# MAGNETIC EFFECTS OF ELECTRIC CURRENT

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 CHAPTER 13 MAGNETIC EFFECT OF ELECTRIC CURRENT In this chapter, we will study the effects of electric current : 1. Hans Christian Oersted ( ) Oersted showed that electricity and magnetism are related to each other. His research later used in radio, television etc. The unit of magnetic field strength is name Oersted in his honour. 2. Oersted Experiment X R K Y + XY is conductor (Cu wire) through which current is passed On passing the current through the copper wire XY in the circuit, the compass needle which is placed near the conductor gets deflected. If we reverse the direction of current, the compass needle deflect in reverse direction. If we stop the flow of current, the needle comes at rest. Hence, it conclude that electricity and magnetism are linked to each other. It shows that whenever the current will flow through the conductor, then magnetic field around. it will developer 3. Magnetic Field It is the region surrounding a magnet, in which force of magnet can be detected. It is a vector quantity, having both direction & magnitude. 4. Compass needle It is a small bar magnet, whose north end is pointing towards north pole and south end is pointing towards south pole of earth. 5. Magnetic field lines When a bar magnet is placed on a card board and iron fillings are sprinkled, they will arrange themselves in a pattern as shown below. 137

2 N The lines along which the iron filling align themselves represent magnetic field lines. Hence, magnetic field line is a path along which a hypothetical free north pole tend to move towards south pole. 6. Characteristics of Magnetic field lines : (1) The direction of magnetic field lines outside the magnet is always from north pole to south pole of bar magnet and are indicated by an arrow. Inside the magnetic, the direction of field lines is from its south pole to north pole Thus magnetic field lines are closed curve (2) The strength of magnetic field is expressed by the closeness of magnetic field lines. Closer the lines, more will be the strength and farther the lines, less will be the magnetic field strength. (3) No two field lines will intersect each other. If they intersects, then at point of intersection the compass needle will show two direction of magnetic field which is not possible. 7. Magnetic field due to Current Carrying Conductor Tangent at the point of intersection shows two direction. N N x Cu wire y x Cu wire y + + (a) (b) 138

3 The above electric circuit in which a copper is placed paralled to a compass needle, shows the deflection in needle gets reversed, when the direction of current reversed. Hence electricity and magnetism are related to each other. 8. Right Hand Thumb Rule : It is a convenient way of finding the direction of magnetic field associated with current carrying conductor. Hold the straight were carrying current in your right hand such that thumb points towards the direction of current, then your folded fingers around the conductor will show the direction of magnetic field. Direction of magnetic field lines. This rule is also called Maxwell s corkscrew rule. 9. Magnetic Field due to Current through a traight Conductor Direction of Current Direction of magnetic field + A Pheostat + Direction can be explained using Right Hand Thumb Rule 10. Magnetic Field due to Current through a circular Loop Z + 139

4 Every point on the wire carrying current give rise to the magnetic field, appearing as a straight line at the centre of loop. By applying Right hand Thumb rule, we can find the direction of magnetic field at every section of the wire. 11. olenoid A Coil of many circular turns of insulated copper wire wrapped closely in the shape of a cylinder is called solenoid. 12. Magnetic field due to a current in a solenoid N + Using R.H. Thumb Rule, we can draw the pattern of magnetic field lives around a current carrying solenod. One end of the solenoid behaves as a magnetic north pole, white the other end behave as the outh Pole. The filed lines inside the solenoid are in form of parallel straigh lines, that implies that magnetic field inside the solenoid is same at all points i.e. Field is uniform. 13. Electromagnet trong magnetic field inside the solenoid can be used to magnetise a magnetic material for example soft iron, when it is placed inside the coil. The magnet so formed is called electromagnet. 14. Force on a current carrying conductor in a magnetic field. Andre Marie Ampere ( ) suggested that the magnet also exert an equal and opposite force on the current carrying conductor. Experiment Iron tand + N rod Current Carrying Aluminium rod should lie between the two poles of magnet Horse shoe magnet 140

5 We will observe that the rod will displace i.e. the rod will experience a force, when it is placed in magnetic field, in a perpendicular direction to its length. The direction of the exert force will be reversed if the direction of current through the conductor is reversed. If we change the direction of field by inter changing the two poles of the magnet, again the direction of exert force will change. Therefore the direction of exerted force depends on (1) direction of current (2) direction of magnetic field lines. 15. Left Hand Fleming Rule M other F ather C hild (Force) Motion Field Current T humb Fore finger Middle finger Thrust (force) Three of them perpendicular to each other. According to this rule, stretch thumb, forefinger and middle finger of your left hand such that they are mutually perpendicular to each other. If fore finger represent direction of magnetic field & middle finger represent direction of current, then thumb will point in the direction motion or force acting on the conductor. Functioning of electric motor is based on this rule. It convert electrical energy into mechanical energy. 16. Michael Faraday Gave the law of Electro magnetic Induction 17. Galvanometer It is an instrument that can detect the presence of a current in a circuit. If pointer is at zero (the centre of scale) the there will be no flow of current. If the pointer deflect on either side right or left, this will show the direction of current. Represented by o G 141

