Overview. Essential Questions. Grade 7 Mathematics, Quarter 3, Unit 3.3 Area and Circumference of Circles. Number of instruction days: 3 5


 Alaina Owens
 2 years ago
 Views:
Transcription
1 Area and Circumference of Circles Number of instruction days: 3 5 Overview Content to Be Learned Develop an understanding of the formulas for the area and circumference of a circle. Explore the relationship between circumference and area of a circle to develop an understanding of how the area of a circle is found. Understand the relationship among area, circumference, radius, and diameter in circles. Solve reallife mathematical problems involving circumference and area of a circle. Mathematical Practices to Be Integrated 5 Use appropriate tools strategically. Demonstrate familiarity with tools (i.e., protractors, rulers) appropriate to grade level. Make sound decisions about when these tools might be helpful, recognize the insight to be gained from them and their limitations. Detect possible errors by strategically using estimation and other mathematical knowledge. 6 Attend to precision. Use clear definitions and reasoning in discussion with others. Specify units of measure. Calculate accurately and efficiently. Express numerical answers with a degree of precision appropriate for the problem context. 7 Look for and make use of structure. Look closely to discern patterns or structure. See complicated things as single objects or as being composed of several objects. Essential Questions How can you determine the area of a circle? How can you determine the circumference of a circle? What is the relationship among circumference, radius, and diameter in circles? Given the area of a circle, how do you find the circumference? Given the circumference of a circle, how do you find the area? Providence Public Schools D63
2 Area and Circumference of Circles (3 5 days) Standards Common Core State Standards for Mathematical Content Geometry 7.G Solve reallife and mathematical problems involving angle measure, area, surface area, and volume. 7.G.4 Know the formulas for the area and circumference of a circle and use them to solve problems; give an informal derivation of the relationship between the circumference and area of a circle. Common Core State Standards for Mathematical Practice 5 Use appropriate tools strategically. Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a website, and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts. 6 Attend to precision. Mathematically proficient students try to communicate precisely to others. They try to use clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They are careful about specifying units of measure, and labeling axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently, express numerical answers with a degree of precision appropriate for the problem context. In the elementary grades, students give carefully formulated explanations to each other. By the time they reach high school they have learned to examine claims and make explicit use of definitions. 7 Look for and make use of structure. Mathematically proficient students look closely to discern a pattern or structure. Young students, for example, might notice that three and seven more is the same amount as seven and three more, or they may sort a collection of shapes according to how many sides the shapes have. Later, students will see 7 8 equals the well remembered , in preparation for learning about the distributive property. In the expression x 2 + 9x + 14, older students can see the 14 as 2 7 and the 9 as They recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They also can step back for an overview and shift perspective. They can see complicated things, such as some algebraic expressions, as single objects or as being composed of several D64 Providence Public Schools
3 Area and Circumference of Circles (3 5 days) Grade 7 Mathematics, Quarter 3, Unit 3.3 objects. For example, they can see 5 3(x y) 2 as 5 minus a positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers x and y. Clarifying the Standards Prior Learning In Grade 6, students solve a variety of problems involving angle measure, perimeter, area, surface area, and volume. Current Learning Students learn the formulas for area and circumference of a circle. They solve realworld and mathematical problems involving area, volume, and surface area of two and threedimensional objects. Future Learning Students will know the formulas for the volume of cones, cylinders, and spheres. They will use these formulas to solve realworld and mathematical problems. Additional Findings Students understand relationships among the angles, side lengths, perimeters, and areas and volumes of similar objects. (Curriculum Focal Points, p. 37) An understanding of the concepts of perimeter, area, and volume is initiated in lower grades and extended and deepened in grades 68. Whenever possible, students should develop formulas and procedures meaningfully through