Dynamic Contact Loads of Spur Gear Pairs with Addendum Modifications

Size: px
Start display at page:

Download "Dynamic Contact Loads of Spur Gear Pairs with Addendum Modifications"

Transcription

1 Dnamic Contact Loads of Spur Gear Pairs with ddendum Modifications V. tanasiu, I. Doroftei Theor of Mechanisms and Robotics Department, Gh. sachi Technical Universit of Iasi B-dul D. Mangeron, 6-63, Iasi - 75, Romania mail: vatanasi@mail.tuiasi.ro, idorofte@mail.tuiasi.ro bstract The paper presents a dnamic tooth load analsis of spur gears with addendum modifications. The analtical model is developed to simulate the load sharing characteristics through a mesh ccle. The model takes into account the main internal factors of dnamic load as time-varing mesh stiffness and composite tooth profile errors. The specific phenomenon of contact tooth pairs alternation during mesh ccle is integrated in this dnamic load modeling. comparative stud is included, which shows the effects of the factors with an important role in the wa of the dnamic load variation. Kewords: spur gears, dnamic loads, mesh stiffness, profile error, addendum modification.. Introduction The dnamic characteristics of spur gear pairs are significant for the design and motion control of these mechanisms [], []. The position accurac in a motion control sstem is affected b vibration due to nonlinear effects such mesh stiffness or tooth profile errors [], [3], [4]. complete analtical methodolog that covers all influence factors with high accurac is not current available. The time-varing mesh stiffness represents the main cause of undesired vibrations in the case of gear transmissions with high manufacturing precision. Because the tooth pair stiffness varies during the mesh ccle, different evaluation models for gear mesh stiffness have been developed [3-6]. The fluctuation of the dnamic loads of meshing gears represents a relevant parameter in dnamic analsis. In this work, the dnamic model accounts the non-linear time varing mesh stiffness, variable tooth profile errors, and tooth profile modifications in order to obtain reliable data for the prediction of gear dnamic loads. n investigation of the two group of the evaluation methods of the mesh stiffness used in the dnamic analsis of spur gear pairs is included in the paper. The effects of the operation frequenc and load condition od spur gears are considered in the numerical analsis of the dnamic shared loads.. Dnamic Model During the engagement ccle, the contact load does not remain constant. The load variation is mainl caused b the following factors: (i) the alternating engagement of single and double pairs of teeth; (ii) the variation of the mesh stiffness along the line of action; (iii) the deviation of the tooth profile from the theoretical involute profile. In order to build an accurate analtical model of the dnamic tooth load sharing, the parameters used in the model need to be estimated correctl. The mechanical model for a gear pair in mesh is shown in Figure, where the teeth are considered as springs and the gear blanks as inertia masses [4], [6]. In developing this model, the dnamic process is studied in the rotating plane of the gears and the differential equations of motion are developed b using the theoretical line of action. In Figure, for a pair of contacting teeth i, the time-varing mesh stiffness k i (t) and the composite tooth profile error e i (t) act as parameter excitations.

2 J rb F n F di(t) T T k i(t) e (t) i Figure : Dnamic model of meshing gears The differential equations of motion can be expressed as F n r b J Jθ& + Fd rb = T, () J θ & + Fd rb = T, () where: θ, θ are the rotation angle of the pinion and the driven gear, respectivel; J and J are the mass moments of inertia of the gears; T and T denote the external torques applied on the gear sstem; and r b, r b are the base circle radii of the gears. The dnamic load is expressed as where () = N F F t d di i =, (3) F = θ θ + θ& θ& di ki() t rb rb c( rb rb ) (4) with k i representing the mesh stiffness of the gear pair and c the damping coefficient. B introducing the composite coordinate x = r θ r θ d b b (4) qs. () and () ield an equation of motion in the following form N + & d d + di () = n i = mx&& cx F t F (5) where Fn is the static load and N represents the number of simultaneous tooth pairs in mesh, and () = () + () Fdi t ki t xd ei t (6) with x d being the dnamic displacement and e i (t) the equivalent error of teeth profile. The damping coefficient is calculated b c = ξ mekm, (7) where ξ represents the damping ratio factor and k m is the average mesh stiffness of the gear pair. The meshing resonance frequenc of the gear pair is determined as follows: f n km =, (8) π m where k m is the average mesh stiffness of the gear pair. 3. Parameters for Dnamic Model 3. Mesh Stiffness The gear tooth is modeled to be a nonuniform cantilever beam supported b a flexible fillet region and foundation [7] as shown in Figure. s f s p F F n α' F z p Fig. : Gear tooth deflection model The individual tooth mesh stiffness is defined in the normal direction to the contact surface as k F j = n f j z (9) where F n is the normal tooth load per unit length. The approach methodologies of the tooth mesh stiffness are based on analtical or with finite element methods [], [3], [5]. Two groups of the evaluation methods of the mesh stiffness of spur gear pairs is presented in the paper. The finite element contact modelling is computationall ver difficult to model for

3 dnamic analsis. Kuang and Yang [5] developed an alternative method and introduced a semi-empirical equation for the single tooth stiffness with and without modification. In this approach, the analtical expression is proposed b using the curve fitting technique on the data drown from a quadratic isoparametric finite element method j r ( ) = ( + ) + ( + 3 ) ( + ) k r x x r w x m () where r, r w, x and z are radius at loading point, pitch radius, addendum modification coefficient and number of teeth and the coefficients,, 3 are computed as functions of the number of teeth z. The q.() is applicable for the following 6. < x < 6. and < z < for solid steel gears. The effect of bending, shear and Hertzian contact deformation is taking into account in the analtical method to calculate the tooth deformation. In this calculus procedure, the total deflection f j of a pair of meshing teeth is expressed as j = bj + fj + H j= j= f f f f, () where: f b is the deflection due to bending, shear and axial deformation of the tooth corresponding to the involutes profile; f f is the deflection due to the flexibilit of the tooth foundation and fillet; f H represents the local compliance of the Hertzian contact. The tooth deflection f b is analticall derived b using the method of the potential energ of deformation [4], [7], and can be expressed in the integral form as follows p ' 4( ) () ' α p ' Fn cos +ν + α = M. tan i fz + d d I where: fz = fb + f f (3) Mi ' = p cosα ' s sin α ' f (4) ( ) The tooth parameter sf = f() and integrands, I and, are formulated in terms of variable with great complexit [7]. The equations of the tooth profile coordinates are established from the geometrical conditions b using the propert of the involute profile and trochoidal curve corresponding to the fillet profile. rb T ρ h ρ O O P T h Fig. 3: Contact of spur gear teeth For a pair of meshing teeth, the contact teeth deflection is given b f H ( ν) 4 F n hh ν = ln π l c bh ( ν) rb (5) where b H is the half-width of surface of contact and h, h represent the distance between contact point and tooth centreline in the normal direction on tooth profile of the pinion and gear, respectivel, and ν is the Poisson s coefficient. (Fig. 3). The teeth pairs in contact act like parallel springs. Therefore, the total mesh stiffness k t during each engagement ccle can be written as a function of the position of contact point on the action line t s s k = k + k, for double-tooth contact k t I s = k, for simple - tooth contact (6) where I and II are the mating points of the teeth pairs. The numerical results obtained from analtical calculus method of mesh stiffness are plotted and compared with the values computed b the equation introduced b Kuang and Yang [5]. Figures 4 and 5 show the variation of the total mesh stiffness from the starting to ending of the contact ccle in relation to the geomatrical specificatuion pf the gears. The numerical values 3

