x 2 + y 2 = 25 and try to solve for y in terms of x, we get 2 new equations y = 25 x 2 and y = 25 x 2.


 Homer Harmon
 1 years ago
 Views:
Transcription
1 Lecture : Implicit differentiation For more on the graphs of functions vs. the graphs of general equations see Graphs of Functions under Algebra/Precalculus Review on the class webpage. For more on graphing general equations, see Coordinate Geometry. The graph of an equation relating variables x and y is just the set of all points in the plane which satisfy the equation. We saw in Lecture that in some equations relating x and y, we cannot solve for y uniquely in terms of x. For example if we take the equation x + y = 5 and try to solve for y in terms of x, we get new equations y = 5 x and y = 5 x. The graph of the equation x + y = 5 is a circle centered at the origin (0, 0) with radius 5 and the above two equations describe the upper and lower halves of the circle respectively. 6 x + y = f( x) = 5 x g( x) = 5 x 6 6 Now suppose we want to find the equation of the tangent to the circle at the point where x = and y = 3. One method of solving the problem would be to. Solve for y in terms of x, (getting equations y = 5 x and y = 5 x.). Decide which of these parts of the curve pass through the relevant point. (y = 5 x )
2 3. Take the derivative of y with respect to x for the equation describing that part of the curve (y = / x 5 x ). Calculate the value of y when x = giving us the slope of the tangent (y = /3) 5. Find the equation of the line with that slope through the point (, 3). (y 3) = /3(x ). The above example was not difficult. However to apply the same method to find the tangent to the curve: (x + y ) = 5(x y ) when x = 3 and y = would be much more difficult. (See Notes at the end) Implicit Differentiation There is a much easier method (called implicit differentiation) for finding such tangents thanks to the chain rule: If y is defined implicitly as a function of x by an equation relating x and y, we treat y as a differentiable function of x and proceed as follows: Implicit Differentiation. Differentiate both sides of the equation with respect to x, treating y as a differentiable function of x.. Collect the terms with y (or dx ) on one side of the equation and solve for y. Example Find the equation of a tangent to the circle x + y = 5 when x = and y = 3. Note that we do not have to solve for y in terms of x and the calculations involved are much less wearisome. In particular it applies to curves where solving for y in terms of x is very difficult. Both approaches for the example given below are compared at the end of the notes: Example when x = 3 and y =. Find the equation of a tangent line to the curve described by the equation (x + y ) = 5(x y )
3 When using implicit differentiation it is important to keep the following in mind: dx = y, dx = dxy yy, dx = y + xy, where the middle identity follows from the chain rule and the one on the right follows from the product rule. Example Find dx = y using implicit differentiation if y 5 + xy =. (Please attempt to solve this before looking at the solution on the next page) Example Find y (or d y ) using implicit differentiation if x + y =. dx (Please attempt to solve this before looking at the solution on the next page) 3
4 Solving for, we bring the terms with dx dx multiplying both sides by y, we get To calculate y = d ( dx dx ), we have y = d ( y ) = dx x d dx ( x + y) = d dx x / + y / dx = 0 to the left and all other terms to the right: y dx = x y y dx = x =. x [ x d( y) y d( x) dx dx ( x) ] = [ x[ y dx ] y[ From above, we know that dx = y x. Substituting that into the expression for y, we get y = [ x[ y [ y x ]] y[ After cancellation and factoring / out of each term, we get y = x [ y x ] Example Find dx by implicit differentiation if y sin(x ) = x sin(y ). (Please attempt to solve this before looking at the solution on the next page) x x ]. ]. x x ] ]