investigation rather than memorize them. Even formulas that are difficult to justify rigorously in the middle grades, such as that for the area of a circle, should be treated in ways that help students develop an intuitive sense of their reasonableness. (Principles and Standards for School Mathematics, p. 244) Assessment When constructing an endofunit assessment, be aware that the assessment should measure your students understanding of the big ideas indicated within the standards. The CCSS for Mathematical Content and the CCSS for Mathematical Practice should be considered when designing assessments. Standardsbased mathematics assessment items should vary in difficulty, content, and type. The assessment should comprise a mix of items, which could include multiple choice items, short and extended response items, and performancebased tasks. When creating your assessment, you should be mindful when an item could be differentiated to address the needs of students in your class. Providence Public Schools D65
4 Area and Circumference of Circles (3 5 days) The mathematical concepts below are not a prioritized list of assessment items, and your assessment is not limited to these concepts. However, care should be given to assess the skills the students have developed within this unit. The assessment should provide you with credible evidence as to your students attainment of the mathematics within the unit. Know and apply the formulas for the area and circumference of a circle to solve mathematical and real world problems. Demonstrate an understanding of the relationship among area, circumference, radius, and diameter in circles. Find the area of a circle given the circumference. Find the circumference of a circle given the area of a circle. Learning Objectives Students will be able to: Instruction Measure the circumference of circles and develop a formula for finding circumference of any circle. Determine a formula for finding the area of a circle. Use formulas for the area and circumference of a circle to solve mathematical and real world problems. Determine the relationship between a circle s area and its circumference. Demonstrate knowledge of area and circumference of circles. Resources Connected Mathematics 2, Pearson/Prentice Hall, 2008: Covering and Surrounding Investigation 5: Measuring Irregular Shapes and Circles Problem 5.2: Surrounding a Circle, Student Book (pages 7273) Problem 5.3: Pricing Pizza, Student Book (pages 7475) Problem 5.4: Squaring a Circle, Student Book (pages 7677) Teacher s Guide Implementing and Teaching Guide Teaching Transparencies Assessment Resource Book Additional Practice and Skills Workbook Strategies for English Language Learners Special Needs Handbook Parent Guide Prentice Hall Teacher Station Software D66 Providence Public Schools
5 Area and Circumference of Circles (3 5 days) Grade 7 Mathematics, Quarter 3, Unit 3.3 Exam View Software (Students can enter webcodes) Connected Mathematics 2, Pearson/Prentice Hall, 2011: Common Core Additional Investigations Grade 7 CC Investigation 4: Geometry Topics; Problem Investigations are located in the Worksheets tab Common Core Investigations Teacher s Guide Implementing a Common Core Curriculum Teaching with Foldables (Dinah Zike; Glencoe McGraw Hill 2010) Available with the Algebra resources Note: The district resources may contain content that goes beyond the standards addressed in this unit. See the Planning for Effective Instructional Design and Delivery and Assessment sections for specific recommendations. Materials Centimeter grid paper (2 to 3 sheets per student), student notebooks, rulers, calculators, string, tape measure, scissors, several circular objects, glue, construction paper, geometric nets, clear tape or glue sticks, scissors, tennis balls or other spheres, student handouts Instructional Considerations Key Vocabulary diameter circumference radius (radii) pi ( ) Planning for Effective Instructional Design and Delivery Reinforced vocabulary from previous grades or units: area, center, circle. Living word walls assist all students in developing content language. Word walls should be visible to all students, focus on the current unit s vocabulary, both new and reinforced, and have pictures, examples, and/or diagrams to accompany the definitions. Teachers should review the Mathematics of the Unit found on page 3 of all CMP2 teacher editions. For planning considerations read through the teacher edition for suggestions about scaffolding techniques, using additional examples, and differentiated instructional guidelines as suggested by the CMP2 resource. In Covering and Surrounding Problem 5.2 uses a cues, questions, and advance organizers strategy to introduce new knowledge. Page 72 in the student book has an expository advance organizer that uses a pictographic representation to introduce key vocabulary for this lesson. Have students copy and label this picture in their notes. For Problem 5.2, have students measure many different sizes of circles. If time allows, students would enjoy finding a way to measure the circles on a basketball court. This would generate interest and allow them to study the relationship between radius, diameter, and circumference for large and small circles. This work will help students lay the foundation for an understanding of the number pi. Providence Public Schools D67