4 obtained from q.() b using the analtical calculus procedure are represetated with the thin line of the curve. These examples illustrate the effect of the change of the number of teeth and addendum modification coefficients on the amount and variation of the total mesh stiffness. k t N mm μm B D G Figure 4: Numerical results of mesh stiffness for the gear pair with following specifications z = 3 ; z = 3 ; x = ; x = The time-varing mesh stiffness is mainl caused b the following factors: (i) the variation of the single mesh stiffness along the equivalent line of action; (ii) the fluctuation of the total number of total pairs in contact during the engagement ccle. 3. Tooth Profile rror The tooth profile error is defined as the distance between the theoretical involutes profile and the real tooth profile in the normal direction. The profile error function e(t) i due to manufacturing can be defined as ( ) ( ) e t = sin ω t +α (7) i i z where ω z is the mesh frequenc and α is the phase angle. The composite error e s is the sum of tooth errors of the pinion and gears. Tooth profile errors are added to the theoretical profile in normal directions. k t N mm μm B D G 4. Static Load Sharing The total displacement must be the same for each pair of teeth in the region of double tooth contact to maintain tooth contact. From this condition, the static load factor c si can be expressed [7] as ( ) k s ks csi = es es (8) F n ks + ks Figure 5: Numerical results of mesh stiffness for the gear pair with following specifications z = 8, z = 4, x =+ 8,. x = 8. Numerical results presented in Figs. 4 and 5 show that the variation of the mesh stiffness is sensitive to the calculus method used especiall for the case of spur gear with addendum modification coefficients. Referring to Figures 4 and 5, the following mesh points were used to represent the successive positions of contact point of a tooth as it passes through the zone of loading: the initial point of engagement, ; the lowest point of single-tooth contact, B; the highest point of single-tooth contact, D; and the final point of engagement,. Section B and D are double - tooth contact zone and section BD is the single tooth - contact zone. where: e s, e s represent the composite profile deviations at the mating point points of the teeth pairs and k s, k s are the single-tooth-pairstiffness [ N / μ m]. The static factor c si of the single tooth pair I is defined the ratio of the single static load F I to the static load F n. If the effect of tooth errors is neglected in q. (8), the tooth load sharing ratio c si depends on the mesh stiffness onl. In such a case, the sharing loads do not depend on the magnitude of the transmitting load. 5. Dnamic Load Simulation The design parameters of the analzed gear pairs are chosen as: material - steel/steel; number of teeth of the pinion and gear, z =8; z = 4; tooth module, m = 3 [mm]; tooth facewidth, b = 5 [mm], center distance, a = 9 [mm]. 4

5 Specific characteristics of these gear pairs are shown in Table, where x and x are the addendum modification coefficients of the pinion and gear, and ε α represents the contact ratio. Gear pair x x ε α k m [N/μm] f n [Hz] G G Table. Characteristics of the analzed gears In the analsis of dnamic loads, the transmitting load is defined as W = q(f n / b), where q represents the load factor..4 C di G. q =. ξ =.6 ξ =.7 = / 4 e I = Figure 6: Variation of static and dnamic factor includes gear pairs with different combination of the addendum modification coefficients. nominal value F n / b = [N/mm] corresponding to a medium transmitting load is considered in the numerical analsis. The dnamic factor c di of the single tooth pair is defined the ratio of the single dnamic load F di to the static load F n. Static load is the stead state force resulting from driving torque. The effects of damping coefficient and operational speed on the dnamic factor C di are presented in Figures 6 and 7, where the thin line represents the c si factor. The effect of both, the mesh stiffness and the composite profile error on the dnamic load variation is shown in Figure 8. C d I.4.. G q = e I = = / 4 Figure 8: Variation of static and dnamic factor C di G q = ξ =.7 ξ =.6 = / e I = C di G e I q =.5 = / 4 q =.5 Figure 7: Variation of static and dnamic factor Figure 9: Variation of static and dnamic factor computer program was developed for simulating the dnamic characteristics of spur gear pairs. The equations of motion are solved b the fourth-order Runge-Kutta method. Computer analsis of dnamic characteristics 5

