Performance Portability Study of Linear Algebra Kernels in OpenCL

Size: px
Start display at page:

Download "Performance Portability Study of Linear Algebra Kernels in OpenCL"

Transcription

1 Performance Portability Study of Linear Algebra Kernels in OpenCL Karl Rupp 1,2, Philippe Tillet 1, Florian Rudolf 1, Josef Weinbub 1, Ansgar Jüngel 2, Tibor Grasser 1 1 Institute for Microelectronics, TU Wien, Austria 2 Institute for Analysis and Scientific Computing, TU Wien, Austria International Workshop on OpenCL 2014 May 13th, 2014

2 Introduction OpenCL Code Library Expectations 2

3 Introduction OpenCL Code Library Expectations Just work on my (user) hardware Run fast on my (user) hardware Integrate easily into my (user) code Mix with CUDA and OpenMP Available for free 2

4 Introduction OpenCL Code Library Expectations Just work on my (user) hardware Run fast on my (user) hardware Integrate easily into my (user) code Mix with CUDA and OpenMP Available for free Work Based on Developer Experiences iennacl Free open-source C++ linear algebra library (Python? PyViennaCL!) API similar to Boost.uBLAS 2

5 Performance Portability How OpenCL Helps Unified hardware information queries Unified kernel language 3

6 Performance Portability How OpenCL Helps Unified hardware information queries Unified kernel language Developer Tasks OpenCL automatic performance portability Parameterize each kernel Performance models vs. (auto)tuning Impractical to repeat for each kernel 3

7 Benchmark Setting Scope for Portability Study Vector and matrix-vector operations (BLAS levels 1 and 2) Limited by memory bandwidth Matrix-matrix-multiplication (only briefly today) 4

8 Benchmark Setting Scope for Portability Study Vector and matrix-vector operations (BLAS levels 1 and 2) Limited by memory bandwidth Matrix-matrix-multiplication (only briefly today) Key Question (Memory-Bandwidth-Limited Kernels) Good performance of complicated kernels by optimizing the simplest kernel? 4

9 Benchmark Setting Vector Assignment (Copy) Kernel x y for (large) vectors x, y 5

10 Benchmark Setting Vector Assignment (Copy) Kernel x y for (large) vectors x, y y x 5

11 Benchmark Setting Vector Assignment (Copy) Kernel x y for (large) vectors x, y y x Parameters (1900 variations) 5 Local work size, global work size Vector types (float1, float2,..., float16) Thread increment type

12 Benchmark Setting Vector Assignment (Copy) Kernel x y for (large) vectors x, y y x Parameters (1900 variations) 5 for (size t i = get global id(0); i < N; x[i] = y[i]; i+= get global size(0))

13 Benchmark Setting Vector Assignment (Copy) Kernel x y for (large) vectors x, y y x Parameters (1900 variations) 5 for (size t i = group start + get local id(0); i < group end; i+= get local size(0)) x[i] = y[i];

14 Benchmark Setting Vector Assignment (Copy) Kernel x y for (large) vectors x, y y x Parameters (1900 variations) 5 for (size t i = group start + get local id(0); i < group end; i+= get local size(0)) x[i] = y[i];

15 Benchmark Setting Operations Vector copy, vector addition, inner product Matrix-vector product z y x 6

16 Benchmark Setting Operations Vector copy, vector addition, inner product Matrix-vector product z y a 6

17 Benchmark Setting Operations Vector copy, vector addition, inner product Matrix-vector product z y a 6 Devices AMD: A APU, HD 5850 GPU INTEL: Dual Socket Xeon E5-2670, Xeon Phi NVIDIA: GTX 285, Tesla K20m

18 Benchmark Histograms 7

19 Benchmark AMD Radeon HD Increment by Local Work Size Increment by Global Work Size Bandwidth Inner Product (% of peak) 8

20 Benchmark NVIDIA Tesla K20m Increment by Local Work Size Increment by Global Work Size Bandwidth Inner Product (% of peak) 9

21 Benchmark Intel Xeon E Increment by Local Work Size Increment by Global Work Size Bandwidth Inner Product (% of theoretical peak) 10

22 Benchmark Intel Xeon E Increment by Local Work Size Increment by Global Work Size Bandwidth Inner Product (% of theoretical peak) y x 11

23 Benchmark NVIDIA Tesla K20m Density Rel. Bandwidth Copy Operation (%) 12

24 Benchmark NVIDIA Tesla K20m Density Rel. Bandwidth Matrix Vector Product Operation (%) 13

25 Benchmark [Addition Inner Product Matrix-Vector] vs. Copy Kernel Same Device 14

26 15 Benchmark

27 15 Benchmark

28 15 Benchmark

29 Benchmark NVIDIA Tesla K20m Addition Inner Product Mat-Vec Product Bandwidth Addition (% of peak) NVIDIA Tesla K20m Copy vs. Addition Bandwidth Inner Product (% of peak) NVIDIA Tesla K20m Copy vs. Inner Product Bandwidth Matrix Vector (% of peak) NVIDIA Tesla K20m Copy vs. Matrix Vector Product Bandwidth Copy (% of peak) Bandwidth Copy (% of peak) Bandwidth Copy (% of peak) 16

30 Benchmark AMD Radeon HD 5850 Addition Inner Product Mat-Vec Product Bandwidth Addition (% of peak) AMD Radeon HD 5850 Copy vs. Addition Bandwidth Inner Product (% of peak) AMD Radeon HD 5850 Copy vs. Inner Product Bandwidth Matrix Vector (% of peak) AMD Radeon HD 5850 Copy vs. Matrix Vector Product Bandwidth Copy (% of peak) Bandwidth Copy (% of peak) Bandwidth Copy (% of peak) 16

31 Benchmark INTEL Dual Xeon E Addition Inner Product Mat-Vec Product Bandwidth Addition (% of peak) 2x INTEL Xeon E Copy vs. Addition Bandwidth Inner Product (% of peak) 2x INTEL Xeon E Copy vs. Inner Product Bandwidth Matrix Vector (% of peak) 2x INTEL Xeon E Copy vs. Matrix Vector Product Bandwidth Copy (% of peak) Bandwidth Copy (% of peak) Bandwidth Copy (% of peak) 16