6 Area and Circumference of Circles (3 5 days) The CC Investigation 4: Geometry Topics Problem 4.2 should be done after the problems in Covering and Surrounding because Problem 4.2 only focuses on application of the area and circumference formulas. A common error students make is to use the diameter instead of the radius when finding the area of a circle. Check in with them as they work through the problems to monitor and correct this common error. Incorporate the Essential Questions as part of the daily lesson. Options include using them as a do now to activate prior knowledge of the previous day s lesson, using them as an exit ticket by having students respond to it and post it, or hand it in as they exit the classroom, or using them as other formative assessments. Essential questions should be included in the unit assessment. CMP2 has online resources that may be helpful in planning for all units of study. Visit and sign on to SuccessNet. You will find the Common Core Additional Investigations and Common Core Investigations Teacher s Guide under the worksheet tab. Notes D68 Providence Public Schools
Overview. Essential Questions. Grade 7 Mathematics, Quarter 4, Unit 4.2 Probability of Compound Events. Number of instruction days: 8 10
Probability of Compound Events Number of instruction days: 8 10 Overview Content to Be Learned Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation. Understand
More informationOverview. Essential Questions. Grade 8 Mathematics, Quarter 4, Unit 4.3 Finding Volume of Cones, Cylinders, and Spheres
Cylinders, and Spheres Number of instruction days: 6 8 Overview Content to Be Learned Evaluate the cube root of small perfect cubes. Simplify problems using the formulas for the volumes of cones, cylinders,
More informationQuadratic Functions: Complex Numbers
Algebra II, Quarter 1, Unit 1.3 Quadratic Functions: Complex Numbers Overview Number of instruction days: 1214 (1 day = 53 minutes) Content to Be Learned Mathematical Practices to Be Integrated Develop
More informationPrecalculus, Quarter 2, Unit 2.2 Use the Unit Circle and Right Triangle Trigonometry to Find Special Angle Ratios. Overview
Use the Unit Circle and Right Triangle Trigonometry to Find Special Angle Ratios Overview Number of instruction days: 4 6 (1 day = 53 minutes) Content to Be Learned Use arc length of the unit circle to
More informationOverview. Essential Questions. Grade 4 Mathematics, Quarter 3, Unit 3.3 Multiplying Fractions by a Whole Number
Multiplying Fractions by a Whole Number Overview Number of instruction days: 8 10 (1 day = 90 minutes) Content to Be Learned Understand that a fraction can be written as a multiple of unit fractions with
More informationOverview. Essential Questions. Precalculus, Quarter 2, Unit 2.4 Interpret, Solve, and Graph Inverse Trigonometric Functions
Trigonometric Functions Overview Number of instruction days: 3 5 (1 day = 53 minutes) Content to Be Learned Use restricted domains in order to construct inverse Use inverse trigonometric functions to solve
More informationModeling in Geometry
Modeling in Geometry Overview Number of instruction days: 810 (1 day = 53 minutes) Content to Be Learned Mathematical Practices to Be Integrated Use geometric shapes and their components to represent
More informationOverview. Essential Questions. Algebra I, Quarter 1, Unit 1.2 Interpreting and Applying Algebraic Expressions
Algebra I, Quarter 1, Unit 1.2 Interpreting and Applying Algebraic Expressions Overview Number of instruction days: 6 8 (1 day = 53 minutes) Content to Be Learned Write and interpret an expression from
More informationOverview. Essential Questions. Precalculus, Quarter 4, Unit 4.5 Build Arithmetic and Geometric Sequences and Series
Sequences and Series Overview Number of instruction days: 4 6 (1 day = 53 minutes) Content to Be Learned Write arithmetic and geometric sequences both recursively and with an explicit formula, use them
More informationPolygons and Area. Overview. Grade 6 Mathematics, Quarter 4, Unit 4.1. Number of instructional days: 12 (1 day = minutes)
Grade 6 Mathematics, Quarter 4, Unit 4.1 Polygons and Area Overview Number of instructional days: 12 (1 day = 45 60 minutes) Content to be learned Calculate the area of polygons by composing into rectangles
More informationOverview. Essential Questions. Precalculus, Quarter 3, Unit 3.4 Arithmetic Operations With Matrices
Arithmetic Operations With Matrices Overview Number of instruction days: 6 8 (1 day = 53 minutes) Content to Be Learned Use matrices to represent and manipulate data. Perform arithmetic operations with