6 C d G 5 5 [ mm] Figure : Variation of the total dnamic factor C d G 5 5 mm [ ] Figure : Variation of the total dnamic factor The dnamic load fluctuation under different transmitting loads is shown in Figure 9. The variation of the dnamic factor C d on the path of contact as a function of the addendum modification coefficients are presented in Figures and. In these figures, the line of contact is represented as abscissas and the position of the path of contact on the abscissas is presented according to the distribution of the addendum modification coefficients. The effect of the variation in mesh stiffness on the change on tooth dnamic load is more effective at lower speeds than at higher speeds. The number of load oscillation results as a ratio of the meshing resonance frequenc f n and the meshing frequenc f z of the gear pair. 6. Conclusion n investigation of the dnamic tooth load sharing among meshing teeth of spur gears with addendum modifications is presented in the paper. The values of the time-varing mesh stiffness along the path of contact are compared b using an exact analtical model and a semiempirical equation. The numerical results obtained b using these two different calculus methodologies showed the sensitiveness of the mesh stiffness in relation to the gear ratio and addendum modification coefficients. The dnamic loads are mainl affected b the time varing mesh stiffness, operating frequenc, and composite tooth profile errors. Under a medium or heav load condition, the effect of mesh stiffness on the load sharing ratio was considerabil larger than the composite profile error due to manufacture. cknowledgements This paper is based on the financial support of the National Universit Research Council of Romania, grant ID_96. References [] J. Wang, I. Howard, The Torsional Stiffness of Involute Spur Gears. Proceedind of the Institution of Mechanical ngineering, C: Journal of Mechanical ngineering Science, Vol.8, No., 3-4, 4. []. M. Vaisha, M., Singh, R. Strategies for Modeling Friction in Gear Dnamics. Journal of Mechanical Design,Transaction of the SM, Vol.5, , 3. [3] J. Lin, J., G.P. Parker, Mesh Stiffness Variation Instabilities in Two-Stage Gear Sstems. Journal of Vibration and coustics, Transactions of the SM, Vol.4, 68-76,. [4] D. Yang, Z.S. Sun, Rotar Model for Spur Gear Dnamics. Journal of Mechanisms, Transmissions, and utomation in Design. Vol. 7, 59-3, 985. [5] J.H. Kuang, Y.T. Yang, n stimate of Mesh Stiffness and Load Sharing Ratio of a Spur Gear Pair. D-Vol.43-, International Power Transmission and Gearing Conference, Volume, SM, -9, 99. [6] O. Sato, H. Shimojimo, T. Kaneko, Positioning Control of a Gear Train Sstem Including Flexible Shafts. JSM International Journal, Vol.3, No. 67, , 987. [7] tanasiu, V., nalsis of Teeth Forces in Spur Gear Pairs. Proceedings of the ight IFToMM International Smposium on Theor of Machines and Mechanisms, Bucharest, 37-4,. 6

Module 2 - GEARS Lecture 7 - SPUR GEAR DESIGN

Module 2 - GEARS Lecture 7 - SPUR GEAR DESIGN Module 2 - GEARS Lecture 7 - SPUR GEAR DESIGN Contents 7.1 Spur gear tooth force analysis 7.2 Spur gear - tooth stresses 7.3 Tooth bending stress Lewis equation 7.4 Tooth bending stress AGMA procedure

More information

Direct Gear Design for Optimal Gear Performance

Direct Gear Design for Optimal Gear Performance Direct Gear Design for Optimal Gear Performance Alex Kapelevich (AKGears, LLC), Thomas McNamara (Thermotech Company) The paper presents the Direct Gear Design an alternative method of analysis and design

More information

Formulas for gear calculation external gears. Contents:

Formulas for gear calculation external gears. Contents: Formulas for gear calculation external gears Contents: Relationship between the involute elements Determination of base tooth thickness from a known thickness and vice-versa. Cylindrical spur gears with

More information

SIMULATION AND ANALYSIS OF TRANSMISSION ERROR IN HELICAL NON CIRCULAR GEAR MODEL

SIMULATION AND ANALYSIS OF TRANSMISSION ERROR IN HELICAL NON CIRCULAR GEAR MODEL INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 6340(Print), ISSN 0976 6340 (Print) ISSN 0976 6359

More information

Module 2 GEARS. Lecture 3 - INVOLUTE SPUR GEARS

Module 2 GEARS. Lecture 3 - INVOLUTE SPUR GEARS Module 2 GEARS Lecture 3 - INVOLUTE SPUR GEARS Contents 3.1 Introduction 3.2 Standard tooth systems for spur gears 3.3 Profile shifted gears 3.4 Involutometry 3.5 Design of gear blanks 3.1 INTRODUCTION

More information

Development of Custom Gear Design and Modelling Software Solution

Development of Custom Gear Design and Modelling Software Solution Development of Custom Gear Design and Modelling Software Solution Robert Basan*, Marina Franulović and Božidar Križan Department of Mechanical Engineering Design Faculty of Engineering, University in Rijeka

More information

B.TECH. (AEROSPACE ENGINEERING) PROGRAMME (BTAE) Term-End Examination December, 2011 BAS-010 : MACHINE DESIGN

B.TECH. (AEROSPACE ENGINEERING) PROGRAMME (BTAE) Term-End Examination December, 2011 BAS-010 : MACHINE DESIGN No. of Printed Pages : 7 BAS-01.0 B.TECH. (AEROSPACE ENGINEERING) PROGRAMME (BTAE) CV CA CV C:) O Term-End Examination December, 2011 BAS-010 : MACHINE DESIGN Time : 3 hours Maximum Marks : 70 Note : (1)

More information

8.2 Elastic Strain Energy

8.2 Elastic Strain Energy Section 8. 8. Elastic Strain Energy The strain energy stored in an elastic material upon deformation is calculated below for a number of different geometries and loading conditions. These expressions for

More information

How To Design A Bevel And Hypoid Gear Drive

How To Design A Bevel And Hypoid Gear Drive New Developments in Tooth Contact Analysis (TCA) and Loaded TCA for Spiral Bevel and Hypoid Gear Drives Dr. Qi Fan and Dr. Lowell Wilcox This article is printed with permission of the copyright holder

More information

Equivalent Spring Stiffness

Equivalent Spring Stiffness Module 7 : Free Undamped Vibration of Single Degree of Freedom Systems; Determination of Natural Frequency ; Equivalent Inertia and Stiffness; Energy Method; Phase Plane Representation. Lecture 13 : Equivalent

More information

COMPLEX STRESS TUTORIAL 3 COMPLEX STRESS AND STRAIN

COMPLEX STRESS TUTORIAL 3 COMPLEX STRESS AND STRAIN COMPLX STRSS TUTORIAL COMPLX STRSS AND STRAIN This tutorial is not part of the decel unit mechanical Principles but covers elements of the following sllabi. o Parts of the ngineering Council eam subject

More information

METHODS FOR ACHIEVEMENT UNIFORM STRESSES DISTRIBUTION UNDER THE FOUNDATION

METHODS FOR ACHIEVEMENT UNIFORM STRESSES DISTRIBUTION UNDER THE FOUNDATION International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, March-April 2016, pp. 45-66, Article ID: IJCIET_07_02_004 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2

More information

Gear Trains. Introduction:

Gear Trains. Introduction: Gear Trains Introduction: Sometimes, two or more gears are made to mesh with each other to transmit power from one shaft to another. Such a combination is called gear train or train of toothed wheels.

More information

MCE380: Measurements and Instrumentation Lab. Chapter 9: Force, Torque and Strain Measurements

MCE380: Measurements and Instrumentation Lab. Chapter 9: Force, Torque and Strain Measurements MCE380: Measurements and Instrumentation Lab Chapter 9: Force, Torque and Strain Measurements Topics: Elastic Elements for Force Measurement Dynamometers and Brakes Resistance Strain Gages Holman, Ch.

