HFCC Math Lab Intermediate Algebra - 7 FINDING THE LOWEST COMMON DENOMINATOR (LCD)

Size: px
Start display at page:

Download "HFCC Math Lab Intermediate Algebra - 7 FINDING THE LOWEST COMMON DENOMINATOR (LCD)"

Transcription

1 HFCC Math Lab Intermediate Algebra - 7 FINDING THE LOWEST COMMON DENOMINATOR (LCD) Adding or subtracting two rational expressions require the rational expressions to have the same denominator. Example : Adding two rational expressions with the common denominator x+ 5 3 x x = 5 3 x 8 = x When the denominators of two rational expressions are not the same we write equivalent rational expression for both or one of the rational expressions so that they both have same denominator. To find the equivalent rational expressions we multiply the numerator and denominator of a rational function with same non-zero factor. Example : A list of equivalent rational expressions to x x 0 0(x 0 0( x x x x(x x( assuming x 0 x (x 3) (x 3) (x ( x 3) ( ( x 3) assuming x 3 0 x 0 x (3x 5) 0 x (3x 5) 0 x (3x 5)(x 0 (3 5)(5 x x x assuming 0 x (3x 5) 0 Remark: Try to reason out why every rational expression in the list above is equivalent to x We write equivalent rational expressions so that the two rational expressions have common denominator the natural choice is the product of the two denominators. Remark: Try to reason why the above statement makes sense. (Hint: You may have to use your knowledge on equivalent rational expressions to do so). Revised /09

2 Example 3: Some of the multiples of the polynomial 6 x( are 6 x(x 6 x(x 3 6 x(x 8 x(x x 6 x(x 6 x (x 5 6 5(x 6 x(x 30 x(x 3 7 x (x 6 x(x 4 x (x Remark: Try to reason out why every expression in the above list is a multiple of 6 x( The best choice for the denominator is the Least Common Multiple (LCM) of the denominators of two expressions. We also refer to this value as the Least Common Denominator (LCD) Remark: Try to reason why the above statement makes sense. (Hint: Least means smallest multiple of a polynomial. A smallest multiple of a polynomial has the least degree and yet can be written as a product of both the polynomials under consideration.) To find the least common denominator (LCD) of two or more fractional expression you can follow this procedure:. Factor each denominator completely ; i.e. as bases with exponents.. Write the product of all the different 3. Raise each base to the highest exponent to which it is raised in any single denominator Remark: A base and its opposite (negative) can be considered the same when find the LCD; any (- factor can be attached to the numerator. Example 4: Simplifying rational expression with a - factor in the denominator ( x ) x Example 5: Find the Least Common Denominator (LCD) of the expressions x x 4 x Step : Factor each denominator completely Step : Write the product of all the different Step 3: Raise each base to the highest exponent Revised /09

3 y 7 Example 6: Find the Least Common Denominator (LCD) of the expressions 3 8x y 0xy z 5yz 8x y 0xy z 5yz 3 x y y 35 yz 3 z Step : Factor each denominator completely 3 5 x y z Step : Write the product of all the different x y z x y z Step 3: Raise each base to the highest exponent Example 7: Find the Least Common Denominator (LCD) of the expressions a a ( a a a a ( ( a ( a ( a ( a Step : Factor each denominator completely ( a ( a Step : Write the product of all the different ( a ( a Step 3: Raise each base to the highest exponent Example 8: Find the LCD of the expressions 3 8x 7 x 6x 9 x 3x 9 3 8x 7 (x 3) (4 x 6x x 6x 9 ( x 3) x 3x 9 (x 3) ( x 3) Step : Factor each denominator completely ( x 3) (x 3) (4x 6x Step : Write the product of all the different ( x 3) (x 3) (4x 6x Step 3: Raise each base to the highest exponent Revised /09 3

4 Example 9: Find the LCD of the expressions 4 3 ( x ) ( x) Solution: Denominators are ( x ) and its opposite are ( x) ( x ). Hence we move the 4 3 negative to the numerator ( x ) ( x ) We do not have to use any procedure to find the common denominator because both the fractions have the common denominator 7 Example 0: Find the LCD of the expressions 6( x 5) 4(5 x) Solution: (5 x ) is the negative of ( x 5) hence rewriting the expressions we have 7 6( x 5) 4( x 5) 6( x 5) 3 ( x 5) 4( x 5) ( x 5) Step : Factor each denominator completely 3 ( x 5) Step : Write the product of all the different 3 ( x 5) Step 3: Raise each base to the highest exponent Exercise: Find the Least Common Denominator (LCD) in each of the following exercise (Hint: follow the procedure suggested above). 3 x xy. 3x x x 6 3x x y y x 3 5. xy x x 3xy 6y a b 8b 8. 3n m nm a b a b x 36 Revised /09 4