6 18. Electro Magnetic Induction Can be explained by two experiments (a) FIRT EXPERIMENT ELF INDUCTION N G G G In this experiment, when the north pole of bar magnet is brought closes to the coil or away from the coil, we see momentary deflection in the needle of galvanometer on either side of null point. First right and then left. imilarly, if we keep the magnet stationary and coil is made to move towards or away from the north pole of magnet. Again we will observe deflection in the needle of galvanometer. If both bar magnet and coil kept stationary, there will be no deflection in galvanometer. This experiment can also be done with the south pole of magnet, we will observe the deflection in galvanometer, but it would be in opposite direction to the previous case. It concludes that motion of magnet with respect to coil or vice-versa, changes the magnetic field. Due to this change in magnetic field lines, potential difference is induced in the same coil, which set up an induced current in the circuit. (b) ECOND EXPERIMENT Mutual Induction Primary Coil econdary Coil + G Coil 1 Coil 2 In this experiment plug in the key that is connect coil with battery and observe the deflection in galvanometer. Now plug out the key that is disconnect the coil-1 from battery and observe the deflection in galvanometer, which will be in reverse direction. Hence, we conclude that potential difference is induced in secondary coil (coil-2), whenever there is a change in current, in primary coil (coil-1) (by on and off of key). 142

7 This is because, whenever there is change in current in primary coil Magnetic field associated with it also changes Now, magnetic field lines around the secondary coil (coil-2) will change and induces the electric current in it (observed by the deflectionof needle of Galvanometer in secondary circuit) This process, by which changing of strength of current in primary coil, induces a current in secondary coil is called Electromagnetic Induction The induced current is found to be highest when the direction of motion of coil is at right angles to the magnetic field. 19. Fleming s Right Hand Rule (1) (2) (3) M other F ather C hild Motion (movement of conductor) Field (Magnetic) Current (Induced) Thumb Fore finger Middle finger Three of them perpendicular to each other. Rule can be defined at tretch thumb, forefinger and middle finger of right hand, so that they are perpendicular to each other. The forefinger indicates direction of magnetic field, thumb shows the direction of motion of conductor, then the middle finger will shows the direction of induced current. Electrical generator is based on the principle of electro magnetic induction. It convert mechanical energy into electrical energy. Current Alternate Current (AC) (1) Changes the direction periodically after equal interval of time Direct Current (DC) Does not change its direction with time it is unidirectional 143

8 Current I (A) It has frequency 50Hz in India 60 Hz in America time (s) I (A) time (s) It has frequency OHz 21. Advantages of Alternate Current (AC) over Direct Current (DC) Electric power can be transmitted to longer distances without much loss of energy. Therefore cost of transmission is low. In India the frequency of AC is 50Hz. It means after every 1/100 second it changes its direction. 22. Domestic Electric Circuits : In our homes, the electric power supplied is of potential difference V = 220V and frequency 50Hz. It consist of three wires : (1) Wire with red insulation cover LIVE WIRE (POITIVE) Live wire is at high potential of 220V (2) Wire with black insulation cover NEUTRAL WIRE (NEGATIVE) Neutral wire is at zero potential Therefore, the potential difference between the two is 220V. (3) Wire with Green insulation cover EARTH WIRE it is connected to a copper plate deep in the earth near house. The metallic body of the appliances is connected with the earth wire as a safety measure. Function Earth wire provide a low resistance to the current hence any leakage of current to the metallic body of the appliances, keep its potential equal to that of earth. That means zero potential and the user is saved from severe electric shock. 144

9 23. Earth wire Live wire Ueutral wire Electrical Fuse board Electricity meter Distribution Box containing main switch & fuse for each current Point to be noted in domestic circuit (1) Each appliance has a seperate switch of ON/OFF (2) In order to provide equal potential difference to each appliance, they should be connected parallel to each other. o that they can be operated at any time. (3) We have two electric circuit in our home 24. hort Circuiting One consist of current of 15A for high power appliances Other circuit consist of current 5A for low power appliances. Due to fault in the appliances or damage in the insulation of two wires, the circuit will offer zero or negligible resistance to the flow of current. Due to low resistance, large amount of current will flow. 2 According to Joule s law of heating effect (H I ) heat is produced in live wire and produces spark, damaging the device and wiring. 25. Overloading Overloading can be caused by (1) Connecting too many appliances to a single socket or (2) accidental rise in supply voltage if the total current drawn by the appliances at a particular time exceeds the bearing capacity of that wire, it will get heated up. This is known as overloading. Fuse a safety device can prevent the circuit from overloading and short circuiting. 145