More information

Comparative Analysis of Tooth-Root Strength Using ISO and AGMA Standards in Spur and Helical Gears With FEM-based Verification

Comparative Analysis of Tooth-Root Strength Using ISO and AGMA Standards in Spur and Helical Gears With FEM-based Verification Andrzej Kawalec e-mail: ak@prz.edu.pl Jerzy Wiktor Rzeszów University of Technology, Department of Mechanical and Aerospace Engineering, ul. W. Pola 2, Rzeszów, PL-35-959, Poland Dariusz Ceglarek Department

More information

Structural Axial, Shear and Bending Moments

Structural Axial, Shear and Bending Moments Structural Axial, Shear and Bending Moments Positive Internal Forces Acting Recall from mechanics of materials that the internal forces P (generic axial), V (shear) and M (moment) represent resultants

More information

COMPARISON OF ISO AND MAX METHOD IN DETERMINING TIP FACTOR OF INVOLUTE GEARS

COMPARISON OF ISO AND MAX METHOD IN DETERMINING TIP FACTOR OF INVOLUTE GEARS ADVANCED ENGINEERING (008), ISSN 86-900 COMPARN OF AND METHOD IN DETERMINING TIP FACTOR OF INVOLUTE GEARS Glažar, V.; Obsieger, B. & Gregov, G. Abstract: Two methods for determining tip factor of external

More information

Contact Stress Analysis of Spur Gear Teeth Pair

Contact Stress Analysis of Spur Gear Teeth Pair International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering Vol:3, No:0, 009 ontact Stress Analysis of Spur Gear Teeth Pair Ali Raad Hassan International Science

More information

Estimation of Adjacent Building Settlement During Drilling of Urban Tunnels

Estimation of Adjacent Building Settlement During Drilling of Urban Tunnels Estimation of Adjacent Building During Drilling of Urban Tunnels Shahram Pourakbar 1, Mohammad Azadi 2, Bujang B. K. Huat 1, Afshin Asadi 1 1 Department of Civil Engineering, University Putra Malaysia

More information

ANALYTICAL AND EXPERIMENTAL EVALUATION OF SPRING BACK EFFECTS IN A TYPICAL COLD ROLLED SHEET

ANALYTICAL AND EXPERIMENTAL EVALUATION OF SPRING BACK EFFECTS IN A TYPICAL COLD ROLLED SHEET International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 1, Jan-Feb 2016, pp. 119-130, Article ID: IJMET_07_01_013 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=1

More information

Topics. Introduction Gear schematics Types of gears Measuring gears

Topics. Introduction Gear schematics Types of gears Measuring gears Gear Measurement Topics Introduction Gear schematics Types of gears Measuring gears What is a gear? A gear is a wheel with teeth that mesh together with other gears. Gears change the : speed torque (rot.

More information

Diametral Pitch Gear Ratios Herringbone Gears Idler Gear Involute Module Pitch Pitch Diameter Pitch Point. GEARS-IDS Optional Gear Set Straight Edge

Diametral Pitch Gear Ratios Herringbone Gears Idler Gear Involute Module Pitch Pitch Diameter Pitch Point. GEARS-IDS Optional Gear Set Straight Edge 105 Webster St. Hanover Massachusetts 02339 Tel. 781 878 1512 Fax 781 878 6708 www.gearseds.com Spur Gear Terms and Concepts Description In order to design, build and discuss gear drive systems it is necessary

More information

! n. Problems and Solutions Section 1.5 (1.66 through 1.74)

! n. Problems and Solutions Section 1.5 (1.66 through 1.74) Problems and Solutions Section.5 (.66 through.74).66 A helicopter landing gear consists of a metal framework rather than the coil spring based suspension system used in a fixed-wing aircraft. The vibration

More information

Helical Gears K HG 1-20 R. Table of Contents. Catalog Number of KHK Stock Gears. Helical Gears. (Example) Direction of Helix (R) No.

Helical Gears K HG 1-20 R. Table of Contents. Catalog Number of KHK Stock Gears. Helical Gears. (Example) Direction of Helix (R) No. Table of Contents Special Characteristics, Points of Caution in Selecting and Using... page 130 KHG Ground... page 134 SH... page 144 Catalog Number of KHK Stock Gears The Catalog Number for KHK stock

More information

DYNAMIC ANALYSIS ON STEEL FIBRE

DYNAMIC ANALYSIS ON STEEL FIBRE International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, March-April 2016, pp. 179 184, Article ID: IJCIET_07_02_015 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2

More information

Machine Design II Prof. K.Gopinath & Prof. M.M.Mayuram. Module 2 - GEARS. Lecture 17 DESIGN OF GEARBOX

Machine Design II Prof. K.Gopinath & Prof. M.M.Mayuram. Module 2 - GEARS. Lecture 17 DESIGN OF GEARBOX Module 2 - GEARS Lecture 17 DESIGN OF GEARBOX Contents 17.1 Commercial gearboxes 17.2 Gearbox design. 17.1 COMMERCIAL GEARBOXES Various commercial gearbox designs are depicted in Fig. 17.1 to 17.10. These

More information

Modeling Mechanical Systems

Modeling Mechanical Systems chp3 1 Modeling Mechanical Systems Dr. Nhut Ho ME584 chp3 2 Agenda Idealized Modeling Elements Modeling Method and Examples Lagrange s Equation Case study: Feasibility Study of a Mobile Robot Design Matlab

More information

GEAROLOGY 2-1 SPUR GEARS SPUR GEARS

GEAROLOGY 2-1 SPUR GEARS SPUR GEARS GEAROLOGY 2-1 2 2-2 GEAROLOGY COMMON APPLICATIONS: Spur gears are used to Now that you ve been introduced to both Boston Gear and some of the basics of our Gearology course which we like to call Power

More information

ES240 Solid Mechanics Fall 2007. Stress field and momentum balance. Imagine the three-dimensional body again. At time t, the material particle ( x, y,

ES240 Solid Mechanics Fall 2007. Stress field and momentum balance. Imagine the three-dimensional body again. At time t, the material particle ( x, y, S40 Solid Mechanics Fall 007 Stress field and momentum balance. Imagine the three-dimensional bod again. At time t, the material particle,, ) is under a state of stress ij,,, force per unit volume b b,,,.