5 Differentiating both sides with respect to x, we get Using the product rule on both sides, we get Using the chain rule, we get Using the chain rule again, we get d dx (y sin(x )) = d dx (x sin(y )) sin(x ) dx + y d(sin(x )) dx To solve for, we bring all of the terms with dx dx Factoring dx = sin(y ) dx dx + )) xd(sin(y dx sin(x ) dx + y cos(x ) dx dx = sin(y ) + x cos(y ) dx sin(x ) dx + y cos(x )[x] = sin(y ) + x cos(y )[y] dx. to the left hand side to get sin(x ) dx xy cos(y ) dx = sin(y ) xy cos(x ) out of every term on the left hand side, we get dx [sin(x ) xy cos(y )] = sin(y ) xy cos(x ). To solve for dx, we divide both sides by sin(x ) xy cos(y ), to get dx = sin(y ) xy cos(x ) sin(x ) xy cos(y ). 5
6 Example The following curve is called the bouncing wagon. At what values of x does the graph have horizontal tangents? See full solution on next page. (Requires True Grit ). 6
7 We find y and set it equal to 0. y 3 + y y 5 = x x 3 + x d dx [y3 + y y 5 ] = d dx [x x 3 + x ] 6y y + yy 5y y = x 3 6x + x y [6x + y 5y ] = x 3 6x + x y = x3 6x + x 6x + y 5y. When y = 0, we have the numerator must equal 0 and x 3 6x + x = 0 or x(x 6x + ) = 0 so x = 0 or x = ± 6 ± 36 () 8 We have horizontal tangents at x = 0, x = and x =. = 6 ± 8 = 6 ± 8 = or. 7
8 Example (Not a good approach) Find the tangent to the curve: (x + y ) = 5(x y ) when x = 3 and y =. This curve describes a lemniscate, the graph is shown below. To apply our method from page of today s notes (wrong way to go), we solve for y in terms of x. we look at the equation as a quadratic equation in y treating the x s as constants, We get equations for y: y = ± (y ) + (x + 5)y + (x 5x ) = 0. (x + 5) ± (x + 5) 8(x 5x ). Only two have graphs, since we cannot take the square root of negative numbers. The graphs are shown below. This is in fact an easy example, solving quartic polynomials (in y) is in general is difficult but there is a formula. With powers of 5 and above, there is no general formula. 8
9 Example Find the equation of a tangent line to the curve described by the equation when x = 3 and y =. (x + y ) = 5(x y ) d dx [(x + y ) ] = d dx [5(x y )] (x + y )(x + yy ) = 5(x yy ) 8(x + y )x + 8(x + y )yy = 50x 50yy 8(x + y )x 50x = 8(x + y )yy 50yy [8(x + y ) 50]x = [8(x + y ) + 50]yy [8(x + y ) 50]x [8(x + y ) + 50]y] = y When x = 3 and y =, we get [8(0) 50]3 [8(0) + 50]] = y or = 9 3 = y The equation of the tangent at this point is (y ) = 9 (x 3). 3 9
1 Lecture 19: Implicit differentiation
Lecture 9: Implicit differentiation. Outline The technique of implicit differentiation Tangent lines to a circle Examples.2 Implicit differentiation Suppose we have two quantities or variables x and y
More informationFirst Order NonLinear Equations
First Order NonLinear Equations We will briefly consider nonlinear equations. In general, these may be much more difficult to solve than linear equations, but in some cases we will still be able to solve
More informationx 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1
Implicit Functions Defining Implicit Functions Up until now in this course, we have only talked about functions, which assign to every real number x in their domain exactly one real number f(x). The graphs
More informationSection 12.6: Directional Derivatives and the Gradient Vector
Section 26: Directional Derivatives and the Gradient Vector Recall that if f is a differentiable function of x and y and z = f(x, y), then the partial derivatives f x (x, y) and f y (x, y) give the rate
More informationMATH SOLUTIONS TO PRACTICE FINAL EXAM. (x 2)(x + 2) (x 2)(x 3) = x + 2. x 2 x 2 5x + 6 = = 4.
MATH 55 SOLUTIONS TO PRACTICE FINAL EXAM x 2 4.Compute x 2 x 2 5x + 6. When x 2, So x 2 4 x 2 5x + 6 = (x 2)(x + 2) (x 2)(x 3) = x + 2 x 3. x 2 4 x 2 x 2 5x + 6 = 2 + 2 2 3 = 4. x 2 9 2. Compute x + sin
More informationTest # 2 Review. function y sin6x such that dx. per second. Find dy. f(x) 3x 2 6x 8 using the limiting process. dt = 2 centimeters. dt when x 7.