More informationOverview. Essential Questions. Grade 4 Mathematics, Quarter 1, Unit 1.1 Applying Place Value Up to the 100,000s Place
to the 100,000s Place Overview Number of instruction days: 8 10 (1 day = 90 minutes) Content to Be Learned Compare whole numbers within 1,000,000 using >,
More informationOverview. Essential Questions. Grade 4 Mathematics, Quarter 2, Unit 2.1 Multiplying MultiDigit Whole Numbers
Multiplying MultiDigit Whole Numbers Overview Number of instruction days: 5 7 (1 day = 90 minutes) Content to Be Learned Use strategies based on place value and properties of operations to multiply a
More informationOverview. Essential Questions. Precalculus, Quarter 2, Unit 2.5 Proving Trigonometric Identities. Number of instruction days: 5 7 (1 day = 53 minutes)
Precalculus, Quarter, Unit.5 Proving Trigonometric Identities Overview Number of instruction days: 5 7 (1 day = 53 minutes) Content to Be Learned Verify proofs of Pythagorean identities. Apply Pythagorean,
More informationExplaining Volume Formulas and Modeling Geometric Shapes
Geometry, Quarter 3, Unit 3.1 Explaining Volume Formulas and Modeling Geometric Shapes Overview Number of instructional days: 11 (1 day = 45 60 minutes) Content to be learned Give an informal argument
More informationDescribing and Solving for Area and Perimeter
Grade 3 Mathematics, Quarter 2,Unit 2.2 Describing and Solving for Area and Perimeter Overview Number of instruction days: 810 (1 day = 90 minutes) Content to Be Learned Distinguish between linear and
More informationComparing Fractions and Decimals
Grade 4 Mathematics, Quarter 4, Unit 4.1 Comparing Fractions and Decimals Overview Number of Instructional Days: 10 (1 day = 45 60 minutes) Content to be Learned Explore and reason about how a number representing
More informationOverview. Essential Questions. Grade 5 Mathematics, Quarter 3, Unit 3.1 Adding and Subtracting Decimals
Adding and Subtracting Decimals Overview Number of instruction days: 12 14 (1 day = 90 minutes) Content to Be Learned Add and subtract decimals to the hundredths. Use concrete models, drawings, and strategies
More informationOverview. Essential Questions. Grade 5 Mathematics, Quarter 3, Unit 3.2 Multiplying and Dividing With Decimals
Multiplying and Dividing With Decimals Overview Number of instruction days: 9 11 (1 day = 90 minutes) Content to Be Learned Multiply decimals to hundredths. Divide decimals to hundredths. Use models, drawings,
More informationInteger Operations. Overview. Grade 7 Mathematics, Quarter 1, Unit 1.1. Number of Instructional Days: 15 (1 day = 45 minutes) Essential Questions
Grade 7 Mathematics, Quarter 1, Unit 1.1 Integer Operations Overview Number of Instructional Days: 15 (1 day = 45 minutes) Content to Be Learned Describe situations in which opposites combine to make zero.
More informationOverview. Essential Questions. Precalculus, Quarter 1, Unit 1.4 Analyzing Exponential and Logarithmic Functions
Analyzing Exponential and Logarithmic Functions Overview Number of instruction days: 5 7 (1 day = 53 minutes) Content to Be Learned Rewrite radical expressions using the properties of exponents. Rewrite
More informationSolving Equations with One Variable
Grade 8 Mathematics, Quarter 1, Unit 1.1 Solving Equations with One Variable Overview Number of Instructional Days: 15 (1 day = 45 minutes) Content to Be Learned Solve linear equations in one variable
More informationPerformance Assessment Task Symmetrical Patterns Grade 4. Common Core State Standards Math  Content Standards
Performance Assessment Task Symmetrical Patterns Grade 4 The task challenges a student to demonstrate understanding of the concept of symmetry. A student must be able to name a variety of twodimensional
More informationGrade 4 Mathematics, Quarter 4, Unit 4.3 Using Place Value to Add and Subtract Whole Numbers to the Millions. Overview
Whole Numbers to the Millions Overview Number of instruction days: 7 9 (1 day = 90 minutes) Content to Be Learned Round multidigit whole numbers using understanding of place value. Recognize that the
More informationCommon Core State Standards. Standards for Mathematical Practices Progression through Grade Levels
Standard for Mathematical Practice 1: Make sense of problems and persevere in solving them. Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for
More informationGary School Community Corporation Mathematics Department Unit Document. Unit Number: 8 Grade: 2
Gary School Community Corporation Mathematics Department Unit Document Unit Number: 8 Grade: 2 Unit Name: YOU SEE IT!!! (2D & 3D Shapes) Duration of Unit: 18 days UNIT FOCUS Students describe and analyze
More informationMultiplying Fractions by a Whole Number
Grade 4 Mathematics, Quarter 3, Unit 3.1 Multiplying Fractions by a Whole Number Overview Number of Instructional Days: 15 (1 day = 45 60 minutes) Content to be Learned Apply understanding of operations
More informationPA Common Core Standards Standards for Mathematical Practice Grade Level Emphasis*
