CHAPTER 11 CHISQUARE: NONPARAMETRIC COMPARISONS OF FREQUENCY


 Agatha Joella Barber
 1 years ago
 Views:
Transcription
1 CHAPTER 11 CHISQUARE: NONPARAMETRIC COMPARISONS OF FREQUENCY The hypothesis testing statistics detailed thus far in this text have all been designed to allow comparison of the means of two or more samples to determine if they are significantly different from each other. Such comparisons can only be conducted when the researcher has interval level data. While the use of interval level data is preferred by most researchers because it provides a more precise measurement of the phenomena under consideration, it is often impossible to obtain. Researchers must then turn to another set of statistical tools that allow the testing of hypotheses using nominal and ordinal data. These tools are referred to in the field of statistics as nonparametric tests. A parameter is a quantity which is constant for a given population. Parameters can also be defined as numerical descriptive measures of a population. Two major parameters already explained in earlier chapters are measures of central tendency and variability. For example, the mean is a parameter which describes an entire distribution of values. Obviously, these parameters cannot be obtained for nominal and ordinal data. It follows then that statistics not dependent on calculating measures of central tendency or variability are nonparametric. However, this is not to say that parameters are not studied when using nonparametric statistics. One just does not know or make assumptions about any specific values of a parameter. Statisticians generally refer to Ttests and ANOVA tests as parametric statistics. This chapter introduces and explains the use of ChiSquare, used to test hypotheses involving nominal data, while the next is devoted to a statistic called MannWhitney U which is employed for hypothesis testing when working with ordinal measures. It should be pointed out by way of a cautionary note that statistics designed to test hypotheses for nominal and 137
2 ordinal data are no better than the data which they are designed to analyze. Interval data are more precise and accurate. The lower level of precision possible using nominal or ordinal measures makes the nonparametric statistics are somewhat less accurate for hypothesis testing. This limitation is partially addressed through the use of more stringent demands for statistical significance when nonparametric statistics are used. CHISQUARE The most frequently used nonparametric statistic for testing hypotheses with nominal data is ChiSquare. The nature of nominal data as explained in chapter one involves assigning data to mutual exclusive categories, labeling, or naming the data. Nominal data are most generally analyzed by frequency of occurrence. The nonparametric statistic Chi Square is a comparison of relative frequencies among two or more groups. The null hypothesis for ChiSquare is that there is no statistically significant difference in the relative frequency of one outcome over another. For example, a possible null hypothesis might be that there is no statistically significant difference in the relative frequency of Hispanics failing their first math course in college and the relative frequency of Whites failing their first math course. In other words, there is no statistical difference between the two groups as measured by frequency of failure. Nominal data for testing this hypothesis can be organized in a twobytwo data matrix containing two rows and two columns for passfail categories and by group. This approach to organization is shown for a sample of 100 Hispanics and a sample of 100 Whites in Figure 11:1. 138
3 FIGURE 11:1 Pass Fail Total Whites Hispanics Total In this example, the null hypothesis would be accepted because one can simply observe that there is no difference between Hispanics and Whites. The frequencies of pass or fail rates are the same for both groups. No statistics are necessary for nominal data equally distributed between groups, but not all frequencies are this simple. Generally, decisions relative to accepting and rejecting null hypotheses require far more complex analyses because differences between samples do occur. Whether or not these differences are sufficient to suggest a statistically significant difference in the overall populations is the reason for conducting statistical tests. Calculation of the ChiSquare statistic is basically a comparison between observed and expected frequencies. Observed frequencies are actual nominal data for each characteristic under consideration by the researcher. In the above example, one observes that fifty Whites and Hispanics failed and fifty Whites and Hispanics passed. The expected frequencies are the nominal data results one would expect to find if the null hypothesis is to be accepted. In the above example, one would expect the proportion of pass and fail frequencies for Whites and Hispanics to be the same. The theory behind the ChiSquare statistic is that if the difference between the observed and expected frequencies is large, that even with assumed sampling error, the null hypothesis is rejected. One would conclude that a statistically significant difference between two or more groups does exist. By implication, this also means 139