5 5 9. c c 5 c 6c 9. y ( y 3) 5( y 3)( y y x 6 x x 3x 5. 4 x x 4 y 3 5 7y 7. 8y 6y 3y y 36 4y x 4 x 9. 3x x 6 x x a a a a 6. y 3y y 3y 3 8. x x x 4 3 x x 70 x 6x 9 6x 8 Solutions to the odd-numbered exercise and answers to the even- numbered exercise:. Denominators: x xy Step: x x xy x y Step: x y Step3: LCD x y. LCD : 4 3. Denominators x 6 3x Step: x ( x ) 6 3x 3 ( x ) Step : 3 ( x ) Step3: LCD 3 ( x ) Remark: opposite of (x-) is (-x) Hence we can rewrite the rational expression as 3 and find the LCD x 3x 6 4. LCD : ( y x ) or ( x y ) 5. Denominators xy x Step: xy x y x x Step : x y Step3: LCD x y 7. Denominators 3 8 x 3 xy6 y Step: 8x x 3xy 3 x y6y y Step : 3 x y Step3: LCD 3 x y 48 x y LCD :8ab LCD :3nm Revised /09 5

6 9. Denominators a b a b Step: a b ( a b) a a b b Step : a b ( a b) Step3: LCD a b ( a b). Denominators c c 5 c 6c 9 Step: c c 5 ( c 5)( c 3) c 6c 9 ( c 3) Step : ( c 5)( c 3) Step3: LCD ( c 5)( c 3) 3. Denominators 6x 6 x x Step: 6x 6 3 ( x x x x x x ( ( ( Step : 3 ( x ( x Step3: LCD 3 ( x ( x 5. Denominators 4 xx 4 Step x x y x x x : 4 ( ) 4 ( )( ) Step : ( x ) ( x ) Step3: LCD ( x ) ( x ) Remark: opposite of (x-) is (-x) Hence we can rewrite the fraction as 3x and find the LCD x 4 x 4 7. Denominators Step y y y y 8y 63y y 36 4y 3 :8 6 ( ) 3y y 36 3 ( y 3) ( y 4)4y ( y 3) Step : y ( y ) ( y 3) Step3: LCD y ( y ) ( y 3) 9. Denominators 3x x 6 x x 5 Step x x x x :3 6 (3 )( 3) x x 5 (x 5)( x 3) Step : (3x ) ( x 5) ( x 3) Step3: LCD (3x ) ( x 5) ( x 3) LCD : 3 5( x 4) or 45( x 4) LCD : 5( y 3) ( y LCD : ( a ( a 6. LCD : y( y 3)( y 3) LCD : ( x ( x ) LCD : 30( x 3) ( x 3)( x 3x Revised /09 6

7 Note: You can get additional instructions and practice for solving these problems by going to the following websites: This website has step-by-step instruction on how to find the least common multiple of integers and polynomials. Finding least common multiples is same as finding the least common denominators. This website has a you tube video on how to find the least common multiple which is same as find the least common denominator. ut0_addrat.htm#lcd This website provides video demonstration and step-bystep instruction on how to add two rational expressions. This website also has information on how to find the least common multiples Student friendly notes on adding and subtracting rational functions. This web site also has information on how to find the least common denominator of two or more fractions Revised /09 7

Negative Integer Exponents

Negative Integer Exponents 7.7 Negative Integer Exponents 7.7 OBJECTIVES. Define the zero exponent 2. Use the definition of a negative exponent to simplify an expression 3. Use the properties of exponents to simplify expressions

More information

FINDING THE LEAST COMMON DENOMINATOR

FINDING THE LEAST COMMON DENOMINATOR 0 (7 18) Chapter 7 Rational Expressions GETTING MORE INVOLVED 7. Discussion. Evaluate each expression. a) One-half of 1 b) One-third of c) One-half of x d) One-half of x 7. Exploration. Let R 6 x x 0 x

More information

3.1. RATIONAL EXPRESSIONS

3.1. RATIONAL EXPRESSIONS 3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers

More information

HFCC Math Lab Arithmetic - 4. Addition, Subtraction, Multiplication and Division of Mixed Numbers

HFCC Math Lab Arithmetic - 4. Addition, Subtraction, Multiplication and Division of Mixed Numbers HFCC Math Lab Arithmetic - Addition, Subtraction, Multiplication and Division of Mixed Numbers Part I: Addition and Subtraction of Mixed Numbers There are two ways of adding and subtracting mixed numbers.

More information

Adding and Subtracting Fractions. 1. The denominator of a fraction names the fraction. It tells you how many equal parts something is divided into.