10 Very hort Answers (1 Mark) EXERCIE (Question Bank) 1. What is the frequency of AC used in India? 2. Name the point where the iron filling are collected more? 3. Who discovered electro magnetic induction? 4. Why does a compass needle get deflected when brought near the bar magnet? 5. If both the coil and the magnet are stationary, will there be deflection in galvanometer? 6. Why magnetic field lines do not intersect each other? 7. What is the advantage of Alternate Current over Direct current? 8. What do you understand by short circuiting? 9. When the force experienced by a current carrying conductor placed in a magnetic field is maximum? 10. Write the factors affecting the magnetic field due to a straight conductor? hort Answers (2 Marks) 1. A charged particles enters at right angles into a uniform magnetic field. What is the nature of charge particle, if it experiences a force in a direction pointing vertically out of the page. Magnetic field 2. Name the Rule Charge particle (use left hand flemings rule) (1) Force experience by a current - carrying conductor placed in a magnetic field. (2) Direction of magnetic field lines associated with a current carrying conductor. (3) Direction of induced current in a coil due to its rotation in magnetic field. 146

11 3. What is solenoid? Where the magnetic field is uniform in solenoid? 4. Draw the pattern of magnetic field lines due to current carrying straight conductor? (5) Name two safety measures commonly used in electric circuit and appliances? (6) What is overloading? Long Answer (5 Marks) 1. Explain the phenomenon of Electro magnetic Induction with the help of an activity. Write its one application. 2. Draw the schematic diagram of domestic circuit. Write the colour and function of Neutral wire, Live wire and Earth wire. 147

### Magnetic Effects of Electric Current

CHAPTER 13 Magnetic Effects of Electric Current In the previous Chapter on Electricity we learnt about the heating effects of electric current. What could be the other effects of electric current? We know

### BASANT S SCIENCE ACADEMY STUDY MATERIAL MAGNETIC EFFECT OF CURRENT

BASANT S SCIENCE ACADEMY Why does a compass needle get deflected when brought near a bar magnet? A compass needle is a small bar magnet. When it is brought near a bar magnet, its magnetic field lines interact

### Chapter 14 Magnets and

Chapter 14 Magnets and Electromagnetism How do magnets work? What is the Earth s magnetic field? Is the magnetic force similar to the electrostatic force? Magnets and the Magnetic Force! We are generally

### Magnetism. What causes magnetism? Magnetic Force

1 2 Magnetism Top view of iron filings sprinkled around a magnet. The filings trace out a pattern of magnetic field lines in the space surrounding the magnet. Interestingly, the magnetic field lines continue

### Question Bank. 1. Electromagnetism 2. Magnetic Effects of an Electric Current 3. Electromagnetic Induction

1. Electromagnetism 2. Magnetic Effects of an Electric Current 3. Electromagnetic Induction 1. Diagram below shows a freely suspended magnetic needle. A copper wire is held parallel to the axis of magnetic

### Chapter 22: Electric motors and electromagnetic induction

Chapter 22: Electric motors and electromagnetic induction The motor effect movement from electricity When a current is passed through a wire placed in a magnetic field a force is produced which acts on

### Chapter 14 Magnets and Electromagnetism

Chapter 14 Magnets and Electromagnetism Magnets and Electromagnetism In the 19 th century experiments were done that showed that magnetic and electric effects were just different aspect of one fundamental

### In order to get the G.C.S.E. grade you are capable of, you must make your own revision notes using your Physics notebook.

In order to get the G.C.S.E. grade you are capable of, you must make your own revision notes using your Physics notebook. When summarising notes, use different colours and draw diagrams/pictures. If you

Copyright 2014 Edmentum - All rights reserved. Science Physics Electromagnetic Blizzard Bag 2014-2015 1. Two coils of insulated wire are placed side by side, as shown in the illustration. The blue lines

### 1. The diagram below represents magnetic lines of force within a region of space.

1. The diagram below represents magnetic lines of force within a region of space. 4. In which diagram below is the magnetic flux density at point P greatest? (1) (3) (2) (4) The magnetic field is strongest

### Physics Notes for Class 12 Chapter 4 Moving Charges and Magnetrism

1 P a g e Physics Notes for Class 12 Chapter 4 Moving Charges and Magnetrism Oersted s Experiment A magnetic field is produced in the surrounding of any current carrying conductor. The direction of this

