FIXED POINT ITERATION

Size: px
Start display at page:

Download "FIXED POINT ITERATION"

Transcription

1 FIXED POINT ITERATION We begin with a computational example. solving the two equations Consider E1: x =1+.5sinx E2: x =3+2sinx Graphs of these two equations are shown on accompanying graphs, with the solutions being E1: α = E2: α = We are going to use a numerical scheme called fixed point iteration. It amounts to making an initial guess of x 0 and substituting this into the right side of the equation. The resulting value is denoted by x 1 ;and then the process is repeated, this time substituting x 1 into the right side. This is repeated until convergence occurs or until the iteration is terminated. In the above cases, we show the results of the first 10 iterations in the accompanying table. Clearly convergence is occurring with E1, but not with E2. Why?

2 y y = 1 +.5sin x y = x α x y y = 3 + 2sin x y = x α x

3 E1: x =1+.5sinx E2: x =3+2sinx E1 E2 n x n x n

4 The above iterations can be written symbolically as E1: x n+1 =1+.5sinx n E2: x n+1 =3+2sinx n for n =0, 1, 2,... Why does one of these iterations converge, but not the other? The graphs show similar behaviour, so why the difference. As another example, note that the Newton method x n+1 = x n f(x n) f 0 (x n ) is also a fixed point iteration, for the equation x = x f(x) f 0 (x) In general, we are interested in solving equations x = g(x) by means of fixed point iteration: x n+1 = g(x n ), n =0, 1, 2,... It is called fixed point iteration because the root α is a fixed point of the function g(x), meaning that α is a number for which g(α) =α.

5 EXISTENCE THEOREM We begin by asking whether the equation x = g(x) has a solution. For this to occur, the graphs of y = x and y = g(x) must intersect, as seen on the earlier graphs. The lemmas and theorems in the book give conditions under which we are guaranteed there is a fixed point α. Lemma: Let g(x) be a continuous function on the interval [a, b], and suppose it satisfies the property a x b a g(x) b (#) Then the equation x = g(x) has at least one solution α intheinterval[a, b]. See the graphs for examples. The proof of this is fairly intuitive. Look at the function f(x) =x g(x), Evaluating at the endpoints, a x b f(a) 0, f(b) 0 The function f(x) iscontinuouson[a, b], and therefore it contains a zero in the interval.

6 Theorem: Assume g(x) andg 0 (x) existandarecontinuous on the interval [a, b]; and further, assume a x b a g(x) b λ max a x b g 0 (x) < 1 Then: S1. The equation x = g(x) has a unique solution α in [a, b]. S2. For any initial guess x 0 in [a, b], the iteration will converge to α. S3. S4. x n+1 = g(x n ), n =0, 1, 2,... α x n λn 1 λ x 1 x 0, n 0 lim n Thus for x n close to α, α x n+1 α x n = g 0 (α) α x n+1 g 0 (α)(α x n )

7 The proof is given in the text, and I go over only a portion of it here. For S2, note that from (#), if x 0 is in [a, b], then x 1 = g(x 0 ) is also in [a, b]. Repeat the argument to show that x 2 = g(x 1 ) belongs to [a, b]. This can be continued by induction to show that every x n belongs to [a, b]. We need the following general result. points w and z in [a, b], For any two g(w) g(z) =g 0 (c)(w z) for some unknown point c between w and z. Therefore, for any a w, z b. g(w) g(z) λ w z

8 For S3, subtract x n+1 = g(x n )fromα = g(α) toget α x n+1 = g(α) g(x n ) = g 0 (c n )(α x n ) ($) α x n+1 λ α x n (*) with c n between α and x n. From(*),wehavethat the error is guaranteed to decrease by a factor of λ with each iteration. This leads to α x n λ n α x n, n 0 With some extra manipulation, we can obtain the error boundins3. For S4, use ($) to write α x n+1 α x n = g 0 (c n ) Since x n α and c n is between α and x n, we have g 0 (c n ) g 0 (α).