Adding and Subtracting Fractions. 1. The denominator of a fraction names the fraction. It tells you how many equal parts something is divided into. Tallahassee Community College Adding and Subtracting Fractions Important Ideas:. The denominator of a fraction names the fraction. It tells you how many equal parts something is divided into.. The numerator

More information

6.3. section. Building Up the Denominator. To convert the fraction 2 3 factor 21 as 21 3 7. Because 2 3

6.3. section. Building Up the Denominator. To convert the fraction 2 3 factor 21 as 21 3 7. Because 2 3 0 (6-18) Chapter 6 Rational Epressions GETTING MORE INVOLVED 7. Discussion. Evaluate each epression. a) One-half of 1 b) One-third of c) One-half of d) One-half of 1 a) b) c) d) 8 7. Eploration. Let R

More information

Chapter 5. Rational Expressions

Chapter 5. Rational Expressions 5.. Simplify Rational Expressions KYOTE Standards: CR ; CA 7 Chapter 5. Rational Expressions Definition. A rational expression is the quotient P Q of two polynomials P and Q in one or more variables, where

More information

Radicals - Rational Exponents

Radicals - Rational Exponents 8. Radicals - Rational Exponents Objective: Convert between radical notation and exponential notation and simplify expressions with rational exponents using the properties of exponents. When we simplify

More information

0.8 Rational Expressions and Equations

0.8 Rational Expressions and Equations 96 Prerequisites 0.8 Rational Expressions and Equations We now turn our attention to rational expressions - that is, algebraic fractions - and equations which contain them. The reader is encouraged to

More information

1.4. Arithmetic of Algebraic Fractions. Introduction. Prerequisites. Learning Outcomes

1.4. Arithmetic of Algebraic Fractions. Introduction. Prerequisites. Learning Outcomes Arithmetic of Algebraic Fractions 1.4 Introduction Just as one whole number divided by another is called a numerical fraction, so one algebraic expression divided by another is known as an algebraic fraction.

More information

Unit 3 Polynomials Study Guide

Unit 3 Polynomials Study Guide Unit Polynomials Study Guide 7-5 Polynomials Part 1: Classifying Polynomials by Terms Some polynomials have specific names based upon the number of terms they have: # of Terms Name 1 Monomial Binomial

More information

2.3. Finding polynomial functions. An Introduction:

2.3. Finding polynomial functions. An Introduction: 2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned

More information

Simplifying Algebraic Fractions

Simplifying Algebraic Fractions 5. Simplifying Algebraic Fractions 5. OBJECTIVES. Find the GCF for two monomials and simplify a fraction 2. Find the GCF for two polynomials and simplify a fraction Much of our work with algebraic fractions

More information

Chapter 7 - Roots, Radicals, and Complex Numbers

Chapter 7 - Roots, Radicals, and Complex Numbers Math 233 - Spring 2009 Chapter 7 - Roots, Radicals, and Complex Numbers 7.1 Roots and Radicals 7.1.1 Notation and Terminology In the expression x the is called the radical sign. The expression under the

More information

Exponents, Radicals, and Scientific Notation

Exponents, Radicals, and Scientific Notation General Exponent Rules: Exponents, Radicals, and Scientific Notation x m x n = x m+n Example 1: x 5 x = x 5+ = x 7 (x m ) n = x mn Example : (x 5 ) = x 5 = x 10 (x m y n ) p = x mp y np Example : (x) =

More information

Basic Math Refresher A tutorial and assessment of basic math skills for students in PUBP704.

Basic Math Refresher A tutorial and assessment of basic math skills for students in PUBP704. Basic Math Refresher A tutorial and assessment of basic math skills for students in PUBP704. The purpose of this Basic Math Refresher is to review basic math concepts so that students enrolled in PUBP704:

More information

Rational Expressions - Least Common Denominators

Rational Expressions - Least Common Denominators 7.3 Rational Expressions - Least Common Denominators Objective: Idenfity the least common denominator and build up denominators to match this common denominator. As with fractions, the least common denominator

More information

north seattle community college

north seattle community college INTRODUCTION TO FRACTIONS If we divide a whole number into equal parts we get a fraction: For example, this circle is divided into quarters. Three quarters, or, of the circle is shaded. DEFINITIONS: The

More information

1.2 Linear Equations and Rational Equations

1.2 Linear Equations and Rational Equations Linear Equations and Rational Equations Section Notes Page In this section, you will learn how to solve various linear and rational equations A linear equation will have an variable raised to a power of

More information

Mth 95 Module 2 Spring 2014

Mth 95 Module 2 Spring 2014 Mth 95 Module Spring 014 Section 5.3 Polynomials and Polynomial Functions Vocabulary of Polynomials A term is a number, a variable, or a product of numbers and variables raised to powers. Terms in an expression

More information

1.3 Polynomials and Factoring

1.3 Polynomials and Factoring 1.3 Polynomials and Factoring Polynomials Constant: a number, such as 5 or 27 Variable: a letter or symbol that represents a value. Term: a constant, variable, or the product or a constant and variable.

More information

Unit 3: Algebra. Date Topic Page (s) Algebra Terminology 2. Variables and Algebra Tiles 3 5. Like Terms 6 8. Adding/Subtracting Polynomials 9 12

Unit 3: Algebra. Date Topic Page (s) Algebra Terminology 2. Variables and Algebra Tiles 3 5. Like Terms 6 8. Adding/Subtracting Polynomials 9 12 Unit 3: Algebra Date Topic Page (s) Algebra Terminology Variables and Algebra Tiles 3 5 Like Terms 6 8 Adding/Subtracting Polynomials 9 1 Expanding Polynomials 13 15 Introduction to Equations 16 17 One

More information

MULTIPLICATION AND DIVISION OF REAL NUMBERS In this section we will complete the study of the four basic operations with real numbers.