More information

Soil Dynamics Prof. Deepankar Choudhury Department of Civil Engineering Indian Institute of Technology, Bombay

Soil Dynamics Prof. Deepankar Choudhury Department of Civil Engineering Indian Institute of Technology, Bombay Soil Dynamics Prof. Deepankar Choudhury Department of Civil Engineering Indian Institute of Technology, Bombay Module - 2 Vibration Theory Lecture - 8 Forced Vibrations, Dynamic Magnification Factor Let

More information

Module 2- GEARS. Lecture 9 - SPUR GEAR DESIGN

Module 2- GEARS. Lecture 9 - SPUR GEAR DESIGN Module 2- GEARS Lecture 9 - SPUR GEAR DESIGN Contents 9.1 Problem 1 Analysis 9.2 Problem 2 Spur gear 9.1 PROBLEM 1 SPUR GEAR DESIGN In a conveyor system a step-down gear drive is used. The input pinion

More information

Mechanical Principles

Mechanical Principles Unit 4: Mechanical Principles Unit code: F/60/450 QCF level: 5 Credit value: 5 OUTCOME 3 POWER TRANSMISSION TUTORIAL BELT DRIVES 3 Power Transmission Belt drives: flat and v-section belts; limiting coefficient

More information

User orientated simulation strategy to analyse large drive trains in SIMPACK

User orientated simulation strategy to analyse large drive trains in SIMPACK User orientated simulation strategy to analyse large drive trains in SIMPACK SIMPACK User Meeting / Dipl.-Ing. Thomas Hähnel / Dipl.-Ing. Mathias Höfgen 21. / 22. November 2007 Content Motivation, state

More information

A Hardware/Software Centered Approach to the Elements of Machine Design Course At a Four Year School of ET

A Hardware/Software Centered Approach to the Elements of Machine Design Course At a Four Year School of ET Session #1566 A Hardware/Software Centered Approach to the Elements of Machine Design Course At a Four Year School of ET Howard A. Canistraro, Ph.D. Ward College of Technology University of Hartford Introduction:

More information

MECHANICS OF SOLIDS - BEAMS TUTORIAL TUTORIAL 4 - COMPLEMENTARY SHEAR STRESS

MECHANICS OF SOLIDS - BEAMS TUTORIAL TUTORIAL 4 - COMPLEMENTARY SHEAR STRESS MECHANICS OF SOLIDS - BEAMS TUTORIAL TUTORIAL 4 - COMPLEMENTARY SHEAR STRESS This the fourth and final tutorial on bending of beams. You should judge our progress b completing the self assessment exercises.

More information

DYNAMICAL ANALYSIS OF SILO SURFACE CLEANING ROBOT USING FINITE ELEMENT METHOD

DYNAMICAL ANALYSIS OF SILO SURFACE CLEANING ROBOT USING FINITE ELEMENT METHOD International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 1, Jan-Feb 2016, pp. 190-202, Article ID: IJMET_07_01_020 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=1

More information

Beam Deflections: Second-Order Method

Beam Deflections: Second-Order Method 10 eam Deflections: Second-Order Method 10 1 Lecture 10: EM DEFLECTIONS: SECOND-ORDER METHOD TLE OF CONTENTS Page 10.1 Introduction..................... 10 3 10.2 What is a eam?................... 10 3

More information

International Journal of Engineering Research-Online A Peer Reviewed International Journal Articles available online http://www.ijoer.

International Journal of Engineering Research-Online A Peer Reviewed International Journal Articles available online http://www.ijoer. RESEARCH ARTICLE ISSN: 2321-7758 DESIGN AND DEVELOPMENT OF A DYNAMOMETER FOR MEASURING THRUST AND TORQUE IN DRILLING APPLICATION SREEJITH C 1,MANU RAJ K R 2 1 PG Scholar, M.Tech Machine Design, Nehru College

More information

Introduction to Plates

Introduction to Plates Chapter Introduction to Plates Plate is a flat surface having considerabl large dimensions as compared to its thickness. Common eamples of plates in civil engineering are. Slab in a building.. Base slab

More information

CHAP 4 FINITE ELEMENT ANALYSIS OF BEAMS AND FRAMES INTRODUCTION

CHAP 4 FINITE ELEMENT ANALYSIS OF BEAMS AND FRAMES INTRODUCTION CHAP FINITE EEMENT ANAYSIS OF BEAMS AND FRAMES INTRODUCTION We learned Direct Stiffness Method in Chapter imited to simple elements such as D bars we will learn Energ Method to build beam finite element

More information

Vibrations of a Free-Free Beam

Vibrations of a Free-Free Beam Vibrations of a Free-Free Beam he bending vibrations of a beam are described by the following equation: y EI x y t 4 2 + ρ A 4 2 (1) y x L E, I, ρ, A are respectively the Young Modulus, second moment of

More information

Integrating ADAMS Software into an Upper Division Mechanical Design and Analysis Course

Integrating ADAMS Software into an Upper Division Mechanical Design and Analysis Course Integrating ADAMS Software into an Upper Division Mechanical Design and Analysis Course Xi Wu, Assistant Professor, California Polytechnic State University Dewen Kong, Professor, Jilin University Jim Meagher,

More information

Design of a Universal Robot End-effector for Straight-line Pick-up Motion

Design of a Universal Robot End-effector for Straight-line Pick-up Motion Session Design of a Universal Robot End-effector for Straight-line Pick-up Motion Gene Y. Liao Gregory J. Koshurba Wayne State University Abstract This paper describes a capstone design project in developing

More information

Gear Engineering Data. Spur Gear Gear Formulas Drive Selection Horsepower and Torque Tables

Gear Engineering Data. Spur Gear Gear Formulas Drive Selection Horsepower and Torque Tables Engineering Gear Engineering Data Spur Gear Gear Formulas Drive Selection Horsepower and Torque Tables G-79 Gear Selection Stock Spur Gear Drive Selection When designing a stock gear drive using the horsepower

More information

DRAFTING MANUAL. Gears (Bevel and Hypoid) Drafting Practice

DRAFTING MANUAL. Gears (Bevel and Hypoid) Drafting Practice Page 1 1.0 General This section provides the basis for uniformity in engineering gears drawings and their technical data for gears with intersecting axes (bevel gears), and nonparallel, nonintersecting

More information

The elements used in commercial codes can be classified in two basic categories:

The elements used in commercial codes can be classified in two basic categories: CHAPTER 3 Truss Element 3.1 Introduction The single most important concept in understanding FEA, is the basic understanding of various finite elements that we employ in an analysis. Elements are used for