9 The statement α x n+1 g 0 (α)(α x n ) tells us that when near to the root α, the errors will decrease by a constant factor of g 0 (α). If this is negative, then the errors will oscillate between positive and negative, and the iterates will be approaching from both sides. When g 0 (α) is positive, the iterates will approach α from only one side. The statements α x n+1 = g 0 (c n )(α x n ) α x n+1 g 0 (α)(α x n ) also tell us a bit more of what happens when g 0 (α) > 1 Then the errors will increase as we approach the root rather than decrease in size.

10 Look at the earlier examples In the first case E1, E1: x =1+.5sinx E2: x =3+2sinx g(x) = 1+.5sinx g 0 (x) =.5cosx g 0 (α 1 2 Therefore the fixed point iteration will converge for E1. x n+1 =1+.5sinx n For the second case E2, g(x) = 3+2sinx g 0 (x) = 2cosx g 0 (α) = 2cos( ). = Therefore the fixed point iteration will diverge for E2. x n+1 =3+2sinx n

11 Corollary: Assumex = g(x) hasasolutionα, and further assume that both g(x) andg 0 (x) arecontinuous for all x in some interval about α. In addition, assume g 0 (α) < 1 (**) Then any sufficiently small number ε>0, the interval [a, b] =[α ε, α + ε] will satisfy the hypotheses of the preceding theorem. Thismeansthatif(**)istrue,andifwechoosex 0 sufficiently close to α, then the fixed point iteration x n+1 = g(x n ) will converge and the earlier results S1-S4 will all hold. The corollary does not tell us how close we need to be to α in order to have convergence.

12 NEWTON S METHOD For Newton s method x n+1 = x n f(x n) f 0 (x n ) we have it is a fixed point iteration with g(x) =x f(x) f 0 (x) Check its convergence by checking the condition (**). g 0 (x) = 1 f 0 (x) f 0 (x) + f(x)f 00 (x) [f 0 (x)] 2 = f(x)f 00 (x) [f 0 (x)] 2 g 0 (α) = 0 Therefore the Newton method will converge if x 0 is chosen sufficiently close to α.

13 HIGHER ORDER METHODS What happens when g 0 (α) = 0? theorem to answer this question. Begin by writing We use Taylor s g(x) =g(α)+g 0 (α)(x α)+ 1 2 g00 (c)(x α) 2 with c between x and α. Substitute x = x n and recall that g(x n )=x n+1 and g(α) =α. Alsoassume g 0 (α) =0. Then x n+1 = α g00 (c n )(x n α) 2 α x n+1 = 1 2 g00 (c n )(x n α) 2 with c n between α and x n. Thus if g 0 (α) =0,the fixed point iteration is quadratically convergent or better. In fact, if g 00 (α) 6= 0, then the iteration is exactly quadratically convergent.

14 ANOTHER RAPID ITERATION Newton s method is rapid, but requires use of the derivative f 0 (x). Can we get by without this. The answer is yes! Consider the method D n = f(x n + f(x n )) f(x n ) f(x n ) x n+1 = x n f(x n) D n This is an approximation to Newton s method, with f 0 (x n ) D n. To analyze its convergence, regard it as a fixed point iteration with f(x + f(x)) f(x) D(x) = f(x) g(x) = x f(x) D(x) Then we can, with some difficulty, show g 0 (α) =0 and g 00 (α) 6= 0. This will prove this new iteration is quadratically convergent.

15 FIXED POINT INTERATION: ERROR Recall the result for the iteration Thus lim n α x n α x n 1 = g 0 (α) x n = g(x n 1 ), n =1, 2,... with λ = g 0 (α) and λ < 1. α x n λ (α x n 1 ) (***) If we were to know λ, thenwecouldsolve(***)for α: α x n λx n 1 1 λ

16 Usually, we write this as a modification of the currently computed iterate x n : α x n λx n 1 1 λ = x n λx n 1 λ + λx n λx n 1 1 λ = x n + λ 1 λ [x n x n 1 ] The formula x n + λ 1 λ [x n x n 1 ] is said to be an extrapolation of the numbers x n 1 and x n.butwhatisλ? From we have lim n α x n α x n 1 = g 0 (α) λ α x n α x n 1

17 Unfortunately this also involves the unknown root α which we seek; and we must find some other way of estimating λ. To calculate λ consider the ratio λ n = x n x n 1 x n 1 x n 2 To see this is approximately λ as x n approaches α, write x n x n 1 = g(x n 1) g(x n 2 ) = g 0 (c n ) x n 1 x n 2 x n 1 x n 2 with c n between x n 1 and x n 2. As the iterates approach α, the number c n must also approach α. Thus λ n approaches λ as x n α.