Habits of Mind of a Productive Thinker Make sense of problems and persevere in solving them. Attend to precision. PA Common Core Standards The Pennsylvania Common Core Standards cannot be viewed and addressed
More informationOverview. Essential Questions. Grade 4 Mathematics, Quarter 4, Unit 4.1 Dividing Whole Numbers With Remainders
Dividing Whole Numbers With Remainders Overview Number of instruction days: 7 9 (1 day = 90 minutes) Content to Be Learned Solve for wholenumber quotients with remainders of up to fourdigit dividends
More informationQuadratic and Linear Systems
Mathematical Models with Applications, Quarter 3, Unit 3.1 Quadratic and Linear Systems Overview Number of instruction days: 57 (1 day = 53 minutes) Content to Be Learned Mathematical Practices to Be
More informationUnit 1: Place value and operations with whole numbers and decimals
Unit 1: Place value and operations with whole numbers and decimals Content Area: Mathematics Course(s): Generic Course Time Period: 1st Marking Period Length: 10 Weeks Status: Published Unit Overview Students
More informationDerive and Apply Geometric Formulas
Derive and Apply Geometric Formulas Overview Number of instruction days: 8 10 (1 day = 53 minutes) Content to Be Learned Mathematical Practices to Be Integrated Write an explanation of the formula for
More informationProblem of the Month: Cutting a Cube
Problem of the Month: The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards:
More informationPythagorean Theorem. Overview. Grade 8 Mathematics, Quarter 3, Unit 3.1. Number of instructional days: 15 (1 day = minutes) Essential questions
Grade 8 Mathematics, Quarter 3, Unit 3.1 Pythagorean Theorem Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned Prove the Pythagorean Theorem. Given three side lengths,
More information2012 Noyce Foundation
Performance Assessment Task Carol s Numbers Grade 2 The task challenges a student to demonstrate understanding of concepts involved in place value. A student must understand the relative magnitude of whole
More informationUnderstand the Concepts of Ratios and Unit Rates to Solve RealWorld Problems
Grade 6 Mathematics, Quarter 2, Unit 2.1 Understand the Concepts of Ratios and Unit Rates to Solve RealWorld Problems Overview Number of instructional days: 10 (1 day = 45 60 minutes) Content to be learned
More informationGrades K6. Correlated to the Common Core State Standards
Grades K6 Correlated to the Common Core State Standards Kindergarten Standards for Mathematical Practice Common Core State Standards Standards for Mathematical Practice Kindergarten The Standards for
More informationG C.3 Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle.
Performance Assessment Task Circle and Squares Grade 10 This task challenges a student to analyze characteristics of 2 dimensional shapes to develop mathematical arguments about geometric relationships.
More informationUnderstanding Place Value
Grade 5 Mathematics, Quarter 1, Unit 1.1 Understanding Place Value Overview Number of instructional days: 7 (1 day = 45 minutes) Content to be learned Explain that a digit represents a different value
More informationGeometry Solve real life and mathematical problems involving angle measure, area, surface area and volume.
Performance Assessment Task Pizza Crusts Grade 7 This task challenges a student to calculate area and perimeters of squares and rectangles and find circumference and area of a circle. Students must find
More informationOverview. Essential Questions. Grade 2 Mathematics, Quarter 4, Unit 4.4 Representing and Interpreting Data Using Picture and Bar Graphs
Grade 2 Mathematics, Quarter 4, Unit 4.4 Representing and Interpreting Data Using Picture and Bar Graphs Overview Number of instruction days: 7 9 (1 day = 90 minutes) Content to Be Learned Draw a picture
More informationHigh School Functions Interpreting Functions Understand the concept of a function and use function notation.
Performance Assessment Task Printing Tickets Grade 9 The task challenges a student to demonstrate understanding of the concepts representing and analyzing mathematical situations and structures using algebra.
More informationStandards for Mathematical Practice: Commentary and Elaborations for 6 8
Standards for Mathematical Practice: Commentary and Elaborations for 6 8 c Illustrative Mathematics 6 May 2014 Suggested citation: Illustrative Mathematics. (2014, May 6). Standards for Mathematical Practice:
More informationGary School Community Corporation Mathematics Department Unit Document. Unit Number: 3 Grade: 4
Gary School Community Corporation Mathematics Department Unit Document Unit Number: 3 Grade: 4 Unit Name: Measurement with Angles and Rectangles Duration of Unit: 20 Days UNIT FOCUS In this unit, students
More informationPolynomial Operations and Factoring
Algebra 1, Quarter 4, Unit 4.1 Polynomial Operations and Factoring Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned Identify terms, coefficients, and degree of polynomials.