4 that not all differences between observed and expected frequencies are significant, some are the result of sampling error or too small to be significant. The formula for calculating the ChiSquare statistic is: Where: the observed frequencies for each position in the matrix the expected frequencies for each position in the matrix Calculation of the ChiSquare statistic is a simple process involving the use of a solution matrix. For example, suppose a researcher wanted to test the difference between frequencies of high or low incomes for men and women in the same profession. A research question could be stated as follows: Do male lawyers have higher incomes than female lawyers? The null hypothesis might be stated as follows: There is no statistically significant difference between the frequencies of the high and low incomes for males and the frequencies of the high and low incomes for females. Organizing the solution matrix for the ChiSquare statistic is simple and easy. First, the data are organized by row and column in the form of a data matrix. The actual or observed values for each place in the data matrix are recorded. Then the values in each rows and column are totaled and the total number of cases under consideration (n) is determined. The solution matrix will vary in size depending on the number of rows and columns needed to display the observed frequencies. In figure 11:2 the following data matrix was constructed 140
5 using the observed frequencies of high and low incomes (nominal) for men and women (nominal) are displayed in a 2 x 2 data matrix. Figure 11:2: DATA MATRIX Men Women Total High Income 15 (19.66) Low Income 14 (9.34) 25 (20.34) 5 (9.66) Once the data matrix has been constructed, the expected frequencies for each cell in the matrix can be determined using the formula: Total For example, row 1 and column 1 square of the matrix, which represents high income men, the calculation of the expected frequency is: Row 1 column 2 is calculated: Expected frequencies are similarly obtained for all of the squares of the data matrix and included in parentheses within the data matrix immediately below the observed values. When the expected frequencies have been calculated, the remaining ChiSquare calculations are 141
6 simple mathematics. Solution Matrix for Row Column The value of the ChiSquare statistic is The next step in the process of testing the hypothesis requires that the degrees of freedom be determined. The simple formula for finding 2 the degrees of freedom for is: d.f. = (Total Rows  1) (Total Columns  1) In the context of the present example, df= (21)(21)=1(1)=1 2 By consulting the table in Appendix H the critical values for at.05 and.01 are 3.84 and 6.63 for 1 degree of freedom. The researcher compares the obtained value for 2 with the critical value to determine if the observed difference in frequencies is statistically significant. The null hypothesis is rejected at both the.05 and.01 levels At the 95% and 99% confidence levels in this case because the obtained value is higher than either of the critical values from Appendix H. Therefore, the researcher must conclude that there is a statistically significant difference between the relative frequencies of high and low incomes for men and 142
7 2 women. Even allowing for the presence of sampling error, the value of is large enough to suggest that a real difference exists between the populations represented by these samples. In this example, the research conclusion is that the female lawyers have higher incomes than 2 male lawyers. A very useful rule for accepting or rejecting the null hypothesis for is as follows: 2 2 Accept null if the obtained is less than the critical values in the table. Reject the null hypothesis if the obtained is equal to or greater than the critical values in the 1 table. 2 2 Under certain circumstances when working with a 2x2 data matrix, the formula used to calculate the ChiSquare statistic is adjusted slightly. This process is utilized when any of the expected frequencies within the data matrix are lower than 10. The alternative ChiSquare formula is known as the Yates' Correction. When expected frequencies are this low, researchers have determined that it is appropriate to make the standard for rejecting the null hypothesis more stringent by subtracting.5 from the absolute value of the difference between each observed and expected frequency before the differences are squared. The formula for ChiSquare using Yate s Correction is as follows: Applying this correction requires an additional column in the solution matrix and the 1 The critical values are critical because they are the basis for accepting or rejecting the null hypothesis. Since ChiSquare is a statistic based on nominal data, the obtained ChiSquare must be larger than these critical values in the table for a significant difference in the frequencies. 143
8 correction will also reduce the size of ChiSquare. The reduction is an effort to be more conservative and reduce the probability of making the alpha error. The comparison of frequencies of men and women in high and low income categories earlier in the chapter provides an example of a context in which Yate s Correction is to be applied. Compare the solution matrix using Yate s Correction presented in figure 11:3 below with the one produced earlier. Notice the difference in the value of ChiSquare and the difference in statistical conclusions required when the Yate s Correction is employed. FIGURE 11:3: YATE S CORRECTION Men Women Total High Income 15 (19.66) Low Income 14 (9.34) 25 (20.34) 5 (9.66) Total Row Column The obtained value for ChiSquare is 5.37 which is still significant at the.05 level but which 144
9 is no longer significant at the.01 level. In summation, the ChiSquare statistic is used to test hypotheses by comparing observed and expected frequencies of a characteristic for two or more groups. ChiSquare is not limited to the comparison of two samples. One may have a 5 x 5, 10 x 10, 7 x 10, or any size data matrix for many independent samples. Unlike the t test, ChiSquare is not used for dependent samples. In addition, ChiSquare is used only for nominal data, and a researcher should make use of Yates' Correction when it applies. 145