More information

PREDICTION OF MACHINE TOOL SPINDLE S DYNAMICS BASED ON A THERMO-MECHANICAL MODEL

PREDICTION OF MACHINE TOOL SPINDLE S DYNAMICS BASED ON A THERMO-MECHANICAL MODEL PREDICTION OF MACHINE TOOL SPINDLE S DYNAMICS BASED ON A THERMO-MECHANICAL MODEL P. Kolar, T. Holkup Research Center for Manufacturing Technology, Faculty of Mechanical Engineering, CTU in Prague, Czech

More information

Unit - 6 Vibrations of Two Degree of Freedom Systems

Unit - 6 Vibrations of Two Degree of Freedom Systems Unit - 6 Vibrations of Two Degree of Freedom Systems Dr. T. Jagadish. Professor for Post Graduation, Department of Mechanical Engineering, Bangalore Institute of Technology, Bangalore Introduction A two

More information

Manufacturing Equipment Modeling

Manufacturing Equipment Modeling QUESTION 1 For a linear axis actuated by an electric motor complete the following: a. Derive a differential equation for the linear axis velocity assuming viscous friction acts on the DC motor shaft, leadscrew,

More information

Finite Element Formulation for Beams - Handout 2 -

Finite Element Formulation for Beams - Handout 2 - Finite Element Formulation for Beams - Handout 2 - Dr Fehmi Cirak (fc286@) Completed Version Review of Euler-Bernoulli Beam Physical beam model midline Beam domain in three-dimensions Midline, also called

More information

Physics 41 HW Set 1 Chapter 15

Physics 41 HW Set 1 Chapter 15 Physics 4 HW Set Chapter 5 Serway 8 th OC:, 4, 7 CQ: 4, 8 P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59, 67, 74 OC CQ P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59,

More information

FXA 2008. UNIT G484 Module 2 4.2.3 Simple Harmonic Oscillations 11. frequency of the applied = natural frequency of the

FXA 2008. UNIT G484 Module 2 4.2.3 Simple Harmonic Oscillations 11. frequency of the applied = natural frequency of the 11 FORCED OSCILLATIONS AND RESONANCE POINTER INSTRUMENTS Analogue ammeter and voltmeters, have CRITICAL DAMPING so as to allow the needle pointer to reach its correct position on the scale after a single

More information

New approaches in Eurocode 3 efficient global structural design

New approaches in Eurocode 3 efficient global structural design New approaches in Eurocode 3 efficient global structural design Part 1: 3D model based analysis using general beam-column FEM Ferenc Papp* and József Szalai ** * Associate Professor, Department of Structural

More information

Crowning Techniques in Aerospace Actuation Gearing

Crowning Techniques in Aerospace Actuation Gearing Crowning Techniques in Aerospace Actuation Gearing Anngwo Wang and Lotfi El-Bayoumy (Copyright 2009 by ASME Proceedings of the ASME 2009 International Design Engineering Technical Conferences & Computers

More information

A Study on Intelligent Video Security Surveillance System with Active Tracking Technology in Multiple Objects Environment

A Study on Intelligent Video Security Surveillance System with Active Tracking Technology in Multiple Objects Environment Vol. 6, No., April, 01 A Stud on Intelligent Video Securit Surveillance Sstem with Active Tracking Technolog in Multiple Objects Environment Juhun Park 1, Jeonghun Choi 1, 1, Moungheum Park, Sukwon Hong

More information

Bending Stress in Beams

Bending Stress in Beams 936-73-600 Bending Stress in Beams Derive a relationship for bending stress in a beam: Basic Assumptions:. Deflections are very small with respect to the depth of the beam. Plane sections before bending

More information

Clutch and Operation as a System

Clutch and Operation as a System Clutch and Operation as a System Dipl.-Ing. Matthias Zink Dipl.-Ing. René Shead Introduction New technologies and increasing demands for comfort, require increased total system thinking, also in the area

More information

Introduction to Mechanical Behavior of Biological Materials

Introduction to Mechanical Behavior of Biological Materials Introduction to Mechanical Behavior of Biological Materials Ozkaya and Nordin Chapter 7, pages 127-151 Chapter 8, pages 173-194 Outline Modes of loading Internal forces and moments Stiffness of a structure

More information

Math, Trigonometry and Vectors. Geometry. Trig Definitions. sin(θ) = opp hyp. cos(θ) = adj hyp. tan(θ) = opp adj. Here's a familiar image.

Math, Trigonometry and Vectors. Geometry. Trig Definitions. sin(θ) = opp hyp. cos(θ) = adj hyp. tan(θ) = opp adj. Here's a familiar image. Math, Trigonometr and Vectors Geometr Trig Definitions Here's a familiar image. To make predictive models of the phsical world, we'll need to make visualizations, which we can then turn into analtical

More information

MECHANICAL PRINCIPLES OUTCOME 4 MECHANICAL POWER TRANSMISSION TUTORIAL 1 SIMPLE MACHINES

MECHANICAL PRINCIPLES OUTCOME 4 MECHANICAL POWER TRANSMISSION TUTORIAL 1 SIMPLE MACHINES MECHANICAL PRINCIPLES OUTCOME 4 MECHANICAL POWER TRANSMISSION TUTORIAL 1 SIMPLE MACHINES Simple machines: lifting devices e.g. lever systems, inclined plane, screw jack, pulley blocks, Weston differential

More information

sin(θ) = opp hyp cos(θ) = adj hyp tan(θ) = opp adj

sin(θ) = opp hyp cos(θ) = adj hyp tan(θ) = opp adj Math, Trigonometr and Vectors Geometr 33º What is the angle equal to? a) α = 7 b) α = 57 c) α = 33 d) α = 90 e) α cannot be determined α Trig Definitions Here's a familiar image. To make predictive models

More information

Belt Drives and Chain Drives. Power Train. Power Train

Belt Drives and Chain Drives. Power Train. Power Train Belt Drives and Chain Drives Material comes for Mott, 2002 and Kurtz, 1999 Power Train A power train transmits power from an engine or motor to the load. Some of the most common power trains include: Flexible

More information

Precise Modelling of a Gantry Crane System Including Friction, 3D Angular Swing and Hoisting Cable Flexibility

Precise Modelling of a Gantry Crane System Including Friction, 3D Angular Swing and Hoisting Cable Flexibility Precise Modelling of a Gantry Crane System Including Friction, 3D Angular Swing and Hoisting Cable Flexibility Renuka V. S. & Abraham T Mathew Electrical Engineering Department, NIT Calicut E-mail : renuka_mee@nitc.ac.in,