More informationProblem of the Month The Shape of Things
Problem of the Month The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards:
More informationMathematics Connecticut Preschool Standards to Common Core State Standards Continuum. Preschool  Kindergarten
Mathematics Connecticut Preschool Standards to Common Core State Standards Continuum Preschool  Kindergarten Connecticut PreschoolKindergarten Standards Continuum for Mathematics On July 7, 2010, with
More informationUnderstanding Place Value of Whole Numbers and Decimals Including Rounding
Grade 5 Mathematics, Quarter 1, Unit 1.1 Understanding Place Value of Whole Numbers and Decimals Including Rounding Overview Number of instructional days: 14 (1 day = 45 60 minutes) Content to be learned
More informationPolynomials and Polynomial Functions
Algebra II, Quarter 1, Unit 1.4 Polynomials and Polynomial Functions Overview Number of instruction days: 1315 (1 day = 53 minutes) Content to Be Learned Mathematical Practices to Be Integrated Prove
More informationFor example, estimate the population of the United States as 3 times 10⁸ and the
CCSS: Mathematics The Number System CCSS: Grade 8 8.NS.A. Know that there are numbers that are not rational, and approximate them by rational numbers. 8.NS.A.1. Understand informally that every number
More informationUsing Nets to Find Surface Area Grade Eight
Ohio Standards Connection: Geometry and Spatial Sense Benchmark E Draw and construct representations of two and threedimensional geometric objects using a variety of tools, such as straightedge, compass,
More informationGeorgia Department of Education. Calculus
K12 Mathematics Introduction Calculus The Georgia Mathematics Curriculum focuses on actively engaging the students in the development of mathematical understanding by using manipulatives and a variety
More informationDecimals in the Number System
Grade 5 Mathematics, Quarter 1, Unit 1.1 Decimals in the Number System Overview Number of Instructional Days: 15 (1 day = 45 minutes) Content to Be Learned Recognize place value relationships. In a multidigit
More information1 ST GRADE COMMON CORE STANDARDS FOR SAXON MATH
1 ST GRADE COMMON CORE STANDARDS FOR SAXON MATH Calendar The following tables show the CCSS focus of The Meeting activities, which appear at the beginning of each numbered lesson and are taught daily,
More informationa. Assuming your pattern continues, explain how you would build the 10 th figure.
Tile Patterns 1. The first 3 s in a pattern are shown below. Draw the 4 th and 5 th s. 1 st Figure 2 nd Figure 3 rd Figure 4 th Figure 5 th Figure a. Assuming your pattern continues, explain how you would
More informationEvaluation Tool for Assessment Instrument Quality
REPRODUCIBLE Figure 4.4: Evaluation Tool for Assessment Instrument Quality Assessment indicators Description of Level 1 of the Indicator Are Not Present Limited of This Indicator Are Present Substantially
More informationDOUBLE, DOUBLE: LOOKING AT THE EFFECT OF CHANGE
DOUBLE, DOUBLE: LOOKING AT THE EFFECT OF CHANGE ON PERIMETER, AREA AND VOLUME Outcome (lesson objective) Students will demonstrate how changes in the dimensions of squares, rectangles, and circles affect
More informationLinear Systems of Inequalities
Mathematical Models with Applications, Quarter 2, Unit 2.2 Linear Systems of Inequalities Overview Number of instruction days: 57 (1 day = 53 minutes) Content to Be Learned Mathematical Practices to Be
More informationExpressions and Equations Understand the connections between proportional relationships, lines, and linear equations.
Performance Assessment Task Squares and Circles Grade 8 The task challenges a student to demonstrate understanding of the concepts of linear equations. A student must understand relations and functions,
More informationFranklin Public Schools. Curriculum Map for Mathematics. Kindergarten
Curriculum Map for Mathematics Kindergarten June 2013 1 The Standards for Mathematical Practice The Standards for Mathematical Practice describe varieties of expertise that mathematics educators at all
More informationHigh School Algebra Reasoning with Equations and Inequalities Solve systems of equations.
Performance Assessment Task Graphs (2006) Grade 9 This task challenges a student to use knowledge of graphs and their significant features to identify the linear equations for various lines. A student
More informationGrade 7 Mathematics, Quarter 4, Unit 4.1. Probability. Overview
Grade 7 Mathematics, Quarter 4, Unit 4.1 Probability Overview Number of instructional days: 8 (1 day = 45 minutes) Content to be learned Understand how to use counting techniques to solve problems involving
More informationPerfume Packaging. Ch 5 1. Chapter 5: Solids and Nets. Chapter 5: Solids and Nets 279. The Charles A. Dana Center. Geometry Assessments Through
Perfume Packaging Gina would like to package her newest fragrance, Persuasive, in an eyecatching yet costefficient box. The Persuasive perfume bottle is in the shape of a regular hexagonal prism 10 centimeters
More informationCreating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities
Algebra 1, Quarter 2, Unit 2.1 Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned
More informationModule: Mathematical Reasoning
Module: Mathematical Reasoning Lesson Title: Using Nets for Finding Surface Area Objectives and Standards Students will: Draw and construct nets for 3D objects. Determine the surface area of rectangular
More informationCCSS: Mathematics. Operations & Algebraic Thinking. CCSS: Grade 5. 5.OA.A. Write and interpret numerical expressions.