10 EXERCISES  CHAPTER 10 (1) A researcher wants to determine whether students who had taken a driver s education course sponsored by the school passed their state driver s examination with a higher relative frequency than those who did not take the class. Using the data provided in the 2x2 matrix below and Yate s Correction: A. Write a null hypothesis B. Calculate the value for ChiSquare C. Draw statistical and research conclusions Taken Driver s Education Test Result Yes No Total Pas Fail Total (2) In a poll of New York residents, the following results were recorded with reference to political ideology and party affiliations. For 65 Republicans: 20 conservative, 35 liberal, and 10 neither. For 120 Democrats: 40 conservative, 70 liberal, and 10 neither. Test a null hypothesis for these data and draw statistical conclusions. 146
Module 9: Nonparametric Tests. The Applied Research Center
Module 9: Nonparametric Tests The Applied Research Center Module 9 Overview } Nonparametric Tests } Parametric vs. Nonparametric Tests } Restrictions of Nonparametric Tests } OneSample ChiSquare Test
More informationBivariate Statistics Session 2: Measuring Associations ChiSquare Test
Bivariate Statistics Session 2: Measuring Associations ChiSquare Test Features Of The ChiSquare Statistic The chisquare test is nonparametric. That is, it makes no assumptions about the distribution
More informationPASS Sample Size Software
Chapter 250 Introduction The Chisquare test is often used to test whether sets of frequencies or proportions follow certain patterns. The two most common instances are tests of goodness of fit using multinomial
More informationCHAPTER 15 NOMINAL MEASURES OF CORRELATION: PHI, THE CONTINGENCY COEFFICIENT, AND CRAMER'S V
CHAPTER 15 NOMINAL MEASURES OF CORRELATION: PHI, THE CONTINGENCY COEFFICIENT, AND CRAMER'S V Chapters 13 and 14 introduced and explained the use of a set of statistical tools that researchers use to measure
More informationChiSquare. The goodnessoffit test involves a single (1) independent variable. The test for independence involves 2 or more independent variables.
ChiSquare Parametric statistics, such as r and t, rest on estimates of population parameters (x for μ and s for σ ) and require assumptions about population distributions (in most cases normality) for
More informationChi Square Analysis. When do we use chi square?
Chi Square Analysis When do we use chi square? More often than not in psychological research, we find ourselves collecting scores from participants. These data are usually continuous measures, and might
More informationChi Square (χ 2 ) Statistical Instructions EXP 3082L Jay Gould s Elaboration on Christensen and Evans (1980)
Chi Square (χ 2 ) Statistical Instructions EXP 3082L Jay Gould s Elaboration on Christensen and Evans (1980) For the Driver Behavior Study, the Chi Square Analysis II is the appropriate analysis below.
More informationInferential Statistics
Inferential Statistics Sampling and the normal distribution Zscores Confidence levels and intervals Hypothesis testing Commonly used statistical methods Inferential Statistics Descriptive statistics are
More informationMATH Chapter 23 April 15 and 17, 2013 page 1 of 8 CHAPTER 23: COMPARING TWO CATEGORICAL VARIABLES THE CHISQUARE TEST
MATH 1342. Chapter 23 April 15 and 17, 2013 page 1 of 8 CHAPTER 23: COMPARING TWO CATEGORICAL VARIABLES THE CHISQUARE TEST Relationships: Categorical Variables Chapter 21: compare proportions of successes
More informationAssociation Between Variables
Contents 11 Association Between Variables 767 11.1 Introduction............................ 767 11.1.1 Measure of Association................. 768 11.1.2 Chapter Summary.................... 769 11.2 Chi
More informationCHAPTER 12 TESTING DIFFERENCES WITH ORDINAL DATA: MANN WHITNEY U
CHAPTER 12 TESTING DIFFERENCES WITH ORDINAL DATA: MANN WHITNEY U Previous chapters of this text have explained the procedures used to test hypotheses using interval data (ttests and ANOVA s) and nominal
More informationII. DISTRIBUTIONS distribution normal distribution. standard scores
Appendix D Basic Measurement And Statistics The following information was developed by Steven Rothke, PhD, Department of Psychology, Rehabilitation Institute of Chicago (RIC) and expanded by Mary F. Schmidt,
More information13.2 The Chi Square Test for Homogeneity of Populations The setting: Used to compare distribution of proportions in two or more populations.
13.2 The Chi Square Test for Homogeneity of Populations The setting: Used to compare distribution of proportions in two or more populations. Data is organized in a two way table Explanatory variable (Treatments)
More informationHaving a coin come up heads or tails is a variable on a nominal scale. Heads is a different category from tails.
Chisquare Goodness of Fit Test The chisquare test is designed to test differences whether one frequency is different from another frequency. The chisquare test is designed for use with data on a nominal
More informationIs it statistically significant? The chisquare test
UAS Conference Series 2013/14 Is it statistically significant? The chisquare test Dr Gosia Turner Student Data Management and Analysis 14 September 2010 Page 1 Why chisquare? Tests whether two categorical
More informationObjectives. 9.1, 9.2 Inference for twoway tables. The hypothesis: no association. Expected cell counts. The chisquare test.