MULTIPLICATION AND DIVISION OF REAL NUMBERS In this section we will complete the study of the four basic operations with real numbers. 1.4 Multiplication and (1-25) 25 In this section Multiplication of Real Numbers Division by Zero helpful hint The product of two numbers with like signs is positive, but the product of three numbers with

More information

Calculate Highest Common Factors(HCFs) & Least Common Multiples(LCMs) NA1

Calculate Highest Common Factors(HCFs) & Least Common Multiples(LCMs) NA1 Calculate Highest Common Factors(HCFs) & Least Common Multiples(LCMs) NA1 What are the multiples of 5? The multiples are in the five times table What are the factors of 90? Each of these is a pair of factors.

More information

Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions.

Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions. Page 1 of 13 Review of Linear Expressions and Equations Skills involving linear equations can be divided into the following groups: Simplifying algebraic expressions. Linear expressions. Solving linear

More information

Definition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality.

Definition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality. 8 Inequalities Concepts: Equivalent Inequalities Linear and Nonlinear Inequalities Absolute Value Inequalities (Sections 4.6 and 1.1) 8.1 Equivalent Inequalities Definition 8.1 Two inequalities are equivalent

More information

Solutions of Linear Equations in One Variable

Solutions of Linear Equations in One Variable 2. Solutions of Linear Equations in One Variable 2. OBJECTIVES. Identify a linear equation 2. Combine like terms to solve an equation We begin this chapter by considering one of the most important tools

More information

MATH 10034 Fundamental Mathematics IV

MATH 10034 Fundamental Mathematics IV MATH 0034 Fundamental Mathematics IV http://www.math.kent.edu/ebooks/0034/funmath4.pdf Department of Mathematical Sciences Kent State University January 2, 2009 ii Contents To the Instructor v Polynomials.

More information

SIMPLIFYING ALGEBRAIC FRACTIONS

SIMPLIFYING ALGEBRAIC FRACTIONS Tallahassee Community College 5 SIMPLIFYING ALGEBRAIC FRACTIONS In arithmetic, you learned that a fraction is in simplest form if the Greatest Common Factor (GCF) of the numerator and the denominator is

More information

FRACTIONS COMMON MISTAKES

FRACTIONS COMMON MISTAKES FRACTIONS COMMON MISTAKES 0/0/009 Fractions Changing Fractions to Decimals How to Change Fractions to Decimals To change fractions to decimals, you need to divide the numerator (top number) by the denominator

More information

Simplification of Radical Expressions

Simplification of Radical Expressions 8. Simplification of Radical Expressions 8. OBJECTIVES 1. Simplify a radical expression by using the product property. Simplify a radical expression by using the quotient property NOTE A precise set of

More information

Factoring (pp. 1 of 4)

Factoring (pp. 1 of 4) Factoring (pp. 1 of 4) Algebra Review Try these items from middle school math. A) What numbers are the factors of 4? B) Write down the prime factorization of 7. C) 6 Simplify 48 using the greatest common

More information

LESSON 6.2 POLYNOMIAL OPERATIONS I

LESSON 6.2 POLYNOMIAL OPERATIONS I LESSON 6.2 POLYNOMIAL OPERATIONS I Overview In business, people use algebra everyday to find unknown quantities. For example, a manufacturer may use algebra to determine a product s selling price in order

More information

Click on the links below to jump directly to the relevant section

Click on the links below to jump directly to the relevant section Click on the links below to jump directly to the relevant section What is algebra? Operations with algebraic terms Mathematical properties of real numbers Order of operations What is Algebra? Algebra is

More information

Factoring - Greatest Common Factor

Factoring - Greatest Common Factor 6.1 Factoring - Greatest Common Factor Objective: Find the greatest common factor of a polynomial and factor it out of the expression. The opposite of multiplying polynomials together is factoring polynomials.

More information

Fractions and Linear Equations

Fractions and Linear Equations Fractions and Linear Equations Fraction Operations While you can perform operations on fractions using the calculator, for this worksheet you must perform the operations by hand. You must show all steps

More information

Greatest Common Factor (GCF) Factoring

Greatest Common Factor (GCF) Factoring Section 4 4: Greatest Common Factor (GCF) Factoring The last chapter introduced the distributive process. The distributive process takes a product of a monomial and a polynomial and changes the multiplication

More information

Rational Exponents. Squaring both sides of the equation yields. and to be consistent, we must have

Rational Exponents. Squaring both sides of the equation yields. and to be consistent, we must have 8.6 Rational Exponents 8.6 OBJECTIVES 1. Define rational exponents 2. Simplify expressions containing rational exponents 3. Use a calculator to estimate the value of an expression containing rational exponents