Name: Class: Date: ID: A Test # 2 Review Short Answer 1. Find the slope m of the line tangent to the graph of the function g( x) 9 x 2 at the point 4, 7ˆ. 2. A man 6 feet tall walks at a rate of 2 ft per
More informationTechniques of Differentiation Selected Problems. Matthew Staley
Techniques of Differentiation Selected Problems Matthew Staley September 10, 011 Techniques of Differentiation: Selected Problems 1. Find /dx: (a) y =4x 7 dx = d dx (4x7 ) = (7)4x 6 = 8x 6 (b) y = 1 (x4
More informationCalculus with Analytic Geometry I Exam 5Take Home Part Due: Monday, October 3, 2011; 12PM
NAME: Calculus with Analytic Geometry I Exam 5Take Home Part Due: Monday, October 3, 2011; 12PM INSTRUCTIONS. As usual, show work where appropriate. As usual, use equal signs properly, write in full sentences,
More informationPROBLEM SET. Practice Problems for Exam #2. Math 2350, Fall Nov. 7, 2004 Corrected Nov. 10 ANSWERS
PROBLEM SET Practice Problems for Exam #2 Math 2350, Fall 2004 Nov. 7, 2004 Corrected Nov. 10 ANSWERS i Problem 1. Consider the function f(x, y) = xy 2 sin(x 2 y). Find the partial derivatives f x, f y,
More informationaxis axis. axis. at point.
Chapter 5 Tangent Lines Sometimes, a concept can make a lot of sense to us visually, but when we try to do some explicit calculations we are quickly humbled We are going to illustrate this sort of thing
More informationImplicit Differentiation
Implicit Differentiation Sometimes functions are given not in the form y = f(x) but in a more complicated form in which it is difficult or impossible to express y explicitly in terms of x. Such functions
More informationAnalytic Geometry Section 26: Circles
Analytic Geometry Section 26: Circles Objective: To find equations of circles and to find the coordinates of any points where circles and lines meet. Page 81 Definition of a Circle A circle is the set
More informationCool Math from Cool Graphs Mark Howell Gonzaga College High School Washington, DC
Cool Math from Cool Graphs Mark Howell Gonzaga College High School Washington, DC mhowell@gonzaga.org It has been more than 5 years since handheld graphing calculators became available to students and
More informationSample Problems. Practice Problems
Lecture Notes Circles  Part page Sample Problems. Find an equation for the circle centered at (; ) with radius r = units.. Graph the equation + + = ( ).. Consider the circle ( ) + ( + ) =. Find all points
More informationThe composition g f of the functions f and g is the function (g f)(x) = g(f(x)). This means, "do the function f to x, then do g to the result.
30 5.6 The chain rule The composition g f of the functions f and g is the function (g f)(x) = g(f(x)). This means, "do the function f to x, then do g to the result." Example. g(x) = x 2 and f(x) = (3x+1).
More informationChapter 11  Curve Sketching. Lecture 17. MATH10070  Introduction to Calculus. maths.ucd.ie/modules/math10070. Kevin Hutchinson.
Lecture 17 MATH10070  Introduction to Calculus maths.ucd.ie/modules/math10070 Kevin Hutchinson 28th October 2010 Z Chain Rule (I): If y = f (u) and u = g(x) dy dx = dy du du dx Z Chain rule (II): d dx
More informationPartial differentiation
Chapter 1 Partial differentiation Example 1.1 What is the maximal domain of the real function g defined b g(x) = x 2 + 3x + 2? : The ke point is that the square root onl gives a real result if the argument
More informationTons of Free Math Worksheets at:
Topic : Equations of Circles  Worksheet 1 form which has a center at (6, 4) and a radius of 5. x 28x+y 28y12=0 circle with a center at (4,4) and passes through the point (7, 3). center located at
More informationAnswer on Question #48173 Math Algebra
Answer on Question #48173 Math Algebra On graph paper, draw the axes, and the lines y = 12 and x = 6. The rectangle bounded by the axes and these two lines is a pool table with pockets in the four corners.