Objectives 9.1, 9.2 Inference for twoway tables The hypothesis: no association Expected cell counts The chisquare test Using software Further reading: http://onlinestatbook.com/2/chi_square/contingency.html
More informationClass 19: Two Way Tables, Conditional Distributions, ChiSquare (Text: Sections 2.5; 9.1)
Spring 204 Class 9: Two Way Tables, Conditional Distributions, ChiSquare (Text: Sections 2.5; 9.) Big Picture: More than Two Samples In Chapter 7: We looked at quantitative variables and compared the
More information4) The goodness of fit test is always a one tail test with the rejection region in the upper tail. Answer: TRUE
Business Statistics, 9e (Groebner/Shannon/Fry) Chapter 13 Goodness of Fit Tests and Contingency Analysis 1) A goodness of fit test can be used to determine whether a set of sample data comes from a specific
More informationCHISquared Test of Independence
CHISquared Test of Independence Minhaz Fahim Zibran Department of Computer Science University of Calgary, Alberta, Canada. Email: mfzibran@ucalgary.ca Abstract Chisquare (X 2 ) test is a nonparametric
More informationDescriptive Statistics
Descriptive Statistics Primer Descriptive statistics Central tendency Variation Relative position Relationships Calculating descriptive statistics Descriptive Statistics Purpose to describe or summarize
More informationTABLE OF CONTENTS. About Chi Squares... 1. What is a CHI SQUARE?... 1. Chi Squares... 1. Hypothesis Testing with Chi Squares... 2
About Chi Squares TABLE OF CONTENTS About Chi Squares... 1 What is a CHI SQUARE?... 1 Chi Squares... 1 Goodness of fit test (Oneway χ 2 )... 1 Test of Independence (Twoway χ 2 )... 2 Hypothesis Testing
More informationRecommend Continued CPS Monitoring. 63 (a) 17 (b) 10 (c) 90. 35 (d) 20 (e) 25 (f) 80. Totals/Marginal 98 37 35 170
Work Sheet 2: Calculating a Chi Square Table 1: Substance Abuse Level by ation Total/Marginal 63 (a) 17 (b) 10 (c) 90 35 (d) 20 (e) 25 (f) 80 Totals/Marginal 98 37 35 170 Step 1: Label Your Table. Label
More informationChi Square for Contingency Tables
2 x 2 Case Chi Square for Contingency Tables A test for p 1 = p 2 We have learned a confidence interval for p 1 p 2, the difference in the population proportions. We want a hypothesis testing procedure
More informationNonparametric Tests. ChiSquare Test for Independence
DDBA 8438: Nonparametric Statistics: The ChiSquare Test Video Podcast Transcript JENNIFER ANN MORROW: Welcome to "Nonparametric Statistics: The ChiSquare Test." My name is Dr. Jennifer Ann Morrow. In
More informationUnderstanding and Interpreting the Chisquare Statistic (x 2 ) Rose Ann DiMaria, PhD, RN WVUSchool of Nursing Charleston Division
Understanding and Interpreting the Chisquare Statistic (x 2 ) Rose Ann DiMaria, PhD, RN WVUSchool of Nursing Charleston Division Inferential statistics Make judgments about accuracy of given sample in
More informationSCHOOL OF HEALTH AND HUMAN SCIENCES DON T FORGET TO RECODE YOUR MISSING VALUES
SCHOOL OF HEALTH AND HUMAN SCIENCES Using SPSS Topics addressed today: 1. Differences between groups 2. Graphing Use the s4data.sav file for the first part of this session. DON T FORGET TO RECODE YOUR
More informationLecture 7: Binomial Test, Chisquare
Lecture 7: Binomial Test, Chisquare Test, and ANOVA May, 01 GENOME 560, Spring 01 Goals ANOVA Binomial test Chi square test Fisher s exact test Su In Lee, CSE & GS suinlee@uw.edu 1 Whirlwind Tour of One/Two
More informationRegression Analysis Prof. Soumen Maity Department of Mathematics Indian Institute of Technology, Kharagpur
Regression Analysis Prof. Soumen Maity Department of Mathematics Indian Institute of Technology, Kharagpur Lecture  7 Multiple Linear Regression (Contd.) This is my second lecture on Multiple Linear Regression
More informationThe Logic of Statistical Inference Testing Hypotheses
The Logic of Statistical Inference Testing Hypotheses Confirming your research hypothesis (relationship between 2 variables) is dependent on ruling out Rival hypotheses Research design problems (e.g.