More information

Operations with Algebraic Expressions: Multiplication of Polynomials

Operations with Algebraic Expressions: Multiplication of Polynomials Operations with Algebraic Expressions: Multiplication of Polynomials The product of a monomial x monomial To multiply a monomial times a monomial, multiply the coefficients and add the on powers with the

More information

Solving Rational Equations

Solving Rational Equations Lesson M Lesson : Student Outcomes Students solve rational equations, monitoring for the creation of extraneous solutions. Lesson Notes In the preceding lessons, students learned to add, subtract, multiply,

More information

Clifton High School Mathematics Summer Workbook Algebra 1

Clifton High School Mathematics Summer Workbook Algebra 1 1 Clifton High School Mathematics Summer Workbook Algebra 1 Completion of this summer work is required on the first day of the school year. Date Received: Date Completed: Student Signature: Parent Signature:

More information

Accentuate the Negative: Homework Examples from ACE

Accentuate the Negative: Homework Examples from ACE Accentuate the Negative: Homework Examples from ACE Investigation 1: Extending the Number System, ACE #6, 7, 12-15, 47, 49-52 Investigation 2: Adding and Subtracting Rational Numbers, ACE 18-22, 38(a),

More information

2.3 Solving Equations Containing Fractions and Decimals

2.3 Solving Equations Containing Fractions and Decimals 2. Solving Equations Containing Fractions and Decimals Objectives In this section, you will learn to: To successfully complete this section, you need to understand: Solve equations containing fractions

More information

Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.

Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. Algebra 2 - Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers - {1,2,3,4,...}

More information

Chapter 4. Polynomials

Chapter 4. Polynomials 4.1. Add and Subtract Polynomials KYOTE Standards: CR 8; CA 2 Chapter 4. Polynomials Polynomials in one variable are algebraic expressions such as 3x 2 7x 4. In this example, the polynomial consists of

More information

Radicals - Multiply and Divide Radicals

Radicals - Multiply and Divide Radicals 8. Radicals - Multiply and Divide Radicals Objective: Multiply and divide radicals using the product and quotient rules of radicals. Multiplying radicals is very simple if the index on all the radicals

More information

Rational Expressions - Complex Fractions

Rational Expressions - Complex Fractions 7. Rational Epressions - Comple Fractions Objective: Simplify comple fractions by multiplying each term by the least common denominator. Comple fractions have fractions in either the numerator, or denominator,

More information

Lesson Plan -- Rational Number Operations

Lesson Plan -- Rational Number Operations Lesson Plan -- Rational Number Operations Chapter Resources - Lesson 3-12 Rational Number Operations - Lesson 3-12 Rational Number Operations Answers - Lesson 3-13 Take Rational Numbers to Whole-Number

More information

Chapter 4 -- Decimals

Chapter 4 -- Decimals Chapter 4 -- Decimals $34.99 decimal notation ex. The cost of an object. ex. The balance of your bank account ex The amount owed ex. The tax on a purchase. Just like Whole Numbers Place Value - 1.23456789

More information

Prime Factorization, Greatest Common Factor (GCF), and Least Common Multiple (LCM)

Prime Factorization, Greatest Common Factor (GCF), and Least Common Multiple (LCM) Prime Factorization, Greatest Common Factor (GCF), and Least Common Multiple (LCM) Definition of a Prime Number A prime number is a whole number greater than 1 AND can only be divided evenly by 1 and itself.

More information

1.3 Algebraic Expressions

1.3 Algebraic Expressions 1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,

More information

Section 4.1 Rules of Exponents

Section 4.1 Rules of Exponents Section 4.1 Rules of Exponents THE MEANING OF THE EXPONENT The exponent is an abbreviation for repeated multiplication. The repeated number is called a factor. x n means n factors of x. The exponent tells

More information

6.1 The Greatest Common Factor; Factoring by Grouping

6.1 The Greatest Common Factor; Factoring by Grouping 386 CHAPTER 6 Factoring and Applications 6.1 The Greatest Common Factor; Factoring by Grouping OBJECTIVES 1 Find the greatest common factor of a list of terms. 2 Factor out the greatest common factor.

More information

Radicals - Rationalize Denominators

Radicals - Rationalize Denominators 8. Radicals - Rationalize Denominators Objective: Rationalize the denominators of radical expressions. It is considered bad practice to have a radical in the denominator of a fraction. When this happens

More information

Here are some examples of combining elements and the operations used:

Here are some examples of combining elements and the operations used: MATRIX OPERATIONS Summary of article: What is an operation? Addition of two matrices. Multiplication of a Matrix by a scalar. Subtraction of two matrices: two ways to do it. Combinations of Addition, Subtraction,

More information

Polynomials. 4-4 to 4-8

Polynomials. 4-4 to 4-8 Polynomials 4-4 to 4-8 Learning Objectives 4-4 Polynomials Monomials, binomials, and trinomials Degree of a polynomials Evaluating polynomials functions Polynomials Polynomials are sums of these "variables