CCSS: Mathematics Operations & Algebraic Thinking CCSS: Grade 5 5.OA.A. Write and interpret numerical expressions. 5.OA.A.1. Use parentheses, brackets, or braces in numerical expressions, and evaluate
More informationMathematics Curricular Guide SIXTH GRADE SCHOOL YEAR. Updated: Thursday, December 02, 2010
Mathematics Curricular Guide SIXTH GRADE 20102011 SCHOOL YEAR 1 MATHEMATICS SCOPE & SEQUENCE Unit Title Dates Page 1. CMP 2 Bits and Pieces I... 3 2. How Likely Is It? (Probability)... 6 3. CMP 2 Bits
More informationEXPLAINING AREA AND CIRCUMFERENCE OF A CIRCLE
EXPLAINING AREA AND CIRCUMFERENCE OF A CIRCLE 7.G.4 CONTENTS The types of documents contained in the unit are listed below. Throughout the unit, the documents are arranged by lesson. LEARNING MAP INFORMATION
More informationGeorgia Standards of Excellence Mathematics
Georgia Standards of Excellence Mathematics Standards GSE Geometry K12 Mathematics Introduction Georgia Mathematics focuses on actively engaging the student in the development of mathematical understanding
More informationGRADE 10 MATH: A DAY AT THE BEACH
GRADE 0 MATH: A DAY AT THE BEACH UNIT OVERVIEW This packet contains a curriculumembedded CCLS aligned task and instructional supports. The final task assesses student mastery of the geometry standards
More informationMeasurement with Ratios
Grade 6 Mathematics, Quarter 2, Unit 2.1 Measurement with Ratios Overview Number of instructional days: 15 (1 day = 45 minutes) Content to be learned Use ratio reasoning to solve realworld and mathematical
More informationProblem of the Month: William s Polygons
Problem of the Month: William s Polygons The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common
More informationCommon Core Standards Mission Statement
Common Core Standards Mission Statement http://www.corestandards.org/thestandards/mathematics/introduction/howtoreadthegradelevelstandards/ The Common Core State Standards provide a consistent, clear
More informationProblem of the Month: On Balance
Problem of the Month: On Balance The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core
More informationLaws of Sines and Cosines and Area Formula
Precalculus, Quarter 3, Unit 3.1 Laws of Sines and Cosines and Area Formula Overview Number of instructional days: 8 (1 day = 45 minutes) Content to be learned Derive and use the formula y = 1 2 absin
More informationArc Length and Areas of Sectors
Student Outcomes When students are provided with the angle measure of the arc and the length of the radius of the circle, they understand how to determine the length of an arc and the area of a sector.
More informationWallingford Public Schools  HIGH SCHOOL COURSE OUTLINE
Wallingford Public Schools  HIGH SCHOOL COURSE OUTLINE Course Title: Geometry Course Number: A 1223, G1224 Department: Mathematics Grade(s): 1011 Level(s): Academic and General Objectives that have an
More informationPerformance Based Learning and Assessment Task A Day at the Beach! I. ASSESSSMENT TASK OVERVIEW & PURPOSE: The goal of this activity is to calculate
Performance Based Learning and Assessment Task A Day at the Beach! I. ASSESSSMENT TASK OVERVIEW & PURPOSE: The goal of this activity is to calculate volume and complete problems involving volume and rate.