More information1. ChiSquared Tests
1. ChiSquared Tests We'll now look at how to test statistical hypotheses concerning nominal data, and specifically when nominal data are summarized as tables of frequencies. The tests we will considered
More information14 ChiSquare CHAPTER Chapter Outline 14.1 THE GOODNESSOFFIT TEST 14.2 TEST OF INDEPENDENCE
www.ck12.org CHAPTER 14 ChiSquare Chapter Outline 14.1 THE GOODNESSOFFIT TEST 14.2 TEST OF INDEPENDENCE 278 www.ck12.org Chapter 14. ChiSquare 14.1 The GoodnessofFit Test Learning Objectives Learn
More informationChiSquare Tests. In This Chapter BONUS CHAPTER
BONUS CHAPTER ChiSquare Tests In the previous chapters, we explored the wonderful world of hypothesis testing as we compared means and proportions of one, two, three, and more populations, making an educated
More informationChapter 13. ChiSquare. Crosstabs and Nonparametric Tests. Specifically, we demonstrate procedures for running two separate
1 Chapter 13 ChiSquare This section covers the steps for running and interpreting chisquare analyses using the SPSS Crosstabs and Nonparametric Tests. Specifically, we demonstrate procedures for running
More informationBivariate Analysis. Comparisons of proportions: Chi Square Test (X 2 test) Variable 1. Variable 2 2 LEVELS >2 LEVELS CONTINUOUS
Bivariate Analysis Variable 1 2 LEVELS >2 LEVELS CONTINUOUS Variable 2 2 LEVELS X 2 chi square test >2 LEVELS X 2 chi square test CONTINUOUS ttest X 2 chi square test X 2 chi square test ANOVA (Ftest)
More informationOdds ratio, Odds ratio test for independence, chisquared statistic.
Odds ratio, Odds ratio test for independence, chisquared statistic. Announcements: Assignment 5 is live on webpage. Due Wed Aug 1 at 4:30pm. (9 days, 1 hour, 58.5 minutes ) Final exam is Aug 9. Review
More informationUNDERSTANDING THE TWOWAY ANOVA
UNDERSTANDING THE e have seen how the oneway ANOVA can be used to compare two or more sample means in studies involving a single independent variable. This can be extended to two independent variables
More informationMATH 10: Elementary Statistics and Probability Chapter 11: The ChiSquare Distribution
MATH 10: Elementary Statistics and Probability Chapter 11: The ChiSquare Distribution Tony Pourmohamad Department of Mathematics De Anza College Spring 2015 Objectives By the end of this set of slides,
More informationVariables and Data A variable contains data about anything we measure. For example; age or gender of the participants or their score on a test.
The Analysis of Research Data The design of any project will determine what sort of statistical tests you should perform on your data and how successful the data analysis will be. For example if you decide
More informationChapter Additional: Standard Deviation and Chi Square
Chapter Additional: Standard Deviation and Chi Square Chapter Outline: 6.4 Confidence Intervals for the Standard Deviation 7.5 Hypothesis testing for Standard Deviation Section 6.4 Objectives Interpret
More informationUnit 29 ChiSquare GoodnessofFit Test
Unit 29 ChiSquare GoodnessofFit Test Objectives: To perform the chisquare hypothesis test concerning proportions corresponding to more than two categories of a qualitative variable To perform the Bonferroni
More informationCHAPTER 3 COMMONLY USED STATISTICAL TERMS
CHAPTER 3 COMMONLY USED STATISTICAL TERMS There are many statistics used in social science research and evaluation. The two main areas of statistics are descriptive and inferential. The third class of
More information3.4 Statistical inference for 2 populations based on two samples
3.4 Statistical inference for 2 populations based on two samples Tests for a difference between two population means The first sample will be denoted as X 1, X 2,..., X m. The second sample will be denoted
More informationOneWay Analysis of Variance (ANOVA) Example Problem
OneWay Analysis of Variance (ANOVA) Example Problem Introduction Analysis of Variance (ANOVA) is a hypothesistesting technique used to test the equality of two or more population (or treatment) means
More informationTest of proportion = 0.5 N Sample prop 95% CI z value p value (0.400, 0.466)
STATISTICS FOR THE SOCIAL AND BEHAVIORAL SCIENCES Recitation #10 Answer Key PROBABILITY, HYPOTHESIS TESTING, CONFIDENCE INTERVALS Hypothesis tests 2 When a recent GSS asked, would you be willing to pay
More informationChapter 11: Chisquare (χ 2 )
Chapter 11: Chisquare (χ 2 ) *This chapter corresponds with Chapter 16 in your text ( What to do when you re not normal ). What it is: Chisquare is a nonparametric statistic. This means that it can be
More informationOneWay ANOVA using SPSS 11.0. SPSS ANOVA procedures found in the Compare Means analyses. Specifically, we demonstrate
1 OneWay ANOVA using SPSS 11.0 This section covers steps for testing the difference between three or more group means using the SPSS ANOVA procedures found in the Compare Means analyses. Specifically,
More information1/22/2016. What are paired data? Tests of Differences: two related samples. What are paired data? Paired Example. Paired Data.
