR DNA AND IT S STRUCTURE, FUNCTION, TYPES, MODES OF REPLICATION AND REPAIR The discovery that DNA is the prime genetic molecule, carrying all the hereditary information within chromosomes, immediately had

More information

Replication Study Guide

Replication Study Guide Replication Study Guide This study guide is a written version of the material you have seen presented in the replication unit. Self-reproduction is a function of life that human-engineered systems have

More information

DNA Replication Replication begins simultaneously on several chromatin threads & continues until all DNA has been replicated. Steps in DNA Replication

DNA Replication Replication begins simultaneously on several chromatin threads & continues until all DNA has been replicated. Steps in DNA Replication DNA Replication Replication begins simultaneously on several chromatin threads & continues until all DNA has been replicated Steps in DNA Replication 1) 2) 3) 4) 5) 6) DNA helices unwind from the nucleosomes

More information

The Molecular Basis of Inheritance

The Molecular Basis of Inheritance Chapter 16 The Molecular Basis of Inheritance Lecture Outline Overview: Life s Operating Instructions In April 1953, James Watson and Francis Crick shook the scientific world with an elegant double-helical

More information

C A. How many high-energy phosphate bonds would be consumed during the replication of a 10-nucleotide DNA sequence (synthesis of a single-strand)?

C A. How many high-energy phosphate bonds would be consumed during the replication of a 10-nucleotide DNA sequence (synthesis of a single-strand)? 1. (20 points) Provide a brief answer to the following questions. You may use diagrams or equations, as appropriate, but your answer should be largely a written response of two or three sentences. 4. The

More information

DNA Structure and Replication

DNA Structure and Replication Why? DNA Structure and Replication How is genetic information stored and copied? Deoxyribonucleic acid or DNA is the molecule of heredity. It contains the genetic blueprint for life. For organisms to grow

More information

Genetics. Chapter 9. Chromosome. Genes Three categories. Flow of Genetics/Information The Central Dogma. DNA RNA Protein

Genetics. Chapter 9. Chromosome. Genes Three categories. Flow of Genetics/Information The Central Dogma. DNA RNA Protein Chapter 9 Topics - Genetics - Flow of Genetics/Information - Regulation - Mutation - Recombination gene transfer Genetics Genome - the sum total of genetic information in a organism Genotype - the A's,

More information

LEVEL TWO BIOLOGY: GENE EXPRESSION

LEVEL TWO BIOLOGY: GENE EXPRESSION LEVEL TWO BIOLOGY: GENE EXPRESSION Protein synthesis DNA structure and replication Polypeptide chains and amino acids Mutations Metabolic pathways Protein Synthesis: I can define a protein in terms of

More information

Section 12 3 RNA and Protein Synthesis

Section 12 3 RNA and Protein Synthesis Name Class Date Section 12 3 RNA and Protein Synthesis (pages 300 306) Key Concepts What are the three main types of RNA? What is transcription? What is translation? The Structure of RNA (page 300) 1.

More information

OUTCOMES. PROTEIN SYNTHESIS IB Biology Core Topic 3.5 Transcription and Translation OVERVIEW ANIMATION CONTEXT RIBONUCLEIC ACID (RNA)

OUTCOMES. PROTEIN SYNTHESIS IB Biology Core Topic 3.5 Transcription and Translation OVERVIEW ANIMATION CONTEXT RIBONUCLEIC ACID (RNA) OUTCOMES PROTEIN SYNTHESIS IB Biology Core Topic 3.5 Transcription and Translation 3.5.1 Compare the structure of RNA and DNA. 3.5.2 Outline DNA transcription in terms of the formation of an RNA strand

More information

BINF6201/8201. Basics of Molecular Biology

BINF6201/8201. Basics of Molecular Biology BINF6201/8201 Basics of Molecular Biology 08-26-2016 Linear structure of nucleic acids Ø Nucleic acids are polymers of nucleotides Ø Nucleic acids Deoxyribonucleic acids (DNA) Ribonucleic acids (RNA) Phosphate

More information

2.1 Nucleic acids the molecules of life

2.1 Nucleic acids the molecules of life 1 2.1 Nucleic acids the molecules of life Nucleic acids information molecules of the cells form new cells stored in chromosomes in nucleus of the cell in the form of a code in DNA / parts of the code are

More information

Transcription Study Guide

Transcription Study Guide Transcription Study Guide This study guide is a written version of the material you have seen presented in the transcription unit. The cell s DNA contains the instructions for carrying out the work of

More information

I. DNA, Chromosomes, Chromatin, and Genes. II. DNA Deoxyribonucleic Acid Located in the of the cell Codes for your - discovered DNA in 1928

I. DNA, Chromosomes, Chromatin, and Genes. II. DNA Deoxyribonucleic Acid Located in the of the cell Codes for your - discovered DNA in 1928 Name: Period: Date: = passing on of characteristics from parents to offspring How?...! I. DNA, Chromosomes, Chromatin, and Genes = blueprint of life (has the instructions for making an organism) = uncoiled