### Name: Date: Regents Physics Mr. Morgante UNIT 4B Magnetism

Name: Regents Physics Date: Mr. Morgante UNIT 4B Magnetism Magnetism -Magnetic Force exists b/w charges in motion. -Similar to electric fields, an X stands for a magnetic field line going into the page,

### Level 2 Physics: Demonstrate understanding of electricity and electromagnetism

Level 2 Physics: Demonstrate understanding of electricity and electromagnetism Static Electricity: Uniform electric field, electric field strength, force on a charge in an electric field, electric potential

### AP Physics C Chapter 23 Notes Yockers Faraday s Law, Inductance, and Maxwell s Equations

AP Physics C Chapter 3 Notes Yockers Faraday s aw, Inductance, and Maxwell s Equations Faraday s aw of Induction - induced current a metal wire moved in a uniform magnetic field - the charges (electrons)

### Magnets and the Magnetic Force

Magnets and the Magnetic Force We are generally more familiar with magnetic forces than with electrostatic forces. Like the gravitational force and the electrostatic force, this force acts even when the

### Chapter 19 Magnetism Magnets Poles of a magnet are the ends where objects are most strongly attracted Two poles, called north and south Like poles

Chapter 19 Magnetism Magnets Poles of a magnet are the ends where objects are most strongly attracted Two poles, called north and south Like poles repel each other and unlike poles attract each other Similar

### Question Details C14: Magnetic Field Direction Abbott [ ]

Phys 1114: Assignment 9 Abbott (5420633) Due: Mon Apr 7 2014 11:59 PM CDT Question 1 2 3 4 5 6 7 8 9 10 11 1. Question Details C14: Magnetic Field Direction Abbott [2861537] a) A wire is oriented horizontally

### The purposes of this experiment are to test Faraday's Law qualitatively and to test Lenz's Law.

260 17-1 I. THEORY EXPERIMENT 17 QUALITATIVE STUDY OF INDUCED EMF Along the extended central axis of a bar magnet, the magnetic field vector B r, on the side nearer the North pole, points away from this

### Pearson Physics Level 30 Unit VI Forces and Fields: Chapter 12 Solutions

Concept Check (top) Pearson Physics Level 30 Unit VI Forces and Fields: Chapter 1 Solutions Student Book page 583 Concept Check (bottom) The north-seeking needle of a compass is attracted to what is called

### STUDY GUIDE: ELECTRICITY AND MAGNETISM

319 S. Naperville Road Wheaton, IL 60187 www.questionsgalore.net Phone: (630) 580-5735 E-Mail: info@questionsgalore.net Fax: (630) 580-5765 STUDY GUIDE: ELECTRICITY AND MAGNETISM An atom is made of three

### MAGNETISM MAGNETISM. Principles of Imaging Science II (120)

Principles of Imaging Science II (120) Magnetism & Electromagnetism MAGNETISM Magnetism is a property in nature that is present when charged particles are in motion. Any charged particle in motion creates

### Chapter 31. Faraday s Law

Chapter 31 Faraday s Law Michael Faraday 1791 1867 British physicist and chemist Great experimental scientist Contributions to early electricity include: Invention of motor, generator, and transformer

### Magnetic Forces and Magnetic Fields

1 Magnets Magnets are metallic objects, mostly made out of iron, which attract other iron containing objects (nails) etc. Magnets orient themselves in roughly a north - south direction if they are allowed

### Chapter 23 Magnetic Flux and Faraday s Law of Induction

Chapter 23 Magnetic Flux and Faraday s Law of Induction 23.1 Induced EMF 23.2 Magnetic Flux 23.3 Faraday s Law of Induction 23.4 Lenz s Law 23.5 Mechanical Work and Electrical Energy 23.6 Generators and

### Electrical discharge in air e.g. lightning

Static Electricity electron transfer causes static electricity results from an imbalance of charges can occur by induction, friction, and contact You need to describe the direction of motion of charges

### GENERATORS AND MOTORS

GENERATORS AND MOTORS A device that converts mechanical energy (energy of motion windmills, turbines, nuclear power, falling water, or tides) into electrical energy is called an electric generator. The

### Circuits and Electricity

Have you ever thought about how much we depend on electricity? Electricity is a form of energy that runs computers, appliances, and radios. Electricity lights our homes, schools, and office buildings.