18 We combine these results to obtain the estimation bx n = x n + λ n 1 λ n [x n x n 1 ], λ n = x n x n 1 x n 1 x n 2 We call bx n the Aitken extrapolate of {x n 2,x n 1,x n }; and α bx n. We can also rewrite this as α x n bx n x n = λ n [x n x n 1 ] 1 λ n This is called Aitken s error estimation formula. The accuracy of these procedures is tied directly to the accuracy of the formulas α x n λ (α x n 1 ), α x n 1 λ (α x n 2 ) If this is accurate, then so are the above extrapolation and error estimation formulas.

19 EXAMPLE Consider the iteration for solving x n+1 = sin(x n ), n =0, 1, 2,... x = sin x Iterates are shown on the accompanying sheet, including calculations of λ n, the error estimate α x n bx n x n = λ n [x n x n 1 ] (Estimate) 1 λ n The latter is called Estimate in the table. In this instance, g 0 (α). =.9644 and therefore the convergence is very slow. apparent in the table. This is

20

21 AITKEN S ALGORITHM Step 1: Select x 0 Step 2: Calculate Step3: Calculate x 1 = g(x 0 ), x 2 = g(x 1 ) x 3 = x 2 + λ 2 1 λ 2 [x 2 x 1 ], λ 2 = x 2 x 1 x 1 x 0 Step 4: Calculate x 4 = g(x 3 ), x 5 = g(x 4 ) and calculate x 6 as the extrapolate of {x 3,x 4,x 5 }. Continue this procedure, ad infinatum. Of course in practice we will have some kind of error test to stop this procedure when believe we have sufficient accuracy.

22 EXAMPLE Consider again the iteration for solving x n+1 = sin(x n ), n =0, 1, 2,... x = sin x Now we use the Aitken method, and the results are shown in the accompanying table. With this we have α x 3 = , α x 6 = In comparison, the original iteration had α x 6 =

23 GENERAL COMMENTS Aitken extrapolation can greatly accelerate the convergence of a linearly convergent iteration x n+1 = g(x n ) This shows the power of understanding the behaviour of the error in a numerical process. From that understanding, we can often improve the accuracy, thru extrapolation or some other procedure. This is a justification for using mathematical analyses to understand numerical methods. We will see this repeated at later points in the course, and it holds with many different types of problems and numerical methods for their solution.

G.A. Pavliotis. Department of Mathematics. Imperial College London

G.A. Pavliotis. Department of Mathematics. Imperial College London EE1 MATHEMATICS NUMERICAL METHODS G.A. Pavliotis Department of Mathematics Imperial College London 1. Numerical solution of nonlinear equations (iterative processes). 2. Numerical evaluation of integrals.

More information

4.3 Lagrange Approximation

4.3 Lagrange Approximation 206 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION Lagrange Polynomial Approximation 4.3 Lagrange Approximation Interpolation means to estimate a missing function value by taking a weighted average

More information

Taylor and Maclaurin Series

Taylor and Maclaurin Series Taylor and Maclaurin Series In the preceding section we were able to find power series representations for a certain restricted class of functions. Here we investigate more general problems: Which functions

More information

Rolle s Theorem. q( x) = 1

Rolle s Theorem. q( x) = 1 Lecture 1 :The Mean Value Theorem We know that constant functions have derivative zero. Is it possible for a more complicated function to have derivative zero? In this section we will answer this question