More information

Laterally Loaded Piles

Laterally Loaded Piles Laterally Loaded Piles 1 Soil Response Modelled by p-y Curves In order to properly analyze a laterally loaded pile foundation in soil/rock, a nonlinear relationship needs to be applied that provides soil

More information

High Gear Ratio Epicyclic Drives Analysis

High Gear Ratio Epicyclic Drives Analysis technical High Gear Ratio Epicyclic Drives Analysis Dr. Alexander Kapelevich It has been documented that epicyclic gear stages provide high load capacity and compactness to gear drives. This paper will

More information

Gear Reference Guide

Gear Reference Guide W.M. Berg manufactures several styles of gears. Each gear has and serves its own particular application. Listed below are brief descriptions and application notes for the variety of available styles. Further

More information

Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope

Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope Rakesh Sidharthan 1 Gnanavel B K 2 Assistant professor Mechanical, Department Professor, Mechanical Department, Gojan engineering college,

More information

Section 16: Neutral Axis and Parallel Axis Theorem 16-1

Section 16: Neutral Axis and Parallel Axis Theorem 16-1 Section 16: Neutral Axis and Parallel Axis Theorem 16-1 Geometry of deformation We will consider the deformation of an ideal, isotropic prismatic beam the cross section is symmetric about y-axis All parts

More information

Course in. Nonlinear FEM

Course in. Nonlinear FEM Course in Introduction Outline Lecture 1 Introduction Lecture 2 Geometric nonlinearity Lecture 3 Material nonlinearity Lecture 4 Material nonlinearity continued Lecture 5 Geometric nonlinearity revisited

More information

SYNCHRONOUS MACHINES

SYNCHRONOUS MACHINES SYNCHRONOUS MACHINES The geometry of a synchronous machine is quite similar to that of the induction machine. The stator core and windings of a three-phase synchronous machine are practically identical

More information

Development of optimal tooth flank in spiral bevel gears by contact analysis and measurement

Development of optimal tooth flank in spiral bevel gears by contact analysis and measurement Technical Paper Development of optimal tooth flank in spiral bevel gears by contact analysis and measurement Tetsu Nagata 1) Hayato Shichino 1) Yukio Tamura 1) Hitoshi Kawai 2) Yoriko Ohta 3) Masaharu

More information

Fric-3. force F k and the equation (4.2) may be used. The sense of F k is opposite

Fric-3. force F k and the equation (4.2) may be used. The sense of F k is opposite 4. FRICTION 4.1 Laws of friction. We know from experience that when two bodies tend to slide on each other a resisting force appears at their surface of contact which opposes their relative motion. The

More information

Drawing an Approximate Representation of an Involute Spur Gear Tooth Project Description

Drawing an Approximate Representation of an Involute Spur Gear Tooth Project Description Drawing an Approximate Representation of an Involute Spur Gear Tooth Project Description Create a solid model and a working drawing of the 24 pitch gears specified below. It is only necessary to create

More information

Slide 10.1. Basic system Models

Slide 10.1. Basic system Models Slide 10.1 Basic system Models Objectives: Devise Models from basic building blocks of mechanical, electrical, fluid and thermal systems Recognize analogies between mechanical, electrical, fluid and thermal

More information

In 1905, encouraged by President Theodore

In 1905, encouraged by President Theodore 8. Measurement rack and Field In 1905, encouraged by President heodore Roosevelt, the Intercollegiate Athletic Association of the United States was founded in New York City. heir original purpose was to

More information

INTERACTION BETWEEN MOVING VEHICLES AND RAILWAY TRACK AT HIGH SPEED

INTERACTION BETWEEN MOVING VEHICLES AND RAILWAY TRACK AT HIGH SPEED INTERACTION BETWEEN MOVING VEHICLES AND RAILWAY TRACK AT HIGH SPEED Prof.Dr.Ir. C. Esveld Professor of Railway Engineering TU Delft, The Netherlands Dr.Ir. A.W.M. Kok Associate Professor of Railway Engineering

More information

PLQE. The base of the economy gearboxes with square output flange. Economy Line. Formerly PLE

PLQE. The base of the economy gearboxes with square output flange. Economy Line. Formerly PLE 20 ormerly PL The base of the economy gearboxes with square output flange The PL series with square output flange. A powerful alternative for additional higher radial and axial loads. Low backlash High

More information

A Simulation Study on Joint Velocities and End Effector Deflection of a Flexible Two Degree Freedom Composite Robotic Arm

A Simulation Study on Joint Velocities and End Effector Deflection of a Flexible Two Degree Freedom Composite Robotic Arm International Journal of Advanced Mechatronics and Robotics (IJAMR) Vol. 3, No. 1, January-June 011; pp. 9-0; International Science Press, ISSN: 0975-6108 A Simulation Study on Joint Velocities and End

More information

Chapter 2 Lead Screws

Chapter 2 Lead Screws Chapter 2 Lead Screws 2.1 Screw Threads The screw is the last machine to joint the ranks of the six fundamental simple machines. It has a history that stretches back to the ancient times. A very interesting

More information

STATIC STIFFNESS ANALYSIS OF HIGH FREQUENCY MILLING SPINDLE

STATIC STIFFNESS ANALYSIS OF HIGH FREQUENCY MILLING SPINDLE STATIC STIFFNESS ANALYSIS OF HIGH FREQUENCY MILLING SPINDLE Anandkumar Telang Assistant.Professor, Mechanical Engg Department, BKIT, Bhalki, Karnataka, India Abstract Compared with conventional spindles,

More information

Systematic Optimisation of Gearboxes for Hybrid and Electric Vehicles in Terms of Efficiency, NVH and Durability

Systematic Optimisation of Gearboxes for Hybrid and Electric Vehicles in Terms of Efficiency, NVH and Durability Systematic Optimisation of Gearboxes for Hybrid and Electric Vehicles in Terms of Efficiency, NVH and Durability Dr. Artur Grunwald GKN Driveline 1 Content of presentation Scope and introduction Gearbox

More information

Design Analysis and Review of Stresses at a Point

Design Analysis and Review of Stresses at a Point Design Analysis and Review of Stresses at a Point Need for Design Analysis: To verify the design for safety of the structure and the users. To understand the results obtained in FEA, it is necessary to

More information

SOLID MECHANICS DYNAMICS TUTORIAL PULLEY DRIVE SYSTEMS. This work covers elements of the syllabus for the Edexcel module HNC/D Mechanical Principles.