### ElectroMagnetic Induction. AP Physics B

ElectroMagnetic Induction AP Physics B What is E/M Induction? Electromagnetic Induction is the process of using magnetic fields to produce voltage, and in a complete circuit, a current. Michael Faraday

### Teacher Content Brief

Teacher Content Brief Electric Motors Introduction Motors convert electric energy into mechanical energy. This mechanical energy turns the propellers on your Sea Perch. But what makes a motor spin? To

### Chapter 14: Magnets and Electromagnetism

Chapter 14: Magnets and Electromagnetism 1. Electrons flow around a circular wire loop in a horizontal plane, in a direction that is clockwise when viewed from above. This causes a magnetic field. Inside

### physics 112N electromagnetic induction

physics 112N electromagnetic induction experimental basis of induction! seems we can induce a current in a loop with a changing magnetic field physics 112N 2 magnetic flux! useful to define a quantity

### 6. ELECTROMAGNETIC INDUCTION

6. ELECTROMAGNETIC INDUCTION Questions with answers 1. Name the phenomena in which a current induced in coil due to change in magnetic flux linked with it. Answer: Electromagnetic Induction 2. Define electromagnetic

### Electricity. Short Answer Questions QUESTIONS

S.N O Electricity Short Answer Questions QUESTIONS 1 A child has drawn the electric circuit to study Ohm s law as shown in Figure. His teacher told that the circuit diagram needs correction. Study the

### Physics 12 Study Guide: Electromagnetism Magnetic Forces & Induction. Text References. 5 th Ed. Giancolli Pg

Objectives: Text References 5 th Ed. Giancolli Pg. 588-96 ELECTROMAGNETISM MAGNETIC FORCE AND FIELDS state the rules of magnetic interaction determine the direction of magnetic field lines use the right

### ELECTROMAGNETISM I. CAUSES OF MAGNETISM

I. CAUSES OF MAGNETISM ELECTROMAGNETISM 1. Moving electric fields (moving charges) cause magnetism. Yes, that current moving in electric circuits cause a magnetic field. More later! 2. Elementary nature

### PHY222 Lab 7 - Magnetic Fields and Right Hand Rules Magnetic forces on wires, electron beams, coils; direction of magnetic field in a coil

PHY222 Lab 7 - Magnetic Fields and Right Hand Rules Magnetic forces on wires, electron beams, coils; direction of magnetic field in a coil Print Your Name Print Your Partners' Names You will return this

### Physics 1653 Exam 3 - Review Questions

Physics 1653 Exam 3 - Review Questions 3.0 Two uncharged conducting spheres, A and B, are suspended from insulating threads so that they touch each other. While a negatively charged rod is held near, but

### 2. B The magnetic properties of a material depend on its. A) shape B) atomic structure C) position D) magnetic poles

ame: Magnetic Properties 1. B What happens if you break a magnet in half? A) One half will have a north pole only and one half will have a south pole only. B) Each half will be a new magnet, with both

### Fall 12 PHY 122 Homework Solutions #8

Fall 12 PHY 122 Homework Solutions #8 Chapter 27 Problem 22 An electron moves with velocity v= (7.0i - 6.0j)10 4 m/s in a magnetic field B= (-0.80i + 0.60j)T. Determine the magnitude and direction of the

### Chapter 29. Magnetic Fields

Chapter 29 Magnetic Fields A Brief History of Magnetism 13 th century BC Chinese used a compass 800 BC Uses a magnetic needle Probably an invention of Arabic or Indian origin Greeks Discovered magnetite

### Electromagnetic Laboratory Stations

Electromagnetic Laboratory Stations The following laboratory exercises are designed to help you study magnetic fields produced by magnets and current carrying wires, and study other well-known electromagnetic

### Magnetism. Magnetism. Magnetic Fields and Magnetic Domains. Magnetic Fields and Magnetic Domains. Creating and Destroying a Magnet

Magnetism Magnetism Opposite poles attract and likes repel Opposite poles attract and likes repel Like electric force, but magnetic poles always come in pairs (North, South) Like electric force, but magnetic

### Worked solutions Chapter 9 Magnets and electricity

9.1 Fundamentals of magnetism 1 A magnetic field exists at any point in space where a magnet or magnetic material (e.g. iron, nickel, cobalt) will experience a magnetic force. 2 C. The magnetic force between

### Electromagnetic Induction

. Electromagnetic Induction Concepts and Principles Creating Electrical Energy When electric charges move, their electric fields vary. In the previous two chapters we considered moving electric charges

### Magnets. We have all seen the demonstration where you put a magnet under a piece of glass, put some iron filings on top and see the effect.