More informationProblem of the Month: Calculating Palindromes
Problem of the Month: The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards:
More informationPocantico Hills School District Grade 1 Math Curriculum Draft
Pocantico Hills School District Grade 1 Math Curriculum Draft Patterns /Number Sense/Statistics Content Strands: Performance Indicators 1.A.1 Determine and discuss patterns in arithmetic (what comes next
More informationInvestigations. Investigations and the Common Core State Standards GRADE. in Number, Data, and Space. Infinity Prime Donna Casey
Infinity Prime Donna Casey GRADE K This fractal is a classic spiral, which is my favorite, and I m always amazed at the variations and the endlessly repeating patterns that can be created out of such a
More information2009 Leaders Notes Grade 8 Module 3 page 1
2009 Leaders Notes Grade 8 Module 3 page 1 General Materials and Supplies: Handouts 10 and 11 8 ½ x 11 paper white boards markers chalk tape tape measure ruler yard stick meter stick tennis balls in the
More informationPerformance Assessment Task Which Shape? Grade 3. Common Core State Standards Math  Content Standards
Performance Assessment Task Which Shape? Grade 3 This task challenges a student to use knowledge of geometrical attributes (such as angle size, number of angles, number of sides, and parallel sides) to
More informationLESSON 7 Don t Be A Square by Michael Torres
CONCEPT AREA GRADE LEVEL Measurement 56 TIME ALLOTMENT Two 60minute sessions LESSON OVERVIEW LESSON ACTIVITIES OVERVIEW LEARNING OBJECTIVES STANDARDS (TEKS) Students will learn the relationship between
More informationGeometry and Measurement
Geometry and Measurement 7 th Grade Math Michael Hepola Henning Public School mhepola@henning.k12.mn.us Executive Summary This 12day unit is constructed with the idea of teaching this geometry section
More information6 th Grade New Mexico Math Standards
Strand 1: NUMBER AND OPERATIONS Standard: Students will understand numerical concepts and mathematical operations. 58 Benchmark 1: Understand numbers, ways of representing numbers, relationships among
More informationTitle: Surface Area and Volume
X Stackable Cert. Documentation Technology Study / Life skills ELCivics Career Pathways Police Paramedic Fire Rescue Medical Asst. EKG / Cardio Phlebotomy Practical Nursing Healthcare Admin Pharmacy Tech
More informationPerformance Based Learning and Assessment Task Pizza Sector Task I. ASSESSSMENT TASK OVERVIEW & PURPOSE: Students will be introduced to the concept
Performance Based Learning and Assessment Task Pizza Sector Task I. ASSESSSMENT TASK OVERVIEW & PURPOSE: Students will be introduced to the concept of a sector of a circle and will learn the formula used
More informationMathematics Interim Assessment Blocks Blueprint V
67 Blueprint V.5.7.6 The Smarter Balanced Interim Assessment Blocks (IABs) are one of two distinct types of interim assessments being made available by the Consortium; the other type is the Interim Comprehensive
More informationMath, Grades 68 TEKS and TAKS Alignment
111.22. Mathematics, Grade 6. 111.23. Mathematics, Grade 7. 111.24. Mathematics, Grade 8. (a) Introduction. (1) Within a wellbalanced mathematics curriculum, the primary focal points are using ratios
More informationNatural Disaster Recovery and Quadrilaterals
Natural Disaster Recovery and Quadrilaterals I. UNIT OVERVIEW & PURPOSE: In this unit, students will apply their knowledge of quadrilaterals to solve mathematics problems concerning a tornado that struck
More informationProblem of the Month: Circular Reasoning
Problem of the Month: Circular Reasoning The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common
More informationArea and Circumference of Circles
Teacher Created Materials 21208 Focused Mathematics Student Guided Practice Book of Circles Learning Objectives Geometry Know the formulas for the area and circumference of a circle and use them to solve
More informationCORE Assessment Module Module Overview
CORE Assessment Module Module Overview Content Area Mathematics Title TShirts Grade Level Grade 7 Problem Type Performance Task Learning Goal Students will solve reallife and mathematical problems using
More informationLesson 3: Area. Selected Content Standards. Translating Content Standards into Instruction
Lesson 3: Area Selected Content Standards Benchmark Assessed: M.3 Estimating, computing, and applying physical measurement using suitable units (e.g., calculate perimeter and area of plane figures, surface
More informationNew York State Mathematics Content Strands, Grade 6, Correlated to Glencoe MathScape, Course 1 and Quick Review Math Handbook Book 1
New York State Mathematics Content Strands, Grade 6, Correlated to Glencoe MathScape, Course 1 and The lessons that address each Performance Indicator are listed, and those in which the Performance Indicator
More informationPi Project Deriving Pi from the Objects around Us Lesson Plan
Pi Project Deriving Pi from the Objects around Us Lesson Plan Subject Area: Math Grade Levels: The lesson can be adapted for grades 4 10 (ages 9 6). Time: At least one 50minute class period; time outside
More informationDivision with Whole Numbers and Decimals
Grade 5 Mathematics, Quarter 2, Unit 2.1 Division with Whole Numbers and Decimals Overview Number of Instructional Days: 15 (1 day = 45 60 minutes) Content to be Learned Divide multidigit whole numbers
More informationStandard 1: Make sense of problems and persevere in solving them
Standards for Mathematical Practice: Standard 1: Make sense of problems and persevere in solving them The Standard: Mathematically proficient students start by explaining to themselves the meaning of a
More informationMarie has a winter hat made from a circle, a rectangular strip and eight trapezoid shaped pieces. y inches. 3 inches. 24 inches
Winter Hat This problem gives you the chance to: calculate the dimensions of material needed for a hat use circle, circumference and area, trapezoid and rectangle Marie has a winter hat made from a circle,
More information