More information

The Mean Value Theorem

The Mean Value Theorem The Mean Value Theorem THEOREM (The Extreme Value Theorem): If f is continuous on a closed interval [a, b], then f attains an absolute maximum value f(c) and an absolute minimum value f(d) at some numbers

More information

The Method of Partial Fractions Math 121 Calculus II Spring 2015

The Method of Partial Fractions Math 121 Calculus II Spring 2015 Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method

More information

1 if 1 x 0 1 if 0 x 1

1 if 1 x 0 1 if 0 x 1 Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or

More information

Section 3.7. Rolle s Theorem and the Mean Value Theorem. Difference Equations to Differential Equations

Section 3.7. Rolle s Theorem and the Mean Value Theorem. Difference Equations to Differential Equations Difference Equations to Differential Equations Section.7 Rolle s Theorem and the Mean Value Theorem The two theorems which are at the heart of this section draw connections between the instantaneous rate

More information

Homework # 3 Solutions

Homework # 3 Solutions Homework # 3 Solutions February, 200 Solution (2.3.5). Noting that and ( + 3 x) x 8 = + 3 x) by Equation (2.3.) x 8 x 8 = + 3 8 by Equations (2.3.7) and (2.3.0) =3 x 8 6x2 + x 3 ) = 2 + 6x 2 + x 3 x 8

More information

Rootfinding for Nonlinear Equations

Rootfinding for Nonlinear Equations > 3. Rootfinding Rootfinding for Nonlinear Equations > 3. Rootfinding Calculating the roots of an equation is a common problem in applied mathematics. f(x) = 0 (7.1) We will explore some simple numerical

More information

Nonlinear Algebraic Equations. Lectures INF2320 p. 1/88

Nonlinear Algebraic Equations. Lectures INF2320 p. 1/88 Nonlinear Algebraic Equations Lectures INF2320 p. 1/88 Lectures INF2320 p. 2/88 Nonlinear algebraic equations When solving the system u (t) = g(u), u(0) = u 0, (1) with an implicit Euler scheme we have

More information

MA4001 Engineering Mathematics 1 Lecture 10 Limits and Continuity

MA4001 Engineering Mathematics 1 Lecture 10 Limits and Continuity MA4001 Engineering Mathematics 1 Lecture 10 Limits and Dr. Sarah Mitchell Autumn 2014 Infinite limits If f(x) grows arbitrarily large as x a we say that f(x) has an infinite limit. Example: f(x) = 1 x

More information

Lies My Calculator and Computer Told Me

Lies My Calculator and Computer Told Me Lies My Calculator and Computer Told Me 2 LIES MY CALCULATOR AND COMPUTER TOLD ME Lies My Calculator and Computer Told Me See Section.4 for a discussion of graphing calculators and computers with graphing

More information

TOPIC 4: DERIVATIVES

TOPIC 4: DERIVATIVES TOPIC 4: DERIVATIVES 1. The derivative of a function. Differentiation rules 1.1. The slope of a curve. The slope of a curve at a point P is a measure of the steepness of the curve. If Q is a point on the

More information

FIRST YEAR CALCULUS. Chapter 7 CONTINUITY. It is a parabola, and we can draw this parabola without lifting our pencil from the paper.

FIRST YEAR CALCULUS. Chapter 7 CONTINUITY. It is a parabola, and we can draw this parabola without lifting our pencil from the paper. FIRST YEAR CALCULUS WWLCHENW L c WWWL W L Chen, 1982, 2008. 2006. This chapter originates from material used by the author at Imperial College, University of London, between 1981 and 1990. It It is is

More information

CS 261 Fall 2011 Solutions to Assignment #4

CS 261 Fall 2011 Solutions to Assignment #4 CS 61 Fall 011 Solutions to Assignment #4 The following four algorithms are used to implement the bisection method, Newton s method, the secant method, and the method of false position, respectively. In

More information

correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were:

correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were: Topic 1 2.1 mode MultipleSelection text How can we approximate the slope of the tangent line to f(x) at a point x = a? This is a Multiple selection question, so you need to check all of the answers that

More information

3.3 Real Zeros of Polynomials

3.3 Real Zeros of Polynomials 3.3 Real Zeros of Polynomials 69 3.3 Real Zeros of Polynomials In Section 3., we found that we can use synthetic division to determine if a given real number is a zero of a polynomial function. This section

More information

INTERPOLATION. Interpolation is a process of finding a formula (often a polynomial) whose graph will pass through a given set of points (x, y).