Magnets We have all seen the demonstration where you put a magnet under a piece of glass, put some iron filings on top and see the effect. What you are seeing is another invisible force field known as

### Electromagnetic Induction - A

Electromagnetic Induction - A APPARATUS 1. Two 225-turn coils 2. Table Galvanometer 3. Rheostat 4. Iron and aluminum rods 5. Large circular loop mounted on board 6. AC ammeter 7. Variac 8. Search coil

### MOVING CHARGES AND MAGNETISM

MOVING CHARGES AND MAGNETISM 1. A circular Coil of 50 turns and radius 0.2m carries of current of 12A Find (a). magnetic field at the centre of the coil and (b) magnetic moment associated with it. 3 scores

### And in un-magnetized state, the molecular magnets are arranged randomly.

MAGNETISM A magnet is a piece of metal that attracts other metals. It has two poles i.e. North Pole and South Pole A pole This is a point or an area in a magnet where the attractive power seems to be concentrated.

### Reading Quiz. 1. Currents circulate in a piece of metal that is pulled through a magnetic field. What are these currents called?

Reading Quiz 1. Currents circulate in a piece of metal that is pulled through a magnetic field. What are these currents called? A. Induced currents B. Displacement currents C. Faraday s currents D. Eddy

### Magnetism Basics. Magnetic Domains: atomic regions of aligned magnetic poles Random Alignment Ferromagnetic Alignment. Net Effect = Zero!

Magnetism Basics Source: electric currents Magnetic Domains: atomic regions of aligned magnetic poles Random Alignment Ferromagnetic Alignment Net Effect = Zero! Net Effect = Additive! Bipolar: all magnets

### 5 Magnets and electromagnetism

Magnetism 5 Magnets and electromagnetism n our modern everyday life, the phenomenon of magnetism is associated with iron that is attracted by permanent magnets that can also be made of iron compounds.

### Chapter 4. Magnetic Materials and Circuits

Chapter 4 Magnetic Materials and Circuits Objectives List six characteristics of magnetic field. Understand the right-hand rule for current and magnetic fluxes. Define magnetic flux, flux density, magnetomotive

### Magnetic Induction Name: 1. Magnetic field of a coil of current 2. Comparison with the field of a bar magnet

Magnetic Induction ame: 1. Magnetic field of a coil of current Connect the large coil of wire to a 5 Volt DC power source. The diagram below represents the coil current cross-section. Use a compass to

### DIRECT CURRENT GENERATORS

DIRECT CURRENT GENERATORS Revision 12:50 14 Nov 05 INTRODUCTION A generator is a machine that converts mechanical energy into electrical energy by using the principle of magnetic induction. This principle

### 2. In Newton s universal law of gravitation the masses are assumed to be. B. masses of planets. D. spherical masses.

Practice Test: 41 marks (55 minutes) Additional Problem: 19 marks (7 minutes) 1. A spherical planet of uniform density has three times the mass of the Earth and twice the average radius. The magnitude

### ELECTRICITY & ELECTROMAGNETISM TRANSFORMERS + ETC

Circuitry, Formulas & Electricity Ch5 Bushong RT 244 12 Lect # 3 1 RT 244 WEEK 10 rev 2012 2 LECTURE # 3 ELECTRICITY & ELECTROMAGNETISM TRANSFORMERS + ETC BUSHONG CH. 4 & 5 REF: CARLTONS CH 3, 4 & 5 &

### Physics 30 Worksheet #10 : Magnetism From Electricity

Physics 30 Worksheet #10 : Magnetism From Electricity 1. Draw the magnetic field surrounding the wire showing electron current below. x 2. Draw the magnetic field surrounding the wire showing electron

### Magnetic Field Lines. Uniform Magnetic Field. Earth s Magnetic Field 6/3/2013

Chapter 33: Magnetism Ferromagnetism Iron, cobalt, gadolinium strongly magnetic Can cut a magnet to produce more magnets (no magnetic monopole) Electric fields can magnetize nonmagnetic metals Heat and

### Motor Fundamentals. DC Motor

Motor Fundamentals Before we can examine the function of a drive, we must understand the basic operation of the motor. It is used to convert the electrical energy, supplied by the controller, to mechanical

### Inductors & Inductance. Electronic Components

Electronic Components Induction In 1824, Oersted discovered that current passing though a coil created a magnetic field capable of shifting a compass needle. Seven years later, Faraday and Henry discovered

### How do you measure voltage and current in electric circuits? Materials

20A Electricity How do you measure voltage and current in electric circuits? Electricity Investigation 20A We use electricity every day, nearly every minute! In this Investigation you will build circuits

### Ch.20 Induced voltages and Inductance Faraday s Law

Ch.20 Induced voltages and Inductance Faraday s Law Last chapter we saw that a current produces a magnetic field. In 1831 experiments by Michael Faraday and Joseph Henry showed that a changing magnetic

### Building an Electric Motor

Activity 5 Building an Electric Motor Activity 5 Building an Electric Motor GOALS In this activity you will: Construct, operate, and explain a DC motor. Appreciate accidental discovery in physics. Measure