SOLID MECHANICS DYNAMICS TUTORIAL PULLEY DRIVE SYSTEMS. This work covers elements of the syllabus for the Edexcel module HNC/D Mechanical Principles. SOLID MECHANICS DYNAMICS TUTORIAL PULLEY DRIVE SYSTEMS This work covers elements of the syllabus for the Edexcel module HNC/D Mechanical Principles. On completion of this tutorial you should be able to

More information

DYNAMIC RESPONSE OF VEHICLE-TRACK COUPLING SYSTEM WITH AN INSULATED RAIL JOINT

DYNAMIC RESPONSE OF VEHICLE-TRACK COUPLING SYSTEM WITH AN INSULATED RAIL JOINT 11 th International Conference on Vibration Problems Z. Dimitrovová et al. (eds.) Lisbon, Portugal, 9-12 September 2013 DYNAMIC RESPONSE OF VEHICLE-TRACK COUPLING SYSTEM WITH AN INSULATED RAIL JOINT Ilaria

More information

Vehicle-Bridge Interaction Dynamics

Vehicle-Bridge Interaction Dynamics Vehicle-Bridge Interaction Dynamics With Applications to High-Speed Railways Y. B. Yang National Taiwan University, Taiwan J. D. Yau Tamkang University, Taiwan Y. S. Wu Sinotech Engineering Consultants,

More information

ME 343: Mechanical Design-3

ME 343: Mechanical Design-3 ME 343: Mechanical Design-3 Design of Shaft (continue) Dr. Aly Mousaad Aly Department of Mechanical Engineering Faculty of Engineering, Alexandria University Objectives At the end of this lesson, we should

More information

The simulation of machine tools can be divided into two stages. In the first stage the mechanical behavior of a machine tool is simulated with FEM

The simulation of machine tools can be divided into two stages. In the first stage the mechanical behavior of a machine tool is simulated with FEM 1 The simulation of machine tools can be divided into two stages. In the first stage the mechanical behavior of a machine tool is simulated with FEM tools. The approach to this simulation is different

More information

Nonlinear analysis and form-finding in GSA Training Course

Nonlinear analysis and form-finding in GSA Training Course Nonlinear analysis and form-finding in GSA Training Course Non-linear analysis and form-finding in GSA 1 of 47 Oasys Ltd Non-linear analysis and form-finding in GSA 2 of 47 Using the GSA GsRelax Solver

More information

Back to Elements - Tetrahedra vs. Hexahedra

Back to Elements - Tetrahedra vs. Hexahedra Back to Elements - Tetrahedra vs. Hexahedra Erke Wang, Thomas Nelson, Rainer Rauch CAD-FEM GmbH, Munich, Germany Abstract This paper presents some analytical results and some test results for different

More information

Highly flexible couplings

Highly flexible couplings Construction and operation 8.03.00 Instructions for installation 8.03.00 Types of stress 8.04.00 Diagrams for static deformation of the coupling ring 8.05.00 Coupling size 8.07.00 Examples of combinations

More information

Hidetsugu KURODA 1, Fumiaki ARIMA 2, Kensuke BABA 3 And Yutaka INOUE 4 SUMMARY

Hidetsugu KURODA 1, Fumiaki ARIMA 2, Kensuke BABA 3 And Yutaka INOUE 4 SUMMARY PRINCIPLES AND CHARACTERISTICS OF VISCOUS DAMPING DEVICES (GYRO-DAMPER), THE DAMPING FORCES WHICH ARE HIGHLY AMPLIFIED BY CONVERTING THE AXIAL MOVEMENT TO ROTARY ONE 0588 Hidetsugu KURODA 1, Fumiaki ARIMA,

More information

Finite Element Formulation for Plates - Handout 3 -

Finite Element Formulation for Plates - Handout 3 - Finite Element Formulation for Plates - Handout 3 - Dr Fehmi Cirak (fc286@) Completed Version Definitions A plate is a three dimensional solid body with one of the plate dimensions much smaller than the

More information

Module 7 (Lecture 24 to 28) RETAINING WALLS

Module 7 (Lecture 24 to 28) RETAINING WALLS Module 7 (Lecture 24 to 28) RETAINING WALLS Topics 24.1 INTRODUCTION 24.2 GRAVITY AND CANTILEVER WALLS 24.3 PROPORTIONING RETAINING WALLS 24.4 APPLICATION OF LATERAL EARTH PRESSURE THEORIES TO DESIGN 24.5

More information

Influence of Crash Box on Automotive Crashworthiness

Influence of Crash Box on Automotive Crashworthiness Influence of Crash Box on Automotive Crashworthiness MIHAIL DANIEL IOZSA, DAN ALEXANDRU MICU, GHEORGHE FRĂȚILĂ, FLORIN- CRISTIAN ANTONACHE University POLITEHNICA of Bucharest 313 Splaiul Independentei

More information

ENS 07 Paris, France, 3-4 December 2007

ENS 07 Paris, France, 3-4 December 2007 ENS 7 Paris, France, 3-4 December 7 FRICTION DRIVE SIMULATION OF A SURFACE ACOUSTIC WAVE MOTOR BY NANO VIBRATION Minoru Kuribayashi Kurosawa, Takashi Shigematsu Tokyou Institute of Technology, Yokohama

More information

Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m

Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of

More information

SCREW THREADS C H A P T E R 17

SCREW THREADS C H A P T E R 17 C H A P T E R 17 SCREW THREADS Screw threads are of prime importance in machine drawing. It is a functional element used as temporary fasteners such as bolt, stud, nut and screw etc. These are constructed

More information

APPLIED MATHEMATICS ADVANCED LEVEL

APPLIED MATHEMATICS ADVANCED LEVEL APPLIED MATHEMATICS ADVANCED LEVEL INTRODUCTION This syllabus serves to examine candidates knowledge and skills in introductory mathematical and statistical methods, and their applications. For applications

More information

Direct Gear Design for Spur and Helical Involute Gears

Direct Gear Design for Spur and Helical Involute Gears Direct Gear Design for Spur and Helical Involute Gears Alexander L. Kapelevich and Roderick E. Kleiss This paper presents an alternative method of analysis and design of spur and helical involute gears.

More information

Dynamics of Offshore Wind Turbines

Dynamics of Offshore Wind Turbines Proceedings of the Twenty-first (2011) International Offshore and Polar Engineering Conference Maui, Hawaii, USA, June 19-24, 2011 Copyright 2011 by the International Society of Offshore and Polar Engineers

More information