INTERPOLATION. Interpolation is a process of finding a formula (often a polynomial) whose graph will pass through a given set of points (x, y). INTERPOLATION Interpolation is a process of finding a formula (often a polynomial) whose graph will pass through a given set of points (x, y). As an example, consider defining and x 0 =0, x 1 = π 4, x

More information

Continuity. DEFINITION 1: A function f is continuous at a number a if. lim

Continuity. DEFINITION 1: A function f is continuous at a number a if. lim Continuity DEFINITION : A function f is continuous at a number a if f(x) = f(a) REMARK: It follows from the definition that f is continuous at a if and only if. f(a) is defined. 2. f(x) and +f(x) exist.

More information

Roots of equation fx are the values of x which satisfy the above expression. Also referred to as the zeros of an equation

Roots of equation fx are the values of x which satisfy the above expression. Also referred to as the zeros of an equation LECTURE 20 SOLVING FOR ROOTS OF NONLINEAR EQUATIONS Consider the equation f = 0 Roots of equation f are the values of which satisfy the above epression. Also referred to as the zeros of an equation f()

More information

4.5 Linear Dependence and Linear Independence

4.5 Linear Dependence and Linear Independence 4.5 Linear Dependence and Linear Independence 267 32. {v 1, v 2 }, where v 1, v 2 are collinear vectors in R 3. 33. Prove that if S and S are subsets of a vector space V such that S is a subset of S, then

More information

Solutions of Equations in One Variable. Fixed-Point Iteration II

Solutions of Equations in One Variable. Fixed-Point Iteration II Solutions of Equations in One Variable Fixed-Point Iteration II Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University c 2011

More information

6.4 Logarithmic Equations and Inequalities

6.4 Logarithmic Equations and Inequalities 6.4 Logarithmic Equations and Inequalities 459 6.4 Logarithmic Equations and Inequalities In Section 6.3 we solved equations and inequalities involving exponential functions using one of two basic strategies.

More information

Sequences and Series

Sequences and Series Sequences and Series Consider the following sum: 2 + 4 + 8 + 6 + + 2 i + The dots at the end indicate that the sum goes on forever. Does this make sense? Can we assign a numerical value to an infinite

More information

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1. MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column

More information

Solving Quadratic Equations

Solving Quadratic Equations 9.3 Solving Quadratic Equations by Using the Quadratic Formula 9.3 OBJECTIVES 1. Solve a quadratic equation by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation

More information

Objective: Use calculator to comprehend transformations.

Objective: Use calculator to comprehend transformations. math111 (Bradford) Worksheet #1 Due Date: Objective: Use calculator to comprehend transformations. Here is a warm up for exploring manipulations of functions. specific formula for a function, say, Given

More information

Intermediate Value Theorem, Rolle s Theorem and Mean Value Theorem

Intermediate Value Theorem, Rolle s Theorem and Mean Value Theorem Intermediate Value Theorem, Rolle s Theorem and Mean Value Theorem February 21, 214 In many problems, you are asked to show that something exists, but are not required to give a specific example or formula

More information

Separable First Order Differential Equations

Separable First Order Differential Equations Separable First Order Differential Equations Form of Separable Equations which take the form = gx hy or These are differential equations = gxĥy, where gx is a continuous function of x and hy is a continuously

More information

Practice with Proofs

Practice with Proofs Practice with Proofs October 6, 2014 Recall the following Definition 0.1. A function f is increasing if for every x, y in the domain of f, x < y = f(x) < f(y) 1. Prove that h(x) = x 3 is increasing, using

More information

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics Undergraduate Notes in Mathematics Arkansas Tech University Department of Mathematics An Introductory Single Variable Real Analysis: A Learning Approach through Problem Solving Marcel B. Finan c All Rights