Tests of Differences: two related samples What are paired data? Frequently data from ecological work take the form of paired (matched, related) samples Before and after samples at a specific site (or individual)
More informationChiSquare Tests TEACHER NOTES MATH NSPIRED. Math Objectives. Vocabulary. About the Lesson
Math Objectives Students will recognize that chisquared tests are for counts of categorical data. Students will identify the appropriate chisquared test to use for a given situation: 2 Goodness of Fit
More informationIn the past, the increase in the price of gasoline could be attributed to major national or global
Chapter 7 Testing Hypotheses Chapter Learning Objectives Understanding the assumptions of statistical hypothesis testing Defining and applying the components in hypothesis testing: the research and null
More informationANSWERS TO EXERCISES AND REVIEW QUESTIONS
ANSWERS TO EXERCISES AND REVIEW QUESTIONS PART FIVE: STATISTICAL TECHNIQUES TO COMPARE GROUPS Before attempting these questions read through the introduction to Part Five and Chapters 1621 of the SPSS
More informationChapter 23. Two Categorical Variables: The ChiSquare Test
Chapter 23. Two Categorical Variables: The ChiSquare Test 1 Chapter 23. Two Categorical Variables: The ChiSquare Test TwoWay Tables Note. We quickly review twoway tables with an example. Example. Exercise
More informationChisquare tests. (Chapter 11 of the text)
Chisquare tests (Chapter 11 of the text) 1 A motivating example A survey of attitudes to premarital sex among different religious groups asked 1579 people the question When is premarital sex wrong? They
More informationTesting Research and Statistical Hypotheses
Testing Research and Statistical Hypotheses Introduction In the last lab we analyzed metric artifact attributes such as thickness or width/thickness ratio. Those were continuous variables, which as you
More informationAP Statistics for Friday 4/15/16. 2) turn in work; hand back work. 3) lesson on Chi Square tests for Association with handouts
AP Statistics for Friday 4/15/16 1) go over schedule 2) turn in work; hand back work 3) lesson on Chi Square tests for Association with handouts 4) Assign #105 p 631 / 19, 23, 31 schedule... Normal Distribution
More informationStatistics. Onetwo sided test, Parametric and nonparametric test statistics: one group, two groups, and more than two groups samples
Statistics Onetwo sided test, Parametric and nonparametric test statistics: one group, two groups, and more than two groups samples February 3, 00 Jobayer Hossain, Ph.D. & Tim Bunnell, Ph.D. Nemours
More information4. Sum the results of the calculation described in step 3 for all classes of progeny
F09 Biol 322 chi square notes 1. Before proceeding with the chi square calculation, clearly state the genetic hypothesis concerning the data. This hypothesis is an interpretation of the data that gives
More informationWhen to use a ChiSquare test:
When to use a ChiSquare test: Usually in psychological research, we aim to obtain one or more scores from each participant. However, sometimes data consist merely of the frequencies with which certain
More informationFactor B: Curriculum New Math Control Curriculum (B (B 1 ) Overall Mean (marginal) Females (A 1 ) Factor A: Gender Males (A 2) X 21
1 Factorial ANOVA The ANOVA designs we have dealt with up to this point, known as simple ANOVA or oneway ANOVA, had only one independent grouping variable or factor. However, oftentimes a researcher has
More informationTesting Hypotheses using SPSS
Is the mean hourly rate of male workers $2.00? TTest OneSample Statistics Std. Error N Mean Std. Deviation Mean 2997 2.0522 6.6282.2 OneSample Test Test Value = 2 95% Confidence Interval Mean of the
More informationChisquare test Fisher s Exact test
Lesson 1 Chisquare test Fisher s Exact test McNemar s Test Lesson 1 Overview Lesson 11 covered two inference methods for categorical data from groups Confidence Intervals for the difference of two proportions
More informationChapter 21 Section D
Chapter 21 Section D Statistical Tests for Ordinal Data The ranksum test. You can perform the ranksum test in SPSS by selecting 2 Independent Samples from the Analyze/ Nonparametric Tests menu. The first
More informationBiodiversity Data Analysis: Testing Statistical Hypotheses By Joanna Weremijewicz, Simeon Yurek, Steven Green, Ph. D. and Dana Krempels, Ph. D.
Biodiversity Data Analysis: Testing Statistical Hypotheses By Joanna Weremijewicz, Simeon Yurek, Steven Green, Ph. D. and Dana Krempels, Ph. D. In biological science, investigators often collect biological
More informationLAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING
LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING In this lab you will explore the concept of a confidence interval and hypothesis testing through a simulation problem in engineering setting.