More informationThe Parabola and the Circle
The Parabola and the Circle The following are several terms and definitions to aid in the understanding of parabolas. 1.) Parabola  A parabola is the set of all points (h, k) that are equidistant from
More informationDifferential Equations
Differential Equations A differential equation is an equation that contains an unknown function and one or more of its derivatives. Here are some examples: y = 1, y = x, y = xy y + 2y + y = 0 d 3 y dx
More informationMath 150, Fall 2009 Solutions to Practice Final Exam [1] The equation of the tangent line to the curve. cosh y = x + sin y + cos y
Math 150, Fall 2009 Solutions to Practice Final Exam [1] The equation of the tangent line to the curve at the point (0, 0) is cosh y = x + sin y + cos y Answer : y = x Justification: The equation of the
More informationSection 4.7. More on Area
Difference Equations to Differential Equations Section 4.7 More on Area In Section 4. we motivated the definition of the definite integral with the idea of finding the area of a region in the plane. However,
More informationDefinition of Vertical Asymptote The line x = a is called a vertical asymptote of f (x) if at least one of the following is true: f (x) =
Vertical Asymptotes Definition of Vertical Asymptote The line x = a is called a vertical asymptote of f (x) if at least one of the following is true: lim f (x) = x a lim f (x) = lim x a lim f (x) = x a
More informationMicroeconomic Theory: Basic Math Concepts
Microeconomic Theory: Basic Math Concepts Matt Van Essen University of Alabama Van Essen (U of A) Basic Math Concepts 1 / 66 Basic Math Concepts In this lecture we will review some basic mathematical concepts
More informationSOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve
SOLUTIONS Problem. Find the critical points of the function f(x, y = 2x 3 3x 2 y 2x 2 3y 2 and determine their type i.e. local min/local max/saddle point. Are there any global min/max? Partial derivatives
More informationcorrectchoice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were:
Topic 1 2.1 mode MultipleSelection text How can we approximate the slope of the tangent line to f(x) at a point x = a? This is a Multiple selection question, so you need to check all of the answers that
More informationMATHEMATICS PAPER 2. Samir Daniels Mathematics Paper 2 Page 1
MATHEMATICS PAPER 2 Geometry... 2 Transformations... 3 Rotation Anticlockwise around the origin... 3 Trigonometry... 4 Graph shifts... 4 Reduction Formula... 4 Proving Identities... 6 Express in terms
More informationIncreasing for all. Convex for all. ( ) Increasing for all (remember that the log function is only defined for ). ( ) Concave for all.
1. Differentiation The first derivative of a function measures by how much changes in reaction to an infinitesimal shift in its argument. The largest the derivative (in absolute value), the faster is evolving.
More informationTangent line of a circle can be determined once the tangent point or the slope of the line is known.
Worksheet 7: Tangent Line of a Circle Name: Date: Tangent line of a circle can be determined once the tangent point or the slope of the line is known. Straight line: an overview General form : Ax + By
More informationCalculus I Review Solutions. f(x) = L means that, for every ɛ > 0, there is a δ > 0 such that
Calculus I Review Solutions. Finish the definition: (a) x a f(x) = L means that, for every ɛ > 0, there is a δ > 0 such that if 0 < x a < δ then f(x) L < ɛ (b) A function f is continuous at x = a if x
More information21114: Calculus for Architecture Homework #1 Solutions
21114: Calculus for Architecture Homework #1 Solutions November 9, 2004 Mike Picollelli 1.1 #26. Find the domain of g(u) = u + 4 u. Solution: We solve this by considering the terms in the sum separately:
More informationMain page. Given f ( x, y) = c we differentiate with respect to x so that
Further Calculus Implicit differentiation Parametric differentiation Related rates of change Small variations and linear approximations Stationary points Curve sketching  asymptotes Curve sketching the
More informationStep 1: Set the equation equal to zero if the function lacks. Step 2: Subtract the constant term from both sides:
In most situations the quadratic equations such as: x 2 + 8x + 5, can be solved (factored) through the quadratic formula if factoring it out seems too hard. However, some of these problems may be solved
More information1 8 solve quadratic equations by using the quadratic formula and the discriminate September with 16, 2016 notes.noteb
WARM UP 1. Write 15x 2 + 6x = 14x 2 12 in standard form. ANSWER x 2 + 6x +12 = 0 2. Evaluate b 2 4ac when a = 3, b = 6, and c = 5. ANSWER 24 3. A student is solving an equation by completing the square.