More information

Section 4.4. Using the Fundamental Theorem. Difference Equations to Differential Equations

Section 4.4. Using the Fundamental Theorem. Difference Equations to Differential Equations Difference Equations to Differential Equations Section 4.4 Using the Fundamental Theorem As we saw in Section 4.3, using the Fundamental Theorem of Integral Calculus reduces the problem of evaluating a

More information

Real Roots of Univariate Polynomials with Real Coefficients

Real Roots of Univariate Polynomials with Real Coefficients Real Roots of Univariate Polynomials with Real Coefficients mostly written by Christina Hewitt March 22, 2012 1 Introduction Polynomial equations are used throughout mathematics. When solving polynomials

More information

General Theory of Differential Equations Sections 2.8, 3.1-3.2, 4.1

General Theory of Differential Equations Sections 2.8, 3.1-3.2, 4.1 A B I L E N E C H R I S T I A N U N I V E R S I T Y Department of Mathematics General Theory of Differential Equations Sections 2.8, 3.1-3.2, 4.1 Dr. John Ehrke Department of Mathematics Fall 2012 Questions

More information

Vieta s Formulas and the Identity Theorem

Vieta s Formulas and the Identity Theorem Vieta s Formulas and the Identity Theorem This worksheet will work through the material from our class on 3/21/2013 with some examples that should help you with the homework The topic of our discussion

More information

2 Integrating Both Sides

2 Integrating Both Sides 2 Integrating Both Sides So far, the only general method we have for solving differential equations involves equations of the form y = f(x), where f(x) is any function of x. The solution to such an equation

More information

1.7 Graphs of Functions

1.7 Graphs of Functions 64 Relations and Functions 1.7 Graphs of Functions In Section 1.4 we defined a function as a special type of relation; one in which each x-coordinate was matched with only one y-coordinate. We spent most

More information

Section 12.6: Directional Derivatives and the Gradient Vector

Section 12.6: Directional Derivatives and the Gradient Vector Section 26: Directional Derivatives and the Gradient Vector Recall that if f is a differentiable function of x and y and z = f(x, y), then the partial derivatives f x (x, y) and f y (x, y) give the rate

More information

Roots of Equations (Chapters 5 and 6)

Roots of Equations (Chapters 5 and 6) Roots of Equations (Chapters 5 and 6) Problem: given f() = 0, find. In general, f() can be any function. For some forms of f(), analytical solutions are available. However, for other functions, we have

More information

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

More information

1 Lecture: Integration of rational functions by decomposition

1 Lecture: Integration of rational functions by decomposition Lecture: Integration of rational functions by decomposition into partial fractions Recognize and integrate basic rational functions, except when the denominator is a power of an irreducible quadratic.

More information

Two Fundamental Theorems about the Definite Integral

Two Fundamental Theorems about the Definite Integral Two Fundamental Theorems about the Definite Integral These lecture notes develop the theorem Stewart calls The Fundamental Theorem of Calculus in section 5.3. The approach I use is slightly different than

More information

Solving Rational Equations

Solving Rational Equations Lesson M Lesson : Student Outcomes Students solve rational equations, monitoring for the creation of extraneous solutions. Lesson Notes In the preceding lessons, students learned to add, subtract, multiply,

More information

5 Numerical Differentiation

5 Numerical Differentiation D. Levy 5 Numerical Differentiation 5. Basic Concepts This chapter deals with numerical approximations of derivatives. The first questions that comes up to mind is: why do we need to approximate derivatives

More information

Representation of functions as power series

Representation of functions as power series Representation of functions as power series Dr. Philippe B. Laval Kennesaw State University November 9, 008 Abstract This document is a summary of the theory and techniques used to represent functions

More information

Using a table of derivatives

Using a table of derivatives Using a table of derivatives In this unit we construct a Table of Derivatives of commonly occurring functions. This is done using the knowledge gained in previous units on differentiation from first principles.