More informationUnivariate and Bivariate Tests
Univariate and BUS 230: Business and Economics Research and Communication Univariate and Goals Hypotheses Tests Goals 1/ 20 Specific goals: Be able to distinguish different types of data and prescribe
More informationRankBased NonParametric Tests
RankBased NonParametric Tests Reminder: Student Instructional Rating Surveys You have until May 8 th to fill out the student instructional rating surveys at https://sakai.rutgers.edu/portal/site/sirs
More informationThe Dummy s Guide to Data Analysis Using SPSS
The Dummy s Guide to Data Analysis Using SPSS Mathematics 57 Scripps College Amy Gamble April, 2001 Amy Gamble 4/30/01 All Rights Rerserved TABLE OF CONTENTS PAGE Helpful Hints for All Tests...1 Tests
More informationChi Square Tests. Chapter 10. 10.1 Introduction
Contents 10 Chi Square Tests 703 10.1 Introduction............................ 703 10.2 The Chi Square Distribution.................. 704 10.3 Goodness of Fit Test....................... 709 10.4 Chi Square
More informationAdditional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jintselink/tselink.htm
Mgt 540 Research Methods Data Analysis 1 Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jintselink/tselink.htm http://web.utk.edu/~dap/random/order/start.htm
More informationThe GoodnessofFit Test
on the Lecture 49 Section 14.3 HampdenSydney College Tue, Apr 21, 2009 Outline 1 on the 2 3 on the 4 5 Hypotheses on the (Steps 1 and 2) (1) H 0 : H 1 : H 0 is false. (2) α = 0.05. p 1 = 0.24 p 2 = 0.20
More informationThis chapter discusses some of the basic concepts in inferential statistics.
Research Skills for Psychology Majors: Everything You Need to Know to Get Started Inferential Statistics: Basic Concepts This chapter discusses some of the basic concepts in inferential statistics. Details
More informationTwoSample TTest from Means and SD s
Chapter 07 TwoSample TTest from Means and SD s Introduction This procedure computes the twosample ttest and several other twosample tests directly from the mean, standard deviation, and sample size.
More informationLecture 42 Section 14.3. Tue, Apr 8, 2008
the Lecture 42 Section 14.3 HampdenSydney College Tue, Apr 8, 2008 Outline the 1 2 the 3 4 5 the The will compute χ 2 areas, but not χ 2 percentiles. (That s ok.) After performing the χ 2 test by hand,
More informationCONTINGENCY TABLES ARE NOT ALL THE SAME David C. Howell University of Vermont
CONTINGENCY TABLES ARE NOT ALL THE SAME David C. Howell University of Vermont To most people studying statistics a contingency table is a contingency table. We tend to forget, if we ever knew, that contingency
More informationHypothesis Tests for a Population Proportion
Hypothesis Tests for a Population Proportion MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2015 Review: Steps of Hypothesis Testing 1. A statement is made regarding
More informationDescriptive Analysis
Research Methods William G. Zikmund Basic Data Analysis: Descriptive Statistics Descriptive Analysis The transformation of raw data into a form that will make them easy to understand and interpret; rearranging,
More informationChapter 16 Appendix. Nonparametric Tests with Excel, JMP, Minitab, SPSS, CrunchIt!, R, and TI83/84 Calculators
The Wilcoxon Rank Sum Test Chapter 16 Appendix Nonparametric Tests with Excel, JMP, Minitab, SPSS, CrunchIt!, R, and TI83/84 Calculators These nonparametric tests make no assumption about Normality.
More informationChiSquare Tests and the FDistribution. Goodness of Fit Multinomial Experiments. Chapter 10
Chapter 0 ChiSquare Tests and the FDistribution 0 Goodness of Fit Multinomial xperiments A multinomial experiment is a probability experiment consisting of a fixed number of trials in which there are
More information3. Nonparametric methods
3. Nonparametric methods If the probability distributions of the statistical variables are unknown or are not as required (e.g. normality assumption violated), then we may still apply nonparametric tests
More informationSample Size Determination
Sample Size Determination Population A: 10,000 Population B: 5,000 Sample 10% Sample 15% Sample size 1000 Sample size 750 The process of obtaining information from a subset (sample) of a larger group (population)
More informationPart 3. Comparing Groups. Chapter 7 Comparing Paired Groups 189. Chapter 8 Comparing Two Independent Groups 217
Part 3 Comparing Groups Chapter 7 Comparing Paired Groups 189 Chapter 8 Comparing Two Independent Groups 217 Chapter 9 Comparing More Than Two Groups 257 188 Elementary Statistics Using SAS Chapter 7 Comparing
More informationSTP231 Brief Class Notes Ch10: Chisquare Tests, Instructor: Ela Jackiewicz
Chisquare Tests for categorical variables Tests of independence: We will consider two situations: A) one variable with r categories in c independent samples from different populations or B) 2 variables
More informationStatistical Significance and Bivariate Tests
Statistical Significance and Bivariate Tests BUS 735: Business Decision Making and Research 1 1.1 Goals Goals Specific goals: Refamiliarize ourselves with basic statistics ideas: sampling distributions,
More informationFirstyear Statistics for Psychology Students Through Worked Examples
Firstyear Statistics for Psychology Students Through Worked Examples 1. THE CHISQUARE TEST A test of association between categorical variables by Charles McCreery, D.Phil Formerly Lecturer in Experimental
More informationSOME NOTES ON STATISTICAL INTERPRETATION. Below I provide some basic notes on statistical interpretation for some selected procedures.