32 Benchmark INTEL Xeon Phi Addition Inner Product Mat-Vec Product Bandwidth Addition (% of peak) INTEL Xeon Phi 5110P Copy vs. Addition Bandwidth Inner Product (% of peak) INTEL Xeon Phi 5110P Copy vs. Inner Product Bandwidth Matrix Vector (% of peak) INTEL Xeon Phi 5110P Copy vs. Matrix Vector Product Bandwidth Copy (% of peak) Bandwidth Copy (% of peak) Bandwidth Copy (% of peak) 16

33 Benchmark Conclusio: Focus on fastest configurations for copy-kernel sufficient 17

34 Benchmark [Copy Addition Inner Product Matrix-Vector] vs. Copy Kernel Different Device, Same Vendor 18

35 19 Benchmark Benchmark NVIDIA Hardware (x: GTX 285, y: K20m) GTX 285, BW Copy (% of peak) K20m, BW Copy (%)

36 Benchmark AMD Hardware (x: A K GPU, y: HD 5850) HD 5850, BW Copy (%) A K GPU, BW Copy (% of peak) 19

37 Benchmark INTEL Hardware (x: Xeon Phi, E5-2670) Xeon Phi, BW Copy (%) E5 2670, BW Copy (% of peak) 19

38 20 Benchmark Benchmark NVIDIA Hardware (x: GTX 285, y: K20m) Addition Inner Product Mat-Vec Product GTX 285, BW Copy (% of peak) K20m, BW Addition (%) GTX 285, BW Copy (% of peak) K20m, BW Inner Product (%) GTX 285, BW Copy (% of peak) K20m, BW Matrix Vector (%)

39 Benchmark AMD Hardware (x: A K GPU, y: HD 5850) Addition Inner Product Mat-Vec Product HD 5850, BW Addition (%) HD 5850, BW Inner Product (%) HD 5850, BW Matrix Vector (%) A K GPU, BW Copy (% of peak) A K GPU, BW Copy (% of peak) A K GPU, BW Copy (% of peak) 20

40 Benchmark Conclusio: Certain Performance Portability per Vendor 21

41 Benchmark [Copy Addition Inner Product Matrix-Vector] vs. Copy Kernel Different Device, Different Vendor 22

42 Benchmark A K CPU, BW Copy (%) x: INTEL CPU, y: AMD CPU E5 2670, BW Copy (% of peak) 23

43 Benchmark K20m, BW Copy (%) x: INTEL CPU, y: NVIDIA GPU E5 2670, BW Copy (% of peak) 23

44 Benchmark K20m, BW Copy (%) x: AMD GPU, y: NVIDIA GPU HD 5850, BW Copy (% of peak) 23

45 24 Benchmark Benchmark x: AMD HD 5850, y: NVIDIA K20m Addition Inner Product Mat-Vec Product HD 5850, BW Copy (% of peak) K20m, BW Addition (%) HD 5850, BW Copy (% of peak) K20m, BW Inner Product (%) HD 5850, BW Copy (% of peak) K20m, BW Matrix Vector (%)

46 Benchmark Conclusio: Fast Configurations Across Vendors Exist 25

47 Benchmark Matrix-Matrix Multiplication Single Precision 26

48 Benchmark 10 4 INTEL Core i MKL INTEL Core i ViennaCL NVIDIA GTX CUBLAS 5.0 NVIDIA GTX ViennaCL AMD HD clamdblas 1.10 AMD HD ViennaCL GFLOP/s Ph. Tillet et al.: HotPar Matrix Rows/Columns 27

49 27 Benchmark Benchmark NVIDIA GeForce 470 GTX Bandwidth Copy (% of peak) SGEMM Performance (GFLOP/s) Matrix Matrix over Copy

50 Conclusion Copy Kernel Prototype for complicated memory-bandwidth-limited kernels Strong performance correlation Reduces search space for auto-tuning 28

51 Conclusion Copy Kernel Prototype for complicated memory-bandwidth-limited kernels Strong performance correlation Reduces search space for auto-tuning Implications Tune primarily with memory transfers in mind Prefer regular memory access patterns Use appropriate vector data types 28

52 Conclusion Copy Kernel Prototype for complicated memory-bandwidth-limited kernels Strong performance correlation Reduces search space for auto-tuning Implications Tune primarily with memory transfers in mind Prefer regular memory access patterns Use appropriate vector data types Next Steps Build a device parameter database Provide tools for crowd-tuning 28

HPC with Multicore and GPUs

HPC with Multicore and GPUs HPC with Multicore and GPUs Stan Tomov Electrical Engineering and Computer Science Department University of Tennessee, Knoxville CS 594 Lecture Notes March 4, 2015 1/18 Outline! Introduction - Hardware

More information

Introduction GPU Hardware GPU Computing Today GPU Computing Example Outlook Summary. GPU Computing. Numerical Simulation - from Models to Software

Introduction GPU Hardware GPU Computing Today GPU Computing Example Outlook Summary. GPU Computing. Numerical Simulation - from Models to Software GPU Computing Numerical Simulation - from Models to Software Andreas Barthels JASS 2009, Course 2, St. Petersburg, Russia Prof. Dr. Sergey Y. Slavyanov St. Petersburg State University Prof. Dr. Thomas

More information

ST810 Advanced Computing

ST810 Advanced Computing ST810 Advanced Computing Lecture 17: Parallel computing part I Eric B. Laber Hua Zhou Department of Statistics North Carolina State University Mar 13, 2013 Outline computing Hardware computing overview

More information

GPU System Architecture. Alan Gray EPCC The University of Edinburgh

GPU System Architecture. Alan Gray EPCC The University of Edinburgh GPU System Architecture EPCC The University of Edinburgh Outline Why do we want/need accelerators such as GPUs? GPU-CPU comparison Architectural reasons for GPU performance advantages GPU accelerated systems

More information

HIGH PERFORMANCE CONSULTING COURSE OFFERINGS

HIGH PERFORMANCE CONSULTING COURSE OFFERINGS Performance 1(6) HIGH PERFORMANCE CONSULTING COURSE OFFERINGS LEARN TO TAKE ADVANTAGE OF POWERFUL GPU BASED ACCELERATOR TECHNOLOGY TODAY 2006 2013 Nvidia GPUs Intel CPUs CONTENTS Acronyms and Terminology...

More information

Optimizing a 3D-FWT code in a cluster of CPUs+GPUs

Optimizing a 3D-FWT code in a cluster of CPUs+GPUs Optimizing a 3D-FWT code in a cluster of CPUs+GPUs Gregorio Bernabé Javier Cuenca Domingo Giménez Universidad de Murcia Scientific Computing and Parallel Programming Group XXIX Simposium Nacional de la

More information

Introduction to GPU hardware and to CUDA

Introduction to GPU hardware and to CUDA Introduction to GPU hardware and to CUDA Philip Blakely Laboratory for Scientific Computing, University of Cambridge Philip Blakely (LSC) GPU introduction 1 / 37 Course outline Introduction to GPU hardware

More information

GPUs for Scientific Computing

GPUs for Scientific Computing GPUs for Scientific Computing p. 1/16 GPUs for Scientific Computing Mike Giles mike.giles@maths.ox.ac.uk Oxford-Man Institute of Quantitative Finance Oxford University Mathematical Institute Oxford e-research

More information

Auto-Tuning TRSM with an Asynchronous Task Assignment Model on Multicore, GPU and Coprocessor Systems

Auto-Tuning TRSM with an Asynchronous Task Assignment Model on Multicore, GPU and Coprocessor Systems Auto-Tuning TRSM with an Asynchronous Task Assignment Model on Multicore, GPU and Coprocessor Systems Murilo Boratto Núcleo de Arquitetura de Computadores e Sistemas Operacionais, Universidade do Estado

More information

A quick tutorial on Intel's Xeon Phi Coprocessor

A quick tutorial on Intel's Xeon Phi Coprocessor A quick tutorial on Intel's Xeon Phi Coprocessor www.cism.ucl.ac.be damien.francois@uclouvain.be Architecture Setup Programming The beginning of wisdom is the definition of terms. * Name Is a... As opposed

More information

GPU Hardware and Programming Models. Jeremy Appleyard, September 2015

GPU Hardware and Programming Models. Jeremy Appleyard, September 2015 GPU Hardware and Programming Models Jeremy Appleyard, September 2015 A brief history of GPUs In this talk Hardware Overview Programming Models Ask questions at any point! 2 A Brief History of GPUs 3 Once

More information

Graphics Cards and Graphics Processing Units. Ben Johnstone Russ Martin November 15, 2011

Graphics Cards and Graphics Processing Units. Ben Johnstone Russ Martin November 15, 2011 Graphics Cards and Graphics Processing Units Ben Johnstone Russ Martin November 15, 2011 Contents Graphics Processing Units (GPUs) Graphics Pipeline Architectures 8800-GTX200 Fermi Cayman Performance Analysis

More information

Accelerating Simulation & Analysis with Hybrid GPU Parallelization and Cloud Computing

Accelerating Simulation & Analysis with Hybrid GPU Parallelization and Cloud Computing Accelerating Simulation & Analysis with Hybrid GPU Parallelization and Cloud Computing Innovation Intelligence Devin Jensen August 2012 Altair Knows HPC Altair is the only company that: makes HPC tools

More information

CUDA programming on NVIDIA GPUs

CUDA programming on NVIDIA GPUs p. 1/21 on NVIDIA GPUs Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Oxford-Man Institute for Quantitative Finance Oxford eresearch Centre p. 2/21 Overview hardware view

More information

Introduction to GP-GPUs. Advanced Computer Architectures, Cristina Silvano, Politecnico di Milano 1

Introduction to GP-GPUs. Advanced Computer Architectures, Cristina Silvano, Politecnico di Milano 1 Introduction to GP-GPUs Advanced Computer Architectures, Cristina Silvano, Politecnico di Milano 1 GPU Architectures: How do we reach here? NVIDIA Fermi, 512 Processing Elements (PEs) 2 What Can It Do?

More information

Introducing PgOpenCL A New PostgreSQL Procedural Language Unlocking the Power of the GPU! By Tim Child

Introducing PgOpenCL A New PostgreSQL Procedural Language Unlocking the Power of the GPU! By Tim Child Introducing A New PostgreSQL Procedural Language Unlocking the Power of the GPU! By Tim Child Bio Tim Child 35 years experience of software development Formerly VP Oracle Corporation VP BEA Systems Inc.

More information

OpenACC 2.0 and the PGI Accelerator Compilers

OpenACC 2.0 and the PGI Accelerator Compilers OpenACC 2.0 and the PGI Accelerator Compilers Michael Wolfe The Portland Group michael.wolfe@pgroup.com This presentation discusses the additions made to the OpenACC API in Version 2.0. I will also present

More information

LBM BASED FLOW SIMULATION USING GPU COMPUTING PROCESSOR

LBM BASED FLOW SIMULATION USING GPU COMPUTING PROCESSOR LBM BASED FLOW SIMULATION USING GPU COMPUTING PROCESSOR Frédéric Kuznik, frederic.kuznik@insa lyon.fr 1 Framework Introduction Hardware architecture CUDA overview Implementation details A simple case:

More information

Accelerating CFD using OpenFOAM with GPUs

Accelerating CFD using OpenFOAM with GPUs Accelerating CFD using OpenFOAM with GPUs Authors: Saeed Iqbal and Kevin Tubbs The OpenFOAM CFD Toolbox is a free, open source CFD software package produced by OpenCFD Ltd. Its user base represents a wide

More information

Introduction to GPU Programming Languages

Introduction to GPU Programming Languages CSC 391/691: GPU Programming Fall 2011 Introduction to GPU Programming Languages Copyright 2011 Samuel S. Cho http://www.umiacs.umd.edu/ research/gpu/facilities.html Maryland CPU/GPU Cluster Infrastructure

More information

High Performance Matrix Inversion with Several GPUs

High Performance Matrix Inversion with Several GPUs High Performance Matrix Inversion on a Multi-core Platform with Several GPUs Pablo Ezzatti 1, Enrique S. Quintana-Ortí 2 and Alfredo Remón 2 1 Centro de Cálculo-Instituto de Computación, Univ. de la República

More information

Next Generation GPU Architecture Code-named Fermi

Next Generation GPU Architecture Code-named Fermi Next Generation GPU Architecture Code-named Fermi The Soul of a Supercomputer in the Body of a GPU Why is NVIDIA at Super Computing? Graphics is a throughput problem paint every pixel within frame time

More information

Videocard Benchmarks Over 600,000 Video Cards Benchmarked

Videocard Benchmarks Over 600,000 Video Cards Benchmarked Strona 1 z 8 Shopping cart Search Home Software Hardware Benchmarks Services Store Support Forums About Us Home» Video Card Benchmarks» High End Video Cards CPU Benchmarks Video Card Benchmarks Hard Drive

More information

Overview. Lecture 1: an introduction to CUDA. Hardware view. Hardware view. hardware view software view CUDA programming

Overview. Lecture 1: an introduction to CUDA. Hardware view. Hardware view. hardware view software view CUDA programming Overview Lecture 1: an introduction to CUDA Mike Giles mike.giles@maths.ox.ac.uk hardware view software view Oxford University Mathematical Institute Oxford e-research Centre Lecture 1 p. 1 Lecture 1 p.

More information

PassMark - G3D Mark High End Videocards - Updated 12th of November 2015

PassMark - G3D Mark High End Videocards - Updated 12th of November 2015 1 z 8 2015-11-13 00:32 Shopping cart Home Software Hardware Benchmarks Services Store Support Forums Abou Home» Video Card Benchmarks» High End Video Cards ----Select A Page ---- High End Video Card Chart

More information

Retargeting PLAPACK to Clusters with Hardware Accelerators

Retargeting PLAPACK to Clusters with Hardware Accelerators Retargeting PLAPACK to Clusters with Hardware Accelerators Manuel Fogué 1 Francisco Igual 1 Enrique S. Quintana-Ortí 1 Robert van de Geijn 2 1 Departamento de Ingeniería y Ciencia de los Computadores.

More information

Introduction to GPU Architecture

Introduction to GPU Architecture Introduction to GPU Architecture Ofer Rosenberg, PMTS SW, OpenCL Dev. Team AMD Based on From Shader Code to a Teraflop: How GPU Shader Cores Work, By Kayvon Fatahalian, Stanford University Content 1. Three

More information

OpenCL: Portability and Performance

OpenCL: Portability and Performance OpenCL: Portability and Performance Bernd Dammann Associate Professor Scientific Computing DTU Informatics HPC architect & consultant DTU Computing Center Technical University of Denmark Technical University

More information

SYSTAP / bigdata. Open Source High Performance Highly Available. 1 http://www.bigdata.com/blog. bigdata Presented to CSHALS 2/27/2014

SYSTAP / bigdata. Open Source High Performance Highly Available. 1 http://www.bigdata.com/blog. bigdata Presented to CSHALS 2/27/2014 SYSTAP / Open Source High Performance Highly Available 1 SYSTAP, LLC Small Business, Founded 2006 100% Employee Owned Customers OEMs and VARs Government TelecommunicaHons Health Care Network Storage Finance

More information

GPGPU accelerated Computational Fluid Dynamics

GPGPU accelerated Computational Fluid Dynamics t e c h n i s c h e u n i v e r s i t ä t b r a u n s c h w e i g Carl-Friedrich Gauß Faculty GPGPU accelerated Computational Fluid Dynamics 5th GACM Colloquium on Computational Mechanics Hamburg Institute

More information

Case Study on Productivity and Performance of GPGPUs

Case Study on Productivity and Performance of GPGPUs Case Study on Productivity and Performance of GPGPUs Sandra Wienke wienke@rz.rwth-aachen.de ZKI Arbeitskreis Supercomputing April 2012 Rechen- und Kommunikationszentrum (RZ) RWTH GPU-Cluster 56 Nvidia

More information

Introduction to GPGPU. Tiziano Diamanti t.diamanti@cineca.it

Introduction to GPGPU. Tiziano Diamanti t.diamanti@cineca.it t.diamanti@cineca.it Agenda From GPUs to GPGPUs GPGPU architecture CUDA programming model Perspective projection Vectors that connect the vanishing point to every point of the 3D model will intersecate

More information

5x in 5 hours Porting SEISMIC_CPML using the PGI Accelerator Model

5x in 5 hours Porting SEISMIC_CPML using the PGI Accelerator Model 5x in 5 hours Porting SEISMIC_CPML using the PGI Accelerator Model C99, C++, F2003 Compilers Optimizing Vectorizing Parallelizing Graphical parallel tools PGDBG debugger PGPROF profiler Intel, AMD, NVIDIA

More information

Intel Xeon Phi Basic Tutorial

Intel Xeon Phi Basic Tutorial Intel Xeon Phi Basic Tutorial Evan Bollig and Brent Swartz 1pm, 12/19/2013 Overview Intro to MSI Intro to the MIC Architecture Targeting the Xeon Phi Examples Automatic Offload Offload Mode Native Mode

More information

Le langage OCaml et la programmation des GPU

Le langage OCaml et la programmation des GPU Le langage OCaml et la programmation des GPU GPU programming with OCaml Mathias Bourgoin - Emmanuel Chailloux - Jean-Luc Lamotte Le projet OpenGPU : un an plus tard Ecole Polytechnique - 8 juin 2011 Outline

More information

Overview of HPC Resources at Vanderbilt

Overview of HPC Resources at Vanderbilt Overview of HPC Resources at Vanderbilt Will French Senior Application Developer and Research Computing Liaison Advanced Computing Center for Research and Education June 10, 2015 2 Computing Resources

More information

E6895 Advanced Big Data Analytics Lecture 14:! NVIDIA GPU Examples and GPU on ios devices

E6895 Advanced Big Data Analytics Lecture 14:! NVIDIA GPU Examples and GPU on ios devices E6895 Advanced Big Data Analytics Lecture 14: NVIDIA GPU Examples and GPU on ios devices Ching-Yung Lin, Ph.D. Adjunct Professor, Dept. of Electrical Engineering and Computer Science IBM Chief Scientist,

More information

Matrix Multiplication

Matrix Multiplication Matrix Multiplication CPS343 Parallel and High Performance Computing Spring 2016 CPS343 (Parallel and HPC) Matrix Multiplication Spring 2016 1 / 32 Outline 1 Matrix operations Importance Dense and sparse

More information

Optimizing GPU-based application performance for the HP for the HP ProLiant SL390s G7 server

Optimizing GPU-based application performance for the HP for the HP ProLiant SL390s G7 server Optimizing GPU-based application performance for the HP for the HP ProLiant SL390s G7 server Technology brief Introduction... 2 GPU-based computing... 2 ProLiant SL390s GPU-enabled architecture... 2 Optimizing

More information

Lecture 11: Multi-Core and GPU. Multithreading. Integration of multiple processor cores on a single chip.

Lecture 11: Multi-Core and GPU. Multithreading. Integration of multiple processor cores on a single chip. Lecture 11: Multi-Core and GPU Multi-core computers Multithreading GPUs General Purpose GPUs Zebo Peng, IDA, LiTH 1 Multi-Core System Integration of multiple processor cores on a single chip. To provide

More information

The High Performance Internet of Things: using GVirtuS for gluing cloud computing and ubiquitous connected devices

The High Performance Internet of Things: using GVirtuS for gluing cloud computing and ubiquitous connected devices WS on Models, Algorithms and Methodologies for Hierarchical Parallelism in new HPC Systems The High Performance Internet of Things: using GVirtuS for gluing cloud computing and ubiquitous connected devices

More information

Dense Linear Algebra Solvers for Multicore with GPU Accelerators

Dense Linear Algebra Solvers for Multicore with GPU Accelerators Dense Linear Algebra Solvers for Multicore with GPU Accelerators Stanimire Tomov, Rajib Nath, Hatem Ltaief, and Jack Dongarra Department of Electrical Engineering and Computer Science, University of Tennessee,

More information

Optimizing Memory-Bound SYMV Kernel on GPU Hardware Accelerators

Optimizing Memory-Bound SYMV Kernel on GPU Hardware Accelerators Optimizing Memory-Bound SYMV Kernel on GPU Hardware Accelerators Ahmad Abdelfattah 1, Jack Dongarra 2, David Keyes 1, and Hatem Ltaief 3 1 KAUST Division of Mathematical and Computer Sciences and Engineering,

More information

Several tips on how to choose a suitable computer

Several tips on how to choose a suitable computer Several tips on how to choose a suitable computer This document provides more specific information on how to choose a computer that will be suitable for scanning and postprocessing of your data with Artec

More information

Part I Courses Syllabus

Part I Courses Syllabus Part I Courses Syllabus This document provides detailed information about the basic courses of the MHPC first part activities. The list of courses is the following 1.1 Scientific Programming Environment

More information

Graphic Processing Units: a possible answer to High Performance Computing?

Graphic Processing Units: a possible answer to High Performance Computing? 4th ABINIT Developer Workshop RESIDENCE L ESCANDILLE AUTRANS HPC & Graphic Processing Units: a possible answer to High Performance Computing? Luigi Genovese ESRF - Grenoble 26 March 2009 http://inac.cea.fr/l_sim/

More information

Home Software Hardware Benchmarks Services Store Support Forums About Us

Home Software Hardware Benchmarks Services Store Support Forums About Us 1 of 12 29.03.2016 11:28 Shopping cart Search Home Software Hardware Benchmarks Services Store Support Forums About Us Home» CPU Benchmarks» High to Mid Range CPUs CPU Benchmarks Video Card Benchmarks

More information

Mixed Precision Iterative Refinement Methods Energy Efficiency on Hybrid Hardware Platforms

Mixed Precision Iterative Refinement Methods Energy Efficiency on Hybrid Hardware Platforms Mixed Precision Iterative Refinement Methods Energy Efficiency on Hybrid Hardware Platforms Björn Rocker Hamburg, June 17th 2010 Engineering Mathematics and Computing Lab (EMCL) KIT University of the State

More information

64-Bit versus 32-Bit CPUs in Scientific Computing

64-Bit versus 32-Bit CPUs in Scientific Computing 64-Bit versus 32-Bit CPUs in Scientific Computing Axel Kohlmeyer Lehrstuhl für Theoretische Chemie Ruhr-Universität Bochum March 2004 1/25 Outline 64-Bit and 32-Bit CPU Examples

More information

Parallel Programming Survey

Parallel Programming Survey Christian Terboven 02.09.2014 / Aachen, Germany Stand: 26.08.2014 Version 2.3 IT Center der RWTH Aachen University Agenda Overview: Processor Microarchitecture Shared-Memory

More information

Evaluation of CUDA Fortran for the CFD code Strukti

Evaluation of CUDA Fortran for the CFD code Strukti Evaluation of CUDA Fortran for the CFD code Strukti Practical term report from Stephan Soller High performance computing center Stuttgart 1 Stuttgart Media University 2 High performance computing center

More information

Cross-Platform GP with Organic Vectory BV Project Services Consultancy Services Expertise Markets 3D Visualization Architecture/Design Computing Embedded Software GIS Finance George van Venrooij Organic

More information

Experiences on using GPU accelerators for data analysis in ROOT/RooFit

Experiences on using GPU accelerators for data analysis in ROOT/RooFit Experiences on using GPU accelerators for data analysis in ROOT/RooFit Sverre Jarp, Alfio Lazzaro, Julien Leduc, Yngve Sneen Lindal, Andrzej Nowak European Organization for Nuclear Research (CERN), Geneva,

More information

GPU Computing: More exciting times for HPC! Paul G. Howard, Ph.D. Chief Scientist, Microway, Inc. Copyright 2009 by Microway, Inc.

GPU Computing: More exciting times for HPC! Paul G. Howard, Ph.D. Chief Scientist, Microway, Inc. Copyright 2009 by Microway, Inc. GPU Computing: More exciting times for HPC! Paul G. Howard, Ph.D. Chief Scientist, Microway, Inc. Copyright 2009 by Microway, Inc. Introduction In the never-ending quest in the High Performance Computing

More information

ultra fast SOM using CUDA

ultra fast SOM using CUDA ultra fast SOM using CUDA SOM (Self-Organizing Map) is one of the most popular artificial neural network algorithms in the unsupervised learning category. Sijo Mathew Preetha Joy Sibi Rajendra Manoj A

More information

GPGPU acceleration in OpenFOAM

GPGPU acceleration in OpenFOAM Carl-Friedrich Gauß Faculty GPGPU acceleration in OpenFOAM Northern germany OpenFoam User meeting Braunschweig Institute of Technology Thorsten Grahs Institute of Scientific Computing/move-csc 2nd October

More information

Performance Evaluation of NAS Parallel Benchmarks on Intel Xeon Phi

Performance Evaluation of NAS Parallel Benchmarks on Intel Xeon Phi Performance Evaluation of NAS Parallel Benchmarks on Intel Xeon Phi ICPP 6 th International Workshop on Parallel Programming Models and Systems Software for High-End Computing October 1, 2013 Lyon, France

More information

Imperial College London

Imperial College London Imperial College London Department of Computing GiMMiK - Generating Bespoke Matrix Multiplication Kernels for Various Hardware Accelerators; Applications in High-Order Computational Fluid Dynamics Author:

More information

Videocard Benchmarks Over 600,000 Video Cards Benchmarked

Videocard Benchmarks Over 600,000 Video Cards Benchmarked 1 z 5 2013-07-16 10:45 Shopping cart Search Home Software Hardware Benchmarks Services Store Support Forums About Us Home» Video Card Benchmarks» Mid to High Range Video Cards CPU Benchmarks Video Card

More information

NVIDIA CUDA Software and GPU Parallel Computing Architecture. David B. Kirk, Chief Scientist

NVIDIA CUDA Software and GPU Parallel Computing Architecture. David B. Kirk, Chief Scientist NVIDIA CUDA Software and GPU Parallel Computing Architecture David B. Kirk, Chief Scientist Outline Applications of GPU Computing CUDA Programming Model Overview Programming in CUDA The Basics How to Get

More information

Design and Optimization of a Portable Lattice Boltzmann Code for Heterogeneous Architectures

Design and Optimization of a Portable Lattice Boltzmann Code for Heterogeneous Architectures Design and Optimization of a Portable Lattice Boltzmann Code for Heterogeneous Architectures E Calore, S F Schifano, R Tripiccione Enrico Calore INFN Ferrara, Italy Perspectives of GPU Computing in Physics

More information

GPU Usage. Requirements

GPU Usage. Requirements GPU Usage Use the GPU Usage tool in the Performance and Diagnostics Hub to better understand the high-level hardware utilization of your Direct3D app. You can use it to determine whether the performance

More information

Programming models for heterogeneous computing. Manuel Ujaldón Nvidia CUDA Fellow and A/Prof. Computer Architecture Department University of Malaga

Programming models for heterogeneous computing. Manuel Ujaldón Nvidia CUDA Fellow and A/Prof. Computer Architecture Department University of Malaga Programming models for heterogeneous computing Manuel Ujaldón Nvidia CUDA Fellow and A/Prof. Computer Architecture Department University of Malaga Talk outline [30 slides] 1. Introduction [5 slides] 2.

More information

OpenPOWER Outlook AXEL KOEHLER SR. SOLUTION ARCHITECT HPC

OpenPOWER Outlook AXEL KOEHLER SR. SOLUTION ARCHITECT HPC OpenPOWER Outlook AXEL KOEHLER SR. SOLUTION ARCHITECT HPC Driving industry innovation The goal of the OpenPOWER Foundation is to create an open ecosystem, using the POWER Architecture to share expertise,

More information

Overview on Modern Accelerators and Programming Paradigms Ivan Giro7o igiro7o@ictp.it

Overview on Modern Accelerators and Programming Paradigms Ivan Giro7o igiro7o@ictp.it Overview on Modern Accelerators and Programming Paradigms Ivan Giro7o igiro7o@ictp.it Informa(on & Communica(on Technology Sec(on (ICTS) Interna(onal Centre for Theore(cal Physics (ICTP) Mul(ple Socket

More information

Introduction to GPU Computing

Introduction to GPU Computing Matthis Hauschild Universität Hamburg Fakultät für Mathematik, Informatik und Naturwissenschaften Technische Aspekte Multimodaler Systeme December 4, 2014 M. Hauschild - 1 Table of Contents 1. Architecture

More information

Intelligent Heuristic Construction with Active Learning

Intelligent Heuristic Construction with Active Learning Intelligent Heuristic Construction with Active Learning William F. Ogilvie, Pavlos Petoumenos, Zheng Wang, Hugh Leather E H U N I V E R S I T Y T O H F G R E D I N B U Space is BIG! Hubble Ultra-Deep Field

More information

How to choose a suitable computer

How to choose a suitable computer How to choose a suitable computer This document provides more specific information on how to choose a computer that will be suitable for scanning and post-processing your data with Artec Studio. While

More information

The Top Six Advantages of CUDA-Ready Clusters. Ian Lumb Bright Evangelist

The Top Six Advantages of CUDA-Ready Clusters. Ian Lumb Bright Evangelist The Top Six Advantages of CUDA-Ready Clusters Ian Lumb Bright Evangelist GTC Express Webinar January 21, 2015 We scientists are time-constrained, said Dr. Yamanaka. Our priority is our research, not managing

More information

The sparse matrix vector product on GPUs

The sparse matrix vector product on GPUs The sparse matrix vector product on GPUs F. Vázquez, E. M. Garzón, J. A. Martínez, J. J. Fernández {f.vazquez, gmartin, jamartine, jjfdez}@ual.es Dpt Computer Architecture and Electronics. University of

More information

High Performance GPGPU Computer for Embedded Systems

High Performance GPGPU Computer for Embedded Systems High Performance GPGPU Computer for Embedded Systems Author: Dan Mor, Aitech Product Manager September 2015 Contents 1. Introduction... 3 2. Existing Challenges in Modern Embedded Systems... 3 2.1. Not

More information

NVIDIA GeForce GTX 580 GPU Datasheet

NVIDIA GeForce GTX 580 GPU Datasheet NVIDIA GeForce GTX 580 GPU Datasheet NVIDIA GeForce GTX 580 GPU Datasheet 3D Graphics Full Microsoft DirectX 11 Shader Model 5.0 support: o NVIDIA PolyMorph Engine with distributed HW tessellation engines

More information

Choosing a Computer for Running SLX, P3D, and P5

Choosing a Computer for Running SLX, P3D, and P5 Choosing a Computer for Running SLX, P3D, and P5 This paper is based on my experience purchasing a new laptop in January, 2010. I ll lead you through my selection criteria and point you to some on-line

More information

PyFR: Bringing Next Generation Computational Fluid Dynamics to GPU Platforms

PyFR: Bringing Next Generation Computational Fluid Dynamics to GPU Platforms PyFR: Bringing Next Generation Computational Fluid Dynamics to GPU Platforms P. E. Vincent! Department of Aeronautics Imperial College London! 25 th March 2014 Overview Motivation Flux Reconstruction Many-Core

More information

Program Grid and HPC5+ workshop

Program Grid and HPC5+ workshop Program Grid and HPC5+ workshop 24-30, Bahman 1391 Tuesday Wednesday 9.00-9.45 9.45-10.30 Break 11.00-11.45 11.45-12.30 Lunch 14.00-17.00 Workshop Rouhani Karimi MosalmanTabar Karimi G+MMT+K Opening IPM_Grid

More information

Cluster performance, how to get the most out of Abel. Ole W. Saastad, Dr.Scient USIT / UAV / FI April 18 th 2013

Cluster performance, how to get the most out of Abel. Ole W. Saastad, Dr.Scient USIT / UAV / FI April 18 th 2013 Cluster performance, how to get the most out of Abel Ole W. Saastad, Dr.Scient USIT / UAV / FI April 18 th 2013 Introduction Architecture x86-64 and NVIDIA Compilers MPI Interconnect Storage Batch queue

More information

Turbomachinery CFD on many-core platforms experiences and strategies

Turbomachinery CFD on many-core platforms experiences and strategies Turbomachinery CFD on many-core platforms experiences and strategies Graham Pullan Whittle Laboratory, Department of Engineering, University of Cambridge MUSAF Colloquium, CERFACS, Toulouse September 27-29

More information

Implementation of Stereo Matching Using High Level Compiler for Parallel Computing Acceleration

Implementation of Stereo Matching Using High Level Compiler for Parallel Computing Acceleration Implementation of Stereo Matching Using High Level Compiler for Parallel Computing Acceleration Jinglin Zhang, Jean François Nezan, Jean-Gabriel Cousin, Erwan Raffin To cite this version: Jinglin Zhang,

More information

Accelerating variant calling

Accelerating variant calling Accelerating variant calling Mauricio Carneiro GSA Broad Institute Intel Genomic Sequencing Pipeline Workshop Mount Sinai 12/10/2013 This is the work of many Genome sequencing and analysis team Mark DePristo

More information

Parallel Algorithm Engineering

Parallel Algorithm Engineering Parallel Algorithm Engineering Kenneth S. Bøgh PhD Fellow Based on slides by Darius Sidlauskas Outline Background Current multicore architectures UMA vs NUMA The openmp framework Examples Software crisis

More information

GPU for Scientific Computing. -Ali Saleh

GPU for Scientific Computing. -Ali Saleh 1 GPU for Scientific Computing -Ali Saleh Contents Introduction What is GPU GPU for Scientific Computing K-Means Clustering K-nearest Neighbours When to use GPU and when not Commercial Programming GPU

More information

Assessing the Performance of OpenMP Programs on the Intel Xeon Phi

Assessing the Performance of OpenMP Programs on the Intel Xeon Phi Assessing the Performance of OpenMP Programs on the Intel Xeon Phi Dirk Schmidl, Tim Cramer, Sandra Wienke, Christian Terboven, and Matthias S. Müller schmidl@rz.rwth-aachen.de Rechen- und Kommunikationszentrum

More information

COSCO 2015 Heterogeneous Computing Programming

COSCO 2015 Heterogeneous Computing Programming COSCO 2015 Heterogeneous Computing Programming Michael Meyer, Shunsuke Ishikuro Supporters: Kazuaki Sasamoto, Ryunosuke Murakami July 24th, 2015 Heterogeneous Computing Programming 1. Overview 2. Methodology

More information

Embedded Systems: map to FPGA, GPU, CPU?

Embedded Systems: map to FPGA, GPU, CPU? Embedded Systems: map to FPGA, GPU, CPU? Jos van Eijndhoven jos@vectorfabrics.com Bits&Chips Embedded systems Nov 7, 2013 # of transistors Moore s law versus Amdahl s law Computational Capacity Hardware

More information

Home Software Hardware Benchmarks Services Store Support Forums About Us. CPU Mark Price Performance (Click to select desired chart)

Home Software Hardware Benchmarks Services Store Support Forums About Us. CPU Mark Price Performance (Click to select desired chart) 1 z 10 2014-05-06 09:59 Shopping cart Search Home Software Hardware Benchmarks Services Store Support Forums About Us Home Ä CPU Benchmarks Ä High to Mid Range CPU's CPU Benchmarks Over 600,000 CPUs Benchmarked

More information

CPU Benchmarks Over 600,000 CPUs Benchmarked

CPU Benchmarks Over 600,000 CPUs Benchmarked 1 z 10 2014-11-04 14:00 Shopping cart Search Home Software Hardware Benchmarks Services Store Support Forums About Us Home» CPU Benchmarks» High to Mid Range CPU's CPU Benchmarks Over 600,000 CPUs Benchmarked

More information

OpenCL Optimization. San Jose 10/2/2009 Peng Wang, NVIDIA

OpenCL Optimization. San Jose 10/2/2009 Peng Wang, NVIDIA OpenCL Optimization San Jose 10/2/2009 Peng Wang, NVIDIA Outline Overview The CUDA architecture Memory optimization Execution configuration optimization Instruction optimization Summary Overall Optimization

More information

AMD EMBEDDED PCIe ADD-IN BOARD Comparison

AMD EMBEDDED PCIe ADD-IN BOARD Comparison AMD EMBEDDED PCIe ADD-IN BOARD Comparison AMD Radeon E6460 AMD Radeon E6760 Graphics Processing Unit Process Technology 40 nm 40 nm Graphics Engine Operating Frequency (max) 600 MHz 600 MHz CPU Interface

More information

The Uintah Framework: A Unified Heterogeneous Task Scheduling and Runtime System

The Uintah Framework: A Unified Heterogeneous Task Scheduling and Runtime System The Uintah Framework: A Unified Heterogeneous Task Scheduling and Runtime System Qingyu Meng, Alan Humphrey, Martin Berzins Thanks to: John Schmidt and J. Davison de St. Germain, SCI Institute Justin Luitjens

More information

Towards Large-Scale Molecular Dynamics Simulations on Graphics Processors

Towards Large-Scale Molecular Dynamics Simulations on Graphics Processors Towards Large-Scale Molecular Dynamics Simulations on Graphics Processors Joe Davis, Sandeep Patel, and Michela Taufer University of Delaware Outline Introduction Introduction to GPU programming Why MD

More information

A GPU COMPUTING PLATFORM (SAGA) AND A CFD CODE ON GPU FOR AEROSPACE APPLICATIONS

A GPU COMPUTING PLATFORM (SAGA) AND A CFD CODE ON GPU FOR AEROSPACE APPLICATIONS A GPU COMPUTING PLATFORM (SAGA) AND A CFD CODE ON GPU FOR AEROSPACE APPLICATIONS SUDHAKARAN.G APCF, AERO, VSSC, ISRO 914712564742 g_suhakaran@vssc.gov.in THOMAS.C.BABU APCF, AERO, VSSC, ISRO 914712565833

More information

Project INF BigData. Figure 1: Plot of the learned function from the checker board data set.

Project INF BigData. Figure 1: Plot of the learned function from the checker board data set. Project INF BigData Roberto Fontanarosa, Tobias Rupp, and Steffen Hirschmann Figure 1: Plot of the learned function from the checker board data set. Abstract Prediction and forecasting has become very

More information

GPGPU Computing. Yong Cao

GPGPU Computing. Yong Cao GPGPU Computing Yong Cao Why Graphics Card? It s powerful! A quiet trend Copyright 2009 by Yong Cao Why Graphics Card? It s powerful! Processor Processing Units FLOPs per Unit Clock Speed Processing Power

More information

Three Paths to Faster Simulations Using ANSYS Mechanical 16.0 and Intel Architecture

Three Paths to Faster Simulations Using ANSYS Mechanical 16.0 and Intel Architecture White Paper Intel Xeon processor E5 v3 family Intel Xeon Phi coprocessor family Digital Design and Engineering Three Paths to Faster Simulations Using ANSYS Mechanical 16.0 and Intel Architecture Executive

More information

Several tips on how to choose a suitable computer

Several tips on how to choose a suitable computer Several tips on how to choose a suitable computer This document provides more specific information on how to choose a computer that will be suitable for scanning and postprocessing of your data with Artec

More information

ENHANCEMENT OF TEGRA TABLET'S COMPUTATIONAL PERFORMANCE BY GEFORCE DESKTOP AND WIFI

ENHANCEMENT OF TEGRA TABLET'S COMPUTATIONAL PERFORMANCE BY GEFORCE DESKTOP AND WIFI ENHANCEMENT OF TEGRA TABLET'S COMPUTATIONAL PERFORMANCE BY GEFORCE DESKTOP AND WIFI Di Zhao The Ohio State University GPU Technology Conference 2014, March 24-27 2014, San Jose California 1 TEGRA-WIFI-GEFORCE

More information

Trends in High-Performance Computing for Power Grid Applications

Trends in High-Performance Computing for Power Grid Applications Trends in High-Performance Computing for Power Grid Applications Franz Franchetti ECE, Carnegie Mellon University www.spiral.net Co-Founder, SpiralGen www.spiralgen.com This talk presents my personal views

More information

Hardware-Aware Analysis and. Presentation Date: Sep 15 th 2009 Chrissie C. Cui

Hardware-Aware Analysis and. Presentation Date: Sep 15 th 2009 Chrissie C. Cui Hardware-Aware Analysis and Optimization of Stable Fluids Presentation Date: Sep 15 th 2009 Chrissie C. Cui Outline Introduction Highlights Flop and Bandwidth Analysis Mehrstellen Schemes Advection Caching

More information

HETEROGENEOUS HPC, ARCHITECTURE OPTIMIZATION, AND NVLINK

HETEROGENEOUS HPC, ARCHITECTURE OPTIMIZATION, AND NVLINK HETEROGENEOUS HPC, ARCHITECTURE OPTIMIZATION, AND NVLINK Steve Oberlin CTO, Accelerated Computing US to Build Two Flagship Supercomputers SUMMIT SIERRA Partnership for Science 100-300 PFLOPS Peak Performance

More information

gpus1 Ubuntu 10.04 Available via ssh

gpus1 Ubuntu 10.04 Available via ssh gpus1 Ubuntu 10.04 Available via ssh root@gpus1:[~]#lspci -v grep VGA 01:04.0 VGA compatible controller: Matrox Graphics, Inc. MGA G200eW WPCM450 (rev 0a) 03:00.0 VGA compatible controller: nvidia Corporation

More information