More informationDetermine If An Equation Represents a Function
Question : What is a linear function? The term linear function consists of two parts: linear and function. To understand what these terms mean together, we must first understand what a function is. The
More informationVI. Transcendental Functions. x = ln y. In general, two functions f, g are said to be inverse to each other when the
VI Transcendental Functions 6 Inverse Functions The functions e x and ln x are inverses to each other in the sense that the two statements y = e x, x = ln y are equivalent statements In general, two functions
More information2.5 Zeros of a Polynomial Functions
.5 Zeros of a Polynomial Functions Section.5 Notes Page 1 The first rule we will talk about is Descartes Rule of Signs, which can be used to determine the possible times a graph crosses the xaxis and
More informationMATH301 Real Analysis Tutorial Note #3
MATH301 Real Analysis Tutorial Note #3 More Differentiation in Vectorvalued function: Last time, we learn how to check the differentiability of a given vectorvalued function. Recall a function F: is
More information3. Double Integrals 3A. Double Integrals in Rectangular Coordinates
3. Double Integrals 3A. Double Integrals in ectangular Coordinates 3A1 Evaluate each of the following iterated integrals: c) 2 1 1 1 x 2 (6x 2 +2y)dydx b) x 2x 2 ydydx d) π/2 π 1 u (usint+tcosu)dtdu u2
More informationSept 20, 2011 MATH 140: Calculus I Tutorial 2. ln(x 2 1) = 3 x 2 1 = e 3 x = e 3 + 1
Sept, MATH 4: Calculus I Tutorial Solving Quadratics, Dividing Polynomials Problem Solve for x: ln(x ) =. ln(x ) = x = e x = e + Problem Solve for x: e x e x + =. Let y = e x. Then we have a quadratic
More informationYear 9 set 1 Mathematics notes, to accompany the 9H book.
Part 1: Year 9 set 1 Mathematics notes, to accompany the 9H book. equations 1. (p.1), 1.6 (p. 44), 4.6 (p.196) sequences 3. (p.115) Pupils use the Elmwood Press Essential Maths book by David Raymer (9H
More informationPractice Problems for Midterm 2
Practice Problems for Midterm () For each of the following, find and sketch the domain, find the range (unless otherwise indicated), and evaluate the function at the given point P : (a) f(x, y) = + 4 y,
More informationThe Derivative. Philippe B. Laval Kennesaw State University
The Derivative Philippe B. Laval Kennesaw State University Abstract This handout is a summary of the material students should know regarding the definition and computation of the derivative 1 Definition
More informationExample 1. Example 1 Plot the points whose polar coordinates are given by
Polar Coordinates A polar coordinate system, gives the coordinates of a point with reference to a point O and a half line or ray starting at the point O. We will look at polar coordinates for points
More informationCalculus C/Multivariate Calculus Advanced Placement G/T Essential Curriculum
Calculus C/Multivariate Calculus Advanced Placement G/T Essential Curriculum UNIT I: The Hyperbolic Functions basic calculus concepts, including techniques for curve sketching, exponential and logarithmic
More informationChapter Usual types of questions Tips What can go ugly 1 Algebraic Fractions
C3 Cheat Sheet Last Updated: 9 th Nov 2015 Chapter Usual types of questions Tips What can go ugly 1 Algebraic Fractions Almost always adding or subtracting fractions. Factorise everything in each fraction
More informationMathematics Chapter 8 and 10 Test Summary 10M2
Quadratic expressions and equations Expressions such as x 2 + 3x, a 2 7 and 4t 2 9t + 5 are called quadratic expressions because the highest power of the variable is 2. The word comes from the Latin quadratus
More informationCalculus Card Matching
Card Matching Card Matching A Game of Matching Functions Description Give each group of students a packet of cards. Students work as a group to match the cards, by thinking about their card and what information
More informationZero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P.
MATH 11011 FINDING REAL ZEROS KSU OF A POLYNOMIAL Definitions: Polynomial: is a function of the form P (x) = a n x n + a n 1 x n 1 + + a x + a 1 x + a 0. The numbers a n, a n 1,..., a 1, a 0 are called
More information1. Firstorder Ordinary Differential Equations
Advanced Engineering Mathematics 1. Firstorder ODEs 1 1. Firstorder Ordinary Differential Equations 1.1 Basic concept and ideas 1.2 Geometrical meaning of direction fields 1.3 Separable differential
More information6.6 The Inverse Trigonometric Functions. Outline
6.6 The Inverse Trigonometric Functions Tom Lewis Fall Semester 2015 Outline The inverse sine function The inverse cosine function The inverse tangent function The other inverse trig functions Miscellaneous
More informationChapter 1 Vectors, lines, and planes
Simplify the following vector expressions: 1. a (a + b). (a + b) (a b) 3. (a b) (a + b) Chapter 1 Vectors, lines, planes 1. Recall that cross product distributes over addition, so a (a + b) = a a + a b.