### PHY 212 LAB Magnetic Field As a Function of Current

PHY 212 LAB Magnetic Field As a Function of Current Apparatus DC Power Supply two D batteries one round bulb and socket a long wire 10-Ω resistor set of alligator clilps coil Scotch tape function generator

### Magnetic Fields and Their Effects

Name Date Time to Complete h m Partner Course/ Section / Grade Magnetic Fields and Their Effects This experiment is intended to give you some hands-on experience with the effects of, and in some cases

### 10.2 Electromagnets. What is an electromagnet? Chapter 10

In the last section you learned about permanent magnets and magnetism. There is another type of magnet, one that is created by electric current. This type of magnet is called an. What is an? Why do magnets

### 6. The diagram below represents magnetic lines of force within a region of space.

1. As the distance between two opposite magnetic poles increases, the flux density midway between them decreases remains the same increases 6. The diagram below represents magnetic lines of force within

### Objectives for the standardized exam

III. ELECTRICITY AND MAGNETISM A. Electrostatics 1. Charge and Coulomb s Law a) Students should understand the concept of electric charge, so they can: (1) Describe the types of charge and the attraction

### Vocabulary Electrical Energy Negative charge Electric Field Conductor Insulator Voltage Current Circuit breaker Fuse. Chapter 17.

Introduction to Electricity Table of Contents Bellringer Write a definition for electric charge in your own words in your science journal. When do you experience electric charges most, in winter or in

### Magnets and Electromagnets

Magnets and Electromagnets Objective/EQ Objective: Students will be able to describe the basic properties of magnets and electromagnets and they can produce an electric current. EQ: Can I describe the

### Field Lines Domains. Horseshoe Ring/Disc

Magnets Info Lab (25 pts) 1. nickel, cobalt, iron 2.Iron, Nickel,and Cobalt have an unmatched electron spinning either UP or DOWN. The result is an atom with a net spin and thus a magnetic field. 3, Field

### Special Instruments UNIT. Learning Objectives. 4.1 Introduction. 4.2 Power Factor Meter

UNIT 4 Special Instruments Learning Objectives Necessity of Special instruments Construction, working, applications of powerfactor meter, frequency meter, synchronoscope, meggar, tongue tester, multi-meter.

### Magnetism Conceptual Questions. Name: Class: Date:

Name: Class: Date: Magnetism 22.1 Conceptual Questions 1) A proton, moving north, enters a magnetic field. Because of this field, the proton curves downward. We may conclude that the magnetic field must

### Magnetic Forces. Background: Experiments:

Magnetic Forces Magnetism is a force observed in the attraction of iron by certain metals, including magnetized iron, nickel, and cobalt. The magnetic force can be felt but it can not be seen. It can effect

### Force on Moving Charges in a Magnetic Field

[ Assignment View ] [ Eðlisfræði 2, vor 2007 27. Magnetic Field and Magnetic Forces Assignment is due at 2:00am on Wednesday, February 28, 2007 Credit for problems submitted late will decrease to 0% after

### Chapter 20. Magnetic Induction Changing Magnetic Fields yield Changing Electric Fields

Chapter 20 Magnetic Induction Changing Magnetic Fields yield Changing Electric Fields Introduction The motion of a magnet can induce current in practical ways. If a credit card has a magnet strip on its

### Eðlisfræði 2, vor 2007

[ Assignment View ] [ Pri Eðlisfræði 2, vor 2007 29a. Electromagnetic Induction Assignment is due at 2:00am on Wednesday, March 7, 2007 Credit for problems submitted late will decrease to 0% after the

### THE MAGNETIC FIELD. 9. Magnetism 1

THE MAGNETIC FIELD Magnets always have two poles: north and south Opposite poles attract, like poles repel If a bar magnet is suspended from a string so that it is free to rotate in the horizontal plane,

### Class 7 SCIENCE. Electric Current and its effects. Ans -Electric Circuit : The closed path in which electric current flows.