1 SOME NOTES ON STATISTICAL INTERPRETATION Below I provide some basic notes on statistical interpretation for some selected procedures. The information provided here is not exhaustive. There is more to
More informationNCSS Statistical Software
Chapter 06 Introduction This procedure provides several reports for the comparison of two distributions, including confidence intervals for the difference in means, twosample ttests, the ztest, the
More informationThe ChiSquare GoodnessofFit Test, Equal Proportions
Chapter 11 ChiSquare Tests 1 ChiSquare Tests Chapter 11 The ChiSquare GoodnessofFit Test, Equal Proportions A hospital wants to know if the proportion of births are the same for each day of the week.
More informationChisquare and related statistics for 2 2 contingency tables
Statistics Corner Statistics Corner: Chisquare and related statistics for 2 2 contingency tables James Dean Brown University of Hawai i at Mānoa Question: I used to think that there was only one type
More informationCHAPTER IV FINDINGS AND CONCURRENT DISCUSSIONS
CHAPTER IV FINDINGS AND CONCURRENT DISCUSSIONS Hypothesis 1: People are resistant to the technological change in the security system of the organization. Hypothesis 2: information hacked and misused. Lack
More informationCATEGORICAL DATA ChiSquare Tests for Univariate Data
CATEGORICAL DATA ChiSquare Tests For Univariate Data 1 CATEGORICAL DATA ChiSquare Tests for Univariate Data Recall that a categorical variable is one in which the possible values are categories or groupings.
More informationCalculating PValues. Parkland College. Isela Guerra Parkland College. Recommended Citation
Parkland College A with Honors Projects Honors Program 2014 Calculating PValues Isela Guerra Parkland College Recommended Citation Guerra, Isela, "Calculating PValues" (2014). A with Honors Projects.
More informationLecture 20b: Practice Problems for Lecture 20 Chi Square
Statistics 20b_practice.pdf Michael Hallstone, Ph.D. hallston@hawaii.edu Lecture 20b: Practice Problems for Lecture 20 Chi Square Everything that appears in these lecture notes is fair game for the test.
More informationElementary Statistics
lementary Statistics Chap10 Dr. Ghamsary Page 1 lementary Statistics M. Ghamsary, Ph.D. Chapter 10 Chisquare Test for Goodness of fit and Contingency tables lementary Statistics Chap10 Dr. Ghamsary Page
More informationresearch/scientific includes the following: statistical hypotheses: you have a null and alternative you accept one and reject the other
1 Hypothesis Testing Richard S. Balkin, Ph.D., LPCS, NCC 2 Overview When we have questions about the effect of a treatment or intervention or wish to compare groups, we use hypothesis testing Parametric
More informationOutline of Topics. Statistical Methods I. Types of Data. Descriptive Statistics
Statistical Methods I Tamekia L. Jones, Ph.D. (tjones@cog.ufl.edu) Research Assistant Professor Children s Oncology Group Statistics & Data Center Department of Biostatistics Colleges of Medicine and Public
More informationChoosing the correct statistical test made easy
Classroom Choosing the correct statistical test made easy N Gunawardana Senior Lecturer in Community Medicine, Faculty of Medicine, University of Colombo Gone are the days where researchers had to perform
More informationDEPARTMENT OF HEALTH AND HUMAN SCIENCES HS900 RESEARCH METHODS
DEPARTMENT OF HEALTH AND HUMAN SCIENCES HS900 RESEARCH METHODS Using SPSS Session 2 Topics addressed today: 1. Recoding data missing values, collapsing categories 2. Making a simple scale 3. Standardisation
More informationStatistics for Management IISTAT 362Final Review
Statistics for Management IISTAT 362Final Review Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. The ability of an interval estimate to
More informationUsing Stata for Categorical Data Analysis
Using Stata for Categorical Data Analysis NOTE: These problems make extensive use of Nick Cox s tab_chi, which is actually a collection of routines, and Adrian Mander s ipf command. From within Stata,
More informationChiSquare Test (χ 2 )
Chi Square Tests ChiSquare Test (χ 2 ) Nonparametric test for nominal independent variables These variables, also called "attribute variables" or "categorical variables," classify observations into a
More informationChapter 16 Multiple Choice Questions (The answers are provided after the last question.)
Chapter 16 Multiple Choice Questions (The answers are provided after the last question.) 1. Which of the following symbols represents a population parameter? a. SD b. σ c. r d. 0 2. If you drew all possible
More information