More information

Solutions to Homework 10

Solutions to Homework 10 Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x

More information

Objectives. Materials

Objectives. Materials Activity 4 Objectives Understand what a slope field represents in terms of Create a slope field for a given differential equation Materials TI-84 Plus / TI-83 Plus Graph paper Introduction One of the ways

More information

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5. PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include

More information

November 16, 2015. Interpolation, Extrapolation & Polynomial Approximation

November 16, 2015. Interpolation, Extrapolation & Polynomial Approximation Interpolation, Extrapolation & Polynomial Approximation November 16, 2015 Introduction In many cases we know the values of a function f (x) at a set of points x 1, x 2,..., x N, but we don t have the analytic

More information

x a x 2 (1 + x 2 ) n.

x a x 2 (1 + x 2 ) n. Limits and continuity Suppose that we have a function f : R R. Let a R. We say that f(x) tends to the limit l as x tends to a; lim f(x) = l ; x a if, given any real number ɛ > 0, there exists a real number

More information

Inner Product Spaces

Inner Product Spaces Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and

More information

5.3 SOLVING TRIGONOMETRIC EQUATIONS. Copyright Cengage Learning. All rights reserved.

5.3 SOLVING TRIGONOMETRIC EQUATIONS. Copyright Cengage Learning. All rights reserved. 5.3 SOLVING TRIGONOMETRIC EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Use standard algebraic techniques to solve trigonometric equations. Solve trigonometric equations

More information

Zeros of Polynomial Functions

Zeros of Polynomial Functions Zeros of Polynomial Functions The Rational Zero Theorem If f (x) = a n x n + a n-1 x n-1 + + a 1 x + a 0 has integer coefficients and p/q (where p/q is reduced) is a rational zero, then p is a factor of

More information

Differentiation and Integration

Differentiation and Integration This material is a supplement to Appendix G of Stewart. You should read the appendix, except the last section on complex exponentials, before this material. Differentiation and Integration Suppose we have

More information

An important theme in this book is to give constructive definitions of mathematical objects. Thus, for instance, if you needed to evaluate.

An important theme in this book is to give constructive definitions of mathematical objects. Thus, for instance, if you needed to evaluate. Chapter 10 Series and Approximations An important theme in this book is to give constructive definitions of mathematical objects. Thus, for instance, if you needed to evaluate 1 0 e x2 dx, you could set

More information

3 Contour integrals and Cauchy s Theorem

3 Contour integrals and Cauchy s Theorem 3 ontour integrals and auchy s Theorem 3. Line integrals of complex functions Our goal here will be to discuss integration of complex functions = u + iv, with particular regard to analytic functions. Of

More information

LIES MY CALCULATOR AND COMPUTER TOLD ME

LIES MY CALCULATOR AND COMPUTER TOLD ME LIES MY CALCULATOR AND COMPUTER TOLD ME See Section Appendix.4 G for a discussion of graphing calculators and computers with graphing software. A wide variety of pocket-size calculating devices are currently

More information

3.6 The Real Zeros of a Polynomial Function

3.6 The Real Zeros of a Polynomial Function SECTION 3.6 The Real Zeros of a Polynomial Function 219 3.6 The Real Zeros of a Polynomial Function PREPARING FOR THIS SECTION Before getting started, review the following: Classification of Numbers (Appendix,

More information

Review of Fundamental Mathematics

Review of Fundamental Mathematics Review of Fundamental Mathematics As explained in the Preface and in Chapter 1 of your textbook, managerial economics applies microeconomic theory to business decision making. The decision-making tools

More information

Numerical Solution of Differential

Numerical Solution of Differential Chapter 13 Numerical Solution of Differential Equations We have considered numerical solution procedures for two kinds of equations: In chapter 10 the unknown was a real number; in chapter 6 the unknown

More information

JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson

JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials

More information

MATH 132: CALCULUS II SYLLABUS

MATH 132: CALCULUS II SYLLABUS MATH 32: CALCULUS II SYLLABUS Prerequisites: Successful completion of Math 3 (or its equivalent elsewhere). Math 27 is normally not a sufficient prerequisite for Math 32. Required Text: Calculus: Early