More information

SIMPLIFYING SQUARE ROOTS

SIMPLIFYING SQUARE ROOTS 40 (8-8) Chapter 8 Powers and Roots 8. SIMPLIFYING SQUARE ROOTS In this section Using the Product Rule Rationalizing the Denominator Simplified Form of a Square Root In Section 8. you learned to simplify

More information

Section 1. Finding Common Terms

Section 1. Finding Common Terms Worksheet 2.1 Factors of Algebraic Expressions Section 1 Finding Common Terms In worksheet 1.2 we talked about factors of whole numbers. Remember, if a b = ab then a is a factor of ab and b is a factor

More information

1.6 The Order of Operations

1.6 The Order of Operations 1.6 The Order of Operations Contents: Operations Grouping Symbols The Order of Operations Exponents and Negative Numbers Negative Square Roots Square Root of a Negative Number Order of Operations and Negative

More information

A.2. Exponents and Radicals. Integer Exponents. What you should learn. Exponential Notation. Why you should learn it. Properties of Exponents

A.2. Exponents and Radicals. Integer Exponents. What you should learn. Exponential Notation. Why you should learn it. Properties of Exponents Appendix A. Exponents and Radicals A11 A. Exponents and Radicals What you should learn Use properties of exponents. Use scientific notation to represent real numbers. Use properties of radicals. Simplify

More information

This is a square root. The number under the radical is 9. (An asterisk * means multiply.)

This is a square root. The number under the radical is 9. (An asterisk * means multiply.) Page of Review of Radical Expressions and Equations Skills involving radicals can be divided into the following groups: Evaluate square roots or higher order roots. Simplify radical expressions. Rationalize

More information

Welcome to Math 19500 Video Lessons. Stanley Ocken. Department of Mathematics The City College of New York Fall 2013

Welcome to Math 19500 Video Lessons. Stanley Ocken. Department of Mathematics The City College of New York Fall 2013 Welcome to Math 19500 Video Lessons Prof. Department of Mathematics The City College of New York Fall 2013 An important feature of the following Beamer slide presentations is that you, the reader, move

More information

Math 10C. Course: Polynomial Products and Factors. Unit of Study: Step 1: Identify the Outcomes to Address. Guiding Questions:

Math 10C. Course: Polynomial Products and Factors. Unit of Study: Step 1: Identify the Outcomes to Address. Guiding Questions: Course: Unit of Study: Math 10C Polynomial Products and Factors Step 1: Identify the Outcomes to Address Guiding Questions: What do I want my students to learn? What can they currently understand and do?

More information

7-2 Factoring by GCF. Warm Up Lesson Presentation Lesson Quiz. Holt McDougal Algebra 1

7-2 Factoring by GCF. Warm Up Lesson Presentation Lesson Quiz. Holt McDougal Algebra 1 7-2 Factoring by GCF Warm Up Lesson Presentation Lesson Quiz Algebra 1 Warm Up Simplify. 1. 2(w + 1) 2. 3x(x 2 4) 2w + 2 3x 3 12x Find the GCF of each pair of monomials. 3. 4h 2 and 6h 2h 4. 13p and 26p

More information

Answers to Basic Algebra Review

Answers to Basic Algebra Review Answers to Basic Algebra Review 1. -1.1 Follow the sign rules when adding and subtracting: If the numbers have the same sign, add them together and keep the sign. If the numbers have different signs, subtract

More information

MTH 086 College Algebra Essex County College Division of Mathematics Sample Review Questions 1 Created January 20, 2006

MTH 086 College Algebra Essex County College Division of Mathematics Sample Review Questions 1 Created January 20, 2006 MTH 06 College Algebra Essex County College Division of Mathematics Sample Review Questions 1 Created January 0, 006 Math 06, Introductory Algebra, covers the mathematical content listed below. In order

More information

Polynomials - Multiplying Polynomials

Polynomials - Multiplying Polynomials 5.5 Polynomials - Multiplying Polynomials Objective: Multiply polynomials. Multiplying polynomials can take several different forms based on what we are multiplying. We will first look at multiplying monomials,

More information

Polynomial Expression

Polynomial Expression DETAILED SOLUTIONS AND CONCEPTS - POLYNOMIAL EXPRESSIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you! PLEASE NOTE

More information

MATH 108 REVIEW TOPIC 10 Quadratic Equations. B. Solving Quadratics by Completing the Square

MATH 108 REVIEW TOPIC 10 Quadratic Equations. B. Solving Quadratics by Completing the Square Math 108 T10-Review Topic 10 Page 1 MATH 108 REVIEW TOPIC 10 Quadratic Equations I. Finding Roots of a Quadratic Equation A. Factoring B. Quadratic Formula C. Taking Roots II. III. Guidelines for Finding

More information

Radicals - Multiply and Divide Radicals

Radicals - Multiply and Divide Radicals 8. Radicals - Multiply and Divide Radicals Objective: Multiply and divide radicals using the product and quotient rules of radicals. Multiplying radicals is very simple if the index on all the radicals

More information

SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS

SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS (Section 0.6: Polynomial, Rational, and Algebraic Expressions) 0.6.1 SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS LEARNING OBJECTIVES Be able to identify polynomial, rational, and algebraic

More information

5.1 Radical Notation and Rational Exponents

5.1 Radical Notation and Rational Exponents Section 5.1 Radical Notation and Rational Exponents 1 5.1 Radical Notation and Rational Exponents We now review how exponents can be used to describe not only powers (such as 5 2 and 2 3 ), but also roots

More information

3.3 Addition and Subtraction of Rational Numbers

3.3 Addition and Subtraction of Rational Numbers 3.3 Addition and Subtraction of Rational Numbers In this section we consider addition and subtraction of both fractions and decimals. We start with addition and subtraction of fractions with the same denominator.

More information

MTH 092 College Algebra Essex County College Division of Mathematics Sample Review Questions 1 Created January 17, 2006

MTH 092 College Algebra Essex County College Division of Mathematics Sample Review Questions 1 Created January 17, 2006 MTH 092 College Algebra Essex County College Division of Mathematics Sample Review Questions Created January 7, 2006 Math 092, Elementary Algebra, covers the mathematical content listed below. In order

More information

Multiplication and Division Properties of Radicals. b 1. 2. a Division property of radicals. 1 n ab 1ab2 1 n a 1 n b 1 n 1 n a 1 n b

Multiplication and Division Properties of Radicals. b 1. 2. a Division property of radicals. 1 n ab 1ab2 1 n a 1 n b 1 n 1 n a 1 n b 488 Chapter 7 Radicals and Complex Numbers Objectives 1. Multiplication and Division Properties of Radicals 2. Simplifying Radicals by Using the Multiplication Property of Radicals 3. Simplifying Radicals

More information

Properties of Real Numbers

Properties of Real Numbers 16 Chapter P Prerequisites P.2 Properties of Real Numbers What you should learn: Identify and use the basic properties of real numbers Develop and use additional properties of real numbers Why you should

More information

COWLEY COUNTY COMMUNITY COLLEGE REVIEW GUIDE Compass Algebra Level 2

COWLEY COUNTY COMMUNITY COLLEGE REVIEW GUIDE Compass Algebra Level 2 COWLEY COUNTY COMMUNITY COLLEGE REVIEW GUIDE Compass Algebra Level This study guide is for students trying to test into College Algebra. There are three levels of math study guides. 1. If x and y 1, what

More information

A Year-long Pathway to Complete MATH 1111: College Algebra

A Year-long Pathway to Complete MATH 1111: College Algebra A Year-long Pathway to Complete MATH 1111: College Algebra A year-long path to complete MATH 1111 will consist of 1-2 Learning Support (LS) classes and MATH 1111. The first semester will consist of the

More information

Algebra Success. [OBJECTIVE] The student will learn how to multiply monomials and polynomials.

Algebra Success. [OBJECTIVE] The student will learn how to multiply monomials and polynomials. Algebra Success T697 [OBJECTIVE] The student will learn how to multiply monomials and polynomials. [MATERIALS] Student pages S269 S278 Transparencies T704, T705, T707, T709, T711, T713, T715 Red and yellow

More information

COLLEGE ALGEBRA. Paul Dawkins

COLLEGE ALGEBRA. Paul Dawkins COLLEGE ALGEBRA Paul Dawkins Table of Contents Preface... iii Outline... iv Preliminaries... Introduction... Integer Exponents... Rational Exponents... 9 Real Exponents...5 Radicals...6 Polynomials...5

More information

To Evaluate an Algebraic Expression

To Evaluate an Algebraic Expression 1.5 Evaluating Algebraic Expressions 1.5 OBJECTIVES 1. Evaluate algebraic expressions given any signed number value for the variables 2. Use a calculator to evaluate algebraic expressions 3. Find the sum

More information

Factoring. Factoring Monomials Monomials can often be factored in more than one way.

Factoring. Factoring Monomials Monomials can often be factored in more than one way. Factoring Factoring is the reverse of multiplying. When we multiplied monomials or polynomials together, we got a new monomial or a string of monomials that were added (or subtracted) together. For example,

More information

Transition To College Mathematics

Transition To College Mathematics Transition To College Mathematics In Support of Kentucky s College and Career Readiness Program Northern Kentucky University Kentucky Online Testing (KYOTE) Group Steve Newman Mike Waters Janis Broering

More information

Five 5. Rational Expressions and Equations C H A P T E R

Five 5. Rational Expressions and Equations C H A P T E R Five C H A P T E R Rational Epressions and Equations. Rational Epressions and Functions. Multiplication and Division of Rational Epressions. Addition and Subtraction of Rational Epressions.4 Comple Fractions.

More information

Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.

Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers. Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used

More information

Factoring Trinomials of the Form x 2 bx c

Factoring Trinomials of the Form x 2 bx c 4.2 Factoring Trinomials of the Form x 2 bx c 4.2 OBJECTIVES 1. Factor a trinomial of the form x 2 bx c 2. Factor a trinomial containing a common factor NOTE The process used to factor here is frequently

More information

PURPOSE: To practice adding and subtracting integers with number lines and algebra tiles (charge method). SOL: 7.3 NUMBER LINES

PURPOSE: To practice adding and subtracting integers with number lines and algebra tiles (charge method). SOL: 7.3 NUMBER LINES Name: Date: Block: PURPOSE: To practice adding and subtracting integers with number lines and algebra tiles (charge method). SOL: 7.3 Examples: NUMBER LINES Use the below number lines to model the given

More information

Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P.

Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P. MATH 11011 FINDING REAL ZEROS KSU OF A POLYNOMIAL Definitions: Polynomial: is a function of the form P (x) = a n x n + a n 1 x n 1 + + a x + a 1 x + a 0. The numbers a n, a n 1,..., a 1, a 0 are called

More information

Polynomials - Multiplying

Polynomials - Multiplying 5.5 Polynomials - Multiplying Multiplying polynomials can take several different forms based on what we are multiplying. We will first look at multiplying monomials, then monomials by polynomials and finish

More information

FRACTIONS OPERATIONS

FRACTIONS OPERATIONS FRACTIONS OPERATIONS Summary 1. Elements of a fraction... 1. Equivalent fractions... 1. Simplification of a fraction... 4. Rules for adding and subtracting fractions... 5. Multiplication rule for two fractions...

More information

Maths Workshop for Parents 2. Fractions and Algebra

Maths Workshop for Parents 2. Fractions and Algebra Maths Workshop for Parents 2 Fractions and Algebra What is a fraction? A fraction is a part of a whole. There are two numbers to every fraction: 2 7 Numerator Denominator 2 7 This is a proper (or common)

More information

Systems of Equations - Addition/Elimination

Systems of Equations - Addition/Elimination 4.3 Systems of Equations - Addition/Elimination Objective: Solve systems of equations using the addition/elimination method. When solving systems we have found that graphing is very limited when solving

More information

Tool 1. Greatest Common Factor (GCF)

Tool 1. Greatest Common Factor (GCF) Chapter 4: Factoring Review Tool 1 Greatest Common Factor (GCF) This is a very important tool. You must try to factor out the GCF first in every problem. Some problems do not have a GCF but many do. When

More information

PREPARATION FOR MATH TESTING at CityLab Academy

PREPARATION FOR MATH TESTING at CityLab Academy PREPARATION FOR MATH TESTING at CityLab Academy compiled by Gloria Vachino, M.S. Refresh your math skills with a MATH REVIEW and find out if you are ready for the math entrance test by taking a PRE-TEST

More information

Section A-3 Polynomials: Factoring APPLICATIONS. A-22 Appendix A A BASIC ALGEBRA REVIEW

Section A-3 Polynomials: Factoring APPLICATIONS. A-22 Appendix A A BASIC ALGEBRA REVIEW A- Appendi A A BASIC ALGEBRA REVIEW C In Problems 53 56, perform the indicated operations and simplify. 53. ( ) 3 ( ) 3( ) 4 54. ( ) 3 ( ) 3( ) 7 55. 3{[ ( )] ( )( 3)} 56. {( 3)( ) [3 ( )]} 57. Show by

More information

CONTENTS. Please note:

CONTENTS. Please note: CONTENTS Introduction...iv. Number Systems... 2. Algebraic Expressions.... Factorising...24 4. Solving Linear Equations...8. Solving Quadratic Equations...0 6. Simultaneous Equations.... Long Division

More information

Indices and Surds. The Laws on Indices. 1. Multiplication: Mgr. ubomíra Tomková

Indices and Surds. The Laws on Indices. 1. Multiplication: Mgr. ubomíra Tomková Indices and Surds The term indices refers to the power to which a number is raised. Thus x is a number with an index of. People prefer the phrase "x to the power of ". Term surds is not often used, instead

More information

FACTORING OUT COMMON FACTORS

FACTORING OUT COMMON FACTORS 278 (6 2) Chapter 6 Factoring 6.1 FACTORING OUT COMMON FACTORS In this section Prime Factorization of Integers Greatest Common Factor Finding the Greatest Common Factor for Monomials Factoring Out the

More information

UNIT 3: POLYNOMIALS AND ALGEBRAIC FRACTIONS. A polynomial is an algebraic expression that consists of a sum of several monomials. x n 1...

UNIT 3: POLYNOMIALS AND ALGEBRAIC FRACTIONS. A polynomial is an algebraic expression that consists of a sum of several monomials. x n 1... UNIT 3: POLYNOMIALS AND ALGEBRAIC FRACTIONS. Polynomials: A polynomial is an algebraic expression that consists of a sum of several monomials. Remember that a monomial is an algebraic expression as ax

More information