More informationSolutions to Practice Problems for Test 4
olutions to Practice Problems for Test 4 1. Let be the line segmentfrom the point (, 1, 1) to the point (,, 3). Evaluate the line integral y ds. Answer: First, we parametrize the line segment from (, 1,
More informationThe xintercepts of the graph are the xvalues for the points where the graph intersects the xaxis. A parabola may have one, two, or no xintercepts.
Chapter 101 Identify Quadratics and their graphs A parabola is the graph of a quadratic function. A quadratic function is a function that can be written in the form, f(x) = ax 2 + bx + c, a 0 or y = ax
More informationLimits and Continuity
Math 20C Multivariable Calculus Lecture Limits and Continuity Slide Review of Limit. Side limits and squeeze theorem. Continuous functions of 2,3 variables. Review: Limits Slide 2 Definition Given a function
More informationAlgebra 1 If you are okay with that placement then you have no further action to take Algebra 1 Portion of the Math Placement Test
Dear Parents, Based on the results of the High School Placement Test (HSPT), your child should forecast to take Algebra 1 this fall. If you are okay with that placement then you have no further action
More informationChapter 8. Quadratic Equations and Functions
Chapter 8. Quadratic Equations and Functions 8.1. Solve Quadratic Equations KYOTE Standards: CR 0; CA 11 In this section, we discuss solving quadratic equations by factoring, by using the square root property
More informationLesson 6 Applications of Differential Calculus
Lesson 6 Applications of Differential Calculus The line tangent to the graph of a function f at ( 0, f ( 0 is the line passing through the point whose slope is f ( 0. y = f ( The slopepoint equation of
More informationFormula Sheet. 1 The Three Defining Properties of Real Numbers
Formula Sheet 1 The Three Defining Properties of Real Numbers For all real numbers a, b and c, the following properties hold true. 1. The commutative property: a + b = b + a ab = ba. The associative property:
More information1.1 Solving a Linear Equation ax + b = 0
1.1 Solving a Linear Equation ax + b = 0 To solve an equation ax + b = 0 : (i) move b to the other side (subtract b from both sides) (ii) divide both sides by a Example: Solve x = 0 (i) x = 0 x = (ii)
More informationTechniques of Integration
CHPTER 7 Techniques of Integration 7.. Substitution Integration, unlike differentiation, is more of an artform than a collection of algorithms. Many problems in applied mathematics involve the integration
More informationLinear and quadratic Taylor polynomials for functions of several variables.
ams/econ 11b supplementary notes ucsc Linear quadratic Taylor polynomials for functions of several variables. c 010, Yonatan Katznelson Finding the extreme (minimum or maximum) values of a function, is
More informationNumerical methods for finding the roots of a function
Numerical methods for finding the roots of a function The roots of a function f (x) are defined as the values for which the value of the function becomes equal to zero. So, finding the roots of f (x) means
More informationEngineering Math II Spring 2015 Solutions for Class Activity #2
Engineering Math II Spring 15 Solutions for Class Activity # Problem 1. Find the area of the region bounded by the parabola y = x, the tangent line to this parabola at 1, 1), and the xaxis. Then find
More information( 1)2 + 2 2 + 2 2 = 9 = 3 We would like to make the length 6. The only vectors in the same direction as v are those
1.(6pts) Which of the following vectors has the same direction as v 1,, but has length 6? (a), 4, 4 (b),, (c) 4,, 4 (d), 4, 4 (e) 0, 6, 0 The length of v is given by ( 1) + + 9 3 We would like to make
More informationMath 124A October 06, We then use the chain rule to compute the terms of the equation (1) in these new variables.
Math 124A October 06, 2011 Viktor Grigoryan 5 Classification of second order linear PDEs Last time we derived the wave and heat equations from physical principles. We also saw that Laplace s equation describes
More informationDerive 5: The Easiest... Just Got Better!