Q1 What is meant by electric current? A ns-electric Current : Flow of electrons. Q2 What is an electrc circuit? Class 7 SCIENCE Electric Current and its effects Ans -Electric Circuit : The closed path

### 4 th Grade Science Unit A: Physical Sciences Chapter 1: Electricity Lesson 1: How do charged objects behave?

4 th Grade Science Unit A: Physical Sciences Chapter 1: Electricity Lesson 1: How do charged objects behave? electric charge An electric charge is a property of some part of matter, described as positive

### 1. E&M induction requires change, of the intensity of a magnetic field or of motion in a magnetic field.

Chapter 25 EXERCISE key 1. E&M induction requires change, of the intensity of a magnetic field or of motion in a magnetic field. 2. Magnetic induction will not occur in nylon, since it has no magnetic

### Material World: Electricity

17. Coulomb s Law The force, F, between two objects with charge q 1 and q 2, is given by: k q 1 q F - 2, where r = distance between the two charges in meters 2 r k = Coulomb's constant = 9 X 10 9 m 2 /C

### Draw a ring around the correct answer to complete the following sentences. power supply. (1)

Q. The diagram shows a transformer made by a student. The student has designed the transformer to make a 6 V light bulb work using a 2 V power supply. (a) Draw a ring around the correct answer to complete

### ELECTRICITYt. Electromagnetism

ELECTRICITYt Electromagnetism Subject area : Physics Topic focus : magnetic properties, magnetic field, the Earth s magnetic field, magnetic field of an electric wire. Learning Aims : Polarity of bar magnets

### DC GENERATOR THEORY. LIST the three conditions necessary to induce a voltage into a conductor.

DC Generators DC generators are widely used to produce a DC voltage. The amount of voltage produced depends on a variety of factors. EO 1.5 LIST the three conditions necessary to induce a voltage into

### Induction. d. is biggest when the motor turns fastest.

Induction 1. A uniform 4.5-T magnetic field passes perpendicularly through the plane of a wire loop 0.10 m 2 in area. What flux passes through the loop? a. 5.0 T m 2 c. 0.25 T m 2 b. 0.45 T m 2 d. 0.135

### Chap 21. Electromagnetic Induction

Chap 21. Electromagnetic Induction Sec. 1 - Magnetic field Magnetic fields are produced by electric currents: They can be macroscopic currents in wires. They can be microscopic currents ex: with electrons

### Chapter 29 Electromagnetic Induction

Chapter 29 Electromagnetic Induction - Induction Experiments - Faraday s Law - Lenz s Law - Motional Electromotive Force - Induced Electric Fields - Eddy Currents - Displacement Current and Maxwell s Equations

### 1. Separation is easy with a magnet (try it and be amazed!).

EXERCISES 1. Separation is easy with a magnet (try it and be amazed!). 2. All magnetism originates in moving electric charges. For an electron there is magnetism associated with its spin about its own

### Magnetic Field and Magnetic Forces

Chapter 27 Magnetic Field and Magnetic Forces PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 27 To study

### Objectives. Capacitors 262 CHAPTER 5 ENERGY

Objectives Describe a capacitor. Explain how a capacitor stores energy. Define capacitance. Calculate the electrical energy stored in a capacitor. Describe an inductor. Explain how an inductor stores energy.

### PES 1120 Spring 2014, Spendier Lecture 27/Page 1

PES 1120 Spring 2014, Spendier Lecture 27/Page 1 Today: - Magnetic Force on a current-carrying Wire - Torque on a current loop - Magnetic dipole moment - Next Week Monday Review, Wednesday EXAM 2 Last

### CPO Electric Motor Equipment Module

CPO Electric Motor Equipment Module Equipment Includes: 5 switch plates 1 electric motor body with permanent turn-crank 1 ew high-output electromagnet motor modules (Black) 1 electromagnet generator modules

### Name: Lab Partner: Section: The purpose of this lab is to study induction. Faraday s law of induction and Lenz s law will be explored.

Chapter 8 Induction - Faraday s Law Name: Lab Partner: Section: 8.1 Purpose The purpose of this lab is to study induction. Faraday s law of induction and Lenz s law will be explored. 8.2 Introduction It

### Physics 126 Practice Exam #3 Professor Siegel

Physics 126 Practice Exam #3 Professor Siegel Name: Lab Day: 1. Which one of the following statements concerning the magnetic force on a charged particle in a magnetic field is true? A) The magnetic force

### 2. TRANSFORMERS. The main learning objectives for this chapter are listed below. Use equivalent circuits to determine voltages and currents.

. TRANSFORMERS Transformers are commonly used in applications which require the conversion of AC voltage from one voltage level to another. There are two broad categories of transformers: electronic transformers,

### Ch. 22: Magnetism. (Dr. Andrei Galiautdinov, UGA) 2014FALL - PHYS1112

Ch. 22: Magnetism (Dr. Andrei Galiautdinov, UGA) 2014FALL - PHYS1112 Part 1: Magnetic field Part 2: Magnetic force acting on a moving charge Part 3: Motion of charged particles in a magnetic field Part

### Eðlisfræði 2, vor 2007

[ Assignment View ] [ Pri Eðlisfræði 2, vor 2007 28. Sources of Magnetic Field Assignment is due at 2:00am on Wednesday, March 7, 2007 Credit for problems submitted late will decrease to 0% after the deadline