More information

DNA Replication Case Study Dasgupta (2013) In-Class Exercise: DNA Replication: A Case Discussion of a Landmark Paper by Meselson and Stahl

DNA Replication Case Study Dasgupta (2013) In-Class Exercise: DNA Replication: A Case Discussion of a Landmark Paper by Meselson and Stahl In-Class Exercise: DNA Replication: A Case Discussion of a Landmark Paper by Meselson and Stahl Shoumita Dasgupta Boston University School of Medicine 72 East. Concord Street, L-317 H Boston, MA 02118

More information

DNA TM Review And EXAM Review. Ms. Martinez

DNA TM Review And EXAM Review. Ms. Martinez DNA TM Review And EXAM Review Ms. Martinez 1. Write out the full name for DNA molecule. Deoxyribonucleic acid 2. What are chromosomes? threadlike strands made of DNA and PROTEIN 3. What does DNA control

More information

Name Date Period. 2. When a molecule of double-stranded DNA undergoes replication, it results in

Name Date Period. 2. When a molecule of double-stranded DNA undergoes replication, it results in DNA, RNA, Protein Synthesis Keystone 1. During the process shown above, the two strands of one DNA molecule are unwound. Then, DNA polymerases add complementary nucleotides to each strand which results

More information

Genes DNA Replication

Genes DNA Replication Genes DNA Replication Classwork 1. Explain why it is necessary to be able to replicate DNA in order to sustain life. 2. What is the appropriate scientific term used to describe a series of bases that code

More information

DNA, RNA AND PROTEIN SYNTHESIS

DNA, RNA AND PROTEIN SYNTHESIS DNA, RNA AND PROTEIN SYNTHESIS Evolution of Eukaryotic Cells Eukaryotes are larger, more complex cells that contain a nucleus and membrane bound organelles. Oldest eukarytotic fossil is 1800 million years

More information

Mice die Mice live Mice live Mice die

Mice die Mice live Mice live Mice die Module 3E DA Structure and Replication In this module, we will examine: the molecular structure of the genetic material how the genetic material replicates how damage to the genetic material is repaired

More information

PULSE-CHASE PRIMER: THE MESELSON-STAHL EXPERIMENT

PULSE-CHASE PRIMER: THE MESELSON-STAHL EXPERIMENT PULSE-CHASE PRIMER: THE MESELSON-STAHL EXPERIMENT INTRODUCTION In the 1950s, James Watson and Francis Crick suggested a mechanism for the replication of DNA, which they called the Semiconservative Model

More information

Nucleic Acids: DNA and RNA

Nucleic Acids: DNA and RNA Nucleic Acids: DNA and RNA Nucleic Acids Responsible for the transfer of genetic information. Two forms of nucleic acids: Ribonucleic Acid (RNA) Mainly found in cytoplasm Deoxyribonucleic Acid (DNA) Found

More information

DNA replication. Watson and Crick duplex structure of DNA immediately suggested how genetic material was replicated from one generation to the next.

DNA replication. Watson and Crick duplex structure of DNA immediately suggested how genetic material was replicated from one generation to the next. DNA replication Watson and Crick duplex structure of DNA immediately suggested how genetic material was replicated from one generation to the next. The realization that bacterial genomes and eukaryotic

More information

Transcription Activity Guide

Transcription Activity Guide Transcription Activity Guide Teacher Key Ribonucleic Acid (RNA) Introduction Central Dogma: DNA to RNA to Protein Almost all dynamic functions in a living organism depend on proteins. Proteins are molecular

More information

Copyright 2012 Nelson Education Ltd. Chapter 6: DNA Hereditary Molecules of Life 6-2

Copyright 2012 Nelson Education Ltd. Chapter 6: DNA Hereditary Molecules of Life 6-2 Chapter 6 Review, pages 304 309 Knowledge 1. c 2. d 3. b 4. c 5. b 6. d 7. b 8. a 9. b 10. c 11. c 12. d 13. a 14. False. Bacteria do not possess membrane-bound organelles to store their DNA. 15. False.

More information

4.1 Cell Division and Genetic Material pg The Cell Theory is a central idea to Biology and it evolved in the 1800 s. The Cell Theory States:

4.1 Cell Division and Genetic Material pg The Cell Theory is a central idea to Biology and it evolved in the 1800 s. The Cell Theory States: 4.1 Cell Division and Genetic Material pg. 160 The Cell Theory is a central idea to Biology and it evolved in the 1800 s. The Cell Theory States: 1. All living things are composed of one or more cells.

More information

DNA, genes and chromosomes

DNA, genes and chromosomes DNA, genes and chromosomes Learning objectives By the end of this learning material you would have learnt about the components of a DNA and the process of DNA replication, gene types and sequencing and

More information