Liverpool John Moores University, 115 July 000 Derive 5: The Easiest... Just Got Better! Michel Beaudin École de Technologie Supérieure, Canada Email; mbeaudin@seg.etsmtl.ca 1. Introduction Engineering
More informationActually, if you have a graphing calculator this technique can be used to find solutions to any equation, not just quadratics. All you need to do is
QUADRATIC EQUATIONS Definition ax 2 + bx + c = 0 a, b, c are constants (generally integers) Roots Synonyms: Solutions or Zeros Can have 0, 1, or 2 real roots Consider the graph of quadratic equations.
More informationArea Between Curves. The idea: the area between curves y = f(x) and y = g(x) (if the graph of f(x) is above that of g(x)) for a x b is given by
MATH 42, Fall 29 Examples from Section, Tue, 27 Oct 29 1 The First Hour Area Between Curves. The idea: the area between curves y = f(x) and y = g(x) (if the graph of f(x) is above that of g(x)) for a x
More informationSOLVING EQUATIONS. Firstly, we map what has been done to the variable (in this case, xx):
CONNECT: Algebra SOLVING EQUATIONS An Algebraic equation is where two algebraic expressions are equal to each other. Finding the solution of the equation means finding the value(s) of the variable which
More informationFunctions and Equations
Centre for Education in Mathematics and Computing Euclid eworkshop # Functions and Equations c 014 UNIVERSITY OF WATERLOO Euclid eworkshop # TOOLKIT Parabolas The quadratic f(x) = ax + bx + c (with a,b,c
More informationStudy Guide and Review  Chapter 8
Study Guide Review  Chapter 8 Solve each equation. Check your solutions. 41. 6x 2 = 12x Factor the trinomial using the Zero Product Property. 43. 3x 2 = 5x Factor the trinomial using the Zero Product
More informationGeometry Unit 7 (Textbook Chapter 9) Solving a right triangle: Find all missing sides and all missing angles
Geometry Unit 7 (Textbook Chapter 9) Name Objective 1: Right Triangles and Pythagorean Theorem In many geometry problems, it is necessary to find a missing side or a missing angle of a right triangle.
More informationSystems of Equations Involving Circles and Lines
Name: Systems of Equations Involving Circles and Lines Date: In this lesson, we will be solving two new types of Systems of Equations. Systems of Equations Involving a Circle and a Line Solving a system
More information1 Lecture: Applications of Taylor series
Lecture: Applications of Taylor series Approximating functions by Taylor polynomials. Using Taylor s theorem with remainder to give the accuracy of an approximation.. Introduction At several points in
More informationPreCalculus III Linear Functions and Quadratic Functions
Linear Functions.. 1 Finding Slope...1 Slope Intercept 1 Point Slope Form.1 Parallel Lines.. Line Parallel to a Given Line.. Perpendicular Lines. Line Perpendicular to a Given Line 3 Quadratic Equations.3
More information3.3. Parabola and parallel lines
3.3. Parabola and parallel lines This example is similar in spirit to the last, except this time the parabola is held fixed and a line of slope is moved parallel to itself. The objective is to see how
More informationBlue Pelican Calculus First Semester
Blue Pelican Calculus First Semester Teacher Version 1.01 Copyright 20112013 by Charles E. Cook; Refugio, Tx Edited by Jacob Cobb (All rights reserved) Calculus AP Syllabus (First Semester) Unit 1: Function
More informationAlgebra Revision Sheet Questions 2 and 3 of Paper 1
Algebra Revision Sheet Questions and of Paper Simple Equations Step Get rid of brackets or fractions Step Take the x s to one side of the equals sign and the numbers to the other (remember to change the
More informationCopyrighted Material. Chapter 1 DEGREE OF A CURVE
Chapter 1 DEGREE OF A CURVE Road Map The idea of degree is a fundamental concept, which will take us several chapters to explore in depth. We begin by explaining what an algebraic curve is, and offer two
More informationPrecalculus Workshop  Functions
Introduction to Functions A function f : D C is a rule that assigns to each element x in a set D exactly one element, called f(x), in a set C. D is called the domain of f. C is called the codomain of f.
More informationSample Problems. Lecture Notes Equations with Parameters page 1
Lecture Notes Equations with Parameters page Sample Problems. In each of the parametric equations given, nd the value of the parameter m so that the equation has exactly one real solution. a) x + mx m
More information(c) What values are the input of the function? (in other words, which axis?) A: The x, or horizontal access are the input values, or the domain.
Calculus Placement Exam Material For each function, graph the function by hand using point plotting. You must use a minimum of five points for each function. Plug in 0, positive and negative xvalues for
More informationStudy 2.6, p. 154 # 1 19, Goal: 1. Understand how variables change with respect to time. 2. Understand "with respect to".
Study 2.6, p. 154 # 1 19, 21 25 Goal: 1. Understand how variables change with respect to time. 2. Understand "with respect to". water drop ripples pour cement high rise @ 1:30 water drop ripples pour cement
More informationTable of Contents. Montessori Algebra for the Adolescent Michael J. Waski"
Table of Contents I. Introduction II. Chapter of Signed Numbers B. Introduction and Zero Sum Game C. Adding Signed Numbers D. Subtracting Signed Numbers 1. Subtracting Signed Numbers 2. Rewriting as Addition
More informationDerivatives: rules and applications (Stewart Ch. 3/4) The derivative f (x) of the function f(x):
Derivatives: rules and applications (Stewart Ch. 3/4) The derivative f (x) of the function f(x): f f(x + h) f(x) (x) = lim h 0 h (for all x for which f is differentiable/ the limit exists) Property:if
More information1 Introduction to Differential Equations
1 Introduction to Differential Equations A differential equation is an equation that involves the derivative of some unknown function. For example, consider the equation f (x) = 4x 3. (1) This equation
More informationLesson 19: Equations for Tangent Lines to Circles
Student Outcomes Given a circle, students find the equations of two lines tangent to the circle with specified slopes. Given a circle and a point outside the circle, students find the equation of the line
More informationApr 23, 2015. Calculus with Algebra and Trigonometry II Lecture 23Final Review: Apr Curve 23, 2015 sketching 1 / and 19pa
Calculus with Algebra and Trigonometry II Lecture 23 Final Review: Curve sketching and parametric equations Apr 23, 2015 Calculus with Algebra and Trigonometry II Lecture 23Final Review: Apr Curve 23,
More informationQuestion 1a of 14 ( 2 Identifying the roots of a polynomial and their importance 91008 )
Quiz: Factoring by Graphing Question 1a of 14 ( 2 Identifying the roots of a polynomial and their importance 91008 ) (x3)(x6), (x6)(x3), (1x3)(1x6), (1x6)(1x3), (x3)*(x6), (x6)*(x3), (1x 3)*(1x6),
More informationWEEK #16: Level Curves, Partial Derivatives
WEEK #16: Level Curves, Partial Derivatives Goals: To learn how to use and interpret contour diagrams as a way of visualizing functions of two variables. To study linear functions of two variables. To
More informationINVERSE TRIGONOMETRIC FUNCTIONS. Colin Cox
INVERSE TRIGONOMETRIC FUNCTIONS Colin Cox WHAT IS AN INVERSE TRIG FUNCTION? Used to solve for the angle when you know two sides of a right triangle. For example if a ramp is resting against a trailer,
More informationMth 95 Module 2 Spring 2014
Mth 95 Module Spring 014 Section 5.3 Polynomials and Polynomial Functions Vocabulary of Polynomials A term is a number, a variable, or a product of numbers and variables raised to powers. Terms in an expression
More informationSection 41 The Constant e and Continuous Compound Interest
Name Date Class Section 41 The Constant e and Continuous Compound Interest Goal: To work with the constant e and solve continuous compound problems Definition: The number e 1 e = lim 1+ n n n or e= lim
More informationSolutions to Vector Calculus Practice Problems
olutions to Vector alculus Practice Problems 1. Let be the region in determined by the inequalities x + y 4 and y x. Evaluate the following integral. sinx + y ) da Answer: The region looks like y y x x
More information3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes
Solving Polynomial Equations 3.3 Introduction Linear and quadratic equations, dealt within Sections 3.1 and 3.2, are members of a class of equations, called polynomial equations. These have the general
More informationLagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given.
Polynomials (Ch.1) Study Guide by BS, JL, AZ, CC, SH, HL Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given. Sasha s method
More information2 Integrating Both Sides
2 Integrating Both Sides So far, the only general method we have for solving differential equations involves equations of the form y = f(x), where f(x) is any function of x. The solution to such an equation
More information2.2 Separable Equations
2.2 Separable Equations 73 2.2 Separable Equations An equation y = f(x, y) is called separable provided algebraic operations, usually multiplication, division and factorization, allow it to be written
More information