More information

GRE Prep: Precalculus

GRE Prep: Precalculus GRE Prep: Precalculus Franklin H.J. Kenter 1 Introduction These are the notes for the Precalculus section for the GRE Prep session held at UCSD in August 2011. These notes are in no way intended to teach

More information

Factoring Polynomials

Factoring Polynomials Factoring Polynomials Sue Geller June 19, 2006 Factoring polynomials over the rational numbers, real numbers, and complex numbers has long been a standard topic of high school algebra. With the advent

More information

4.5 Chebyshev Polynomials

4.5 Chebyshev Polynomials 230 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION 4.5 Chebyshev Polynomials We now turn our attention to polynomial interpolation for f (x) over [ 1, 1] based on the nodes 1 x 0 < x 1 < < x N 1. Both

More information

Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given.

Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given. Polynomials (Ch.1) Study Guide by BS, JL, AZ, CC, SH, HL Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given. Sasha s method

More information

Answer Key for California State Standards: Algebra I

Answer Key for California State Standards: Algebra I Algebra I: Symbolic reasoning and calculations with symbols are central in algebra. Through the study of algebra, a student develops an understanding of the symbolic language of mathematics and the sciences.

More information

Lectures 5-6: Taylor Series

Lectures 5-6: Taylor Series Math 1d Instructor: Padraic Bartlett Lectures 5-: Taylor Series Weeks 5- Caltech 213 1 Taylor Polynomials and Series As we saw in week 4, power series are remarkably nice objects to work with. In particular,

More information

Math 104A - Homework 2

Math 104A - Homework 2 Math 04A - Homework Due 6/0 Section. -, 7a, 7d, Section. - 6, 8, 0 Section. - 5, 8, 4 Section. - 5,..a Use three-digit chopping arithmetic to compute the sum 0 i= first by i + + +, and then by + + +. Which

More information

Polynomial Invariants

Polynomial Invariants Polynomial Invariants Dylan Wilson October 9, 2014 (1) Today we will be interested in the following Question 1.1. What are all the possible polynomials in two variables f(x, y) such that f(x, y) = f(y,

More information

3. Mathematical Induction

3. Mathematical Induction 3. MATHEMATICAL INDUCTION 83 3. Mathematical Induction 3.1. First Principle of Mathematical Induction. Let P (n) be a predicate with domain of discourse (over) the natural numbers N = {0, 1,,...}. If (1)

More information

LEARNING OBJECTIVES FOR THIS CHAPTER

LEARNING OBJECTIVES FOR THIS CHAPTER CHAPTER 2 American mathematician Paul Halmos (1916 2006), who in 1942 published the first modern linear algebra book. The title of Halmos s book was the same as the title of this chapter. Finite-Dimensional

More information

x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1

x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1 Implicit Functions Defining Implicit Functions Up until now in this course, we have only talked about functions, which assign to every real number x in their domain exactly one real number f(x). The graphs

More information

Application. Outline. 3-1 Polynomial Functions 3-2 Finding Rational Zeros of. Polynomial. 3-3 Approximating Real Zeros of.

Application. Outline. 3-1 Polynomial Functions 3-2 Finding Rational Zeros of. Polynomial. 3-3 Approximating Real Zeros of. Polynomial and Rational Functions Outline 3-1 Polynomial Functions 3-2 Finding Rational Zeros of Polynomials 3-3 Approximating Real Zeros of Polynomials 3-4 Rational Functions Chapter 3 Group Activity:

More information

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. We begin by defining the ring of polynomials with coefficients in a ring R. After some preliminary results, we specialize

More information

Fixed Point Theorems

Fixed Point Theorems Fixed Point Theorems Definition: Let X be a set and let T : X X be a function that maps X into itself. (Such a function is often called an operator, a transformation, or a transform on X, and the notation

More information

Math 120 Final Exam Practice Problems, Form: A

Math 120 Final Exam Practice Problems, Form: A Math 120 Final Exam Practice Problems, Form: A Name: While every attempt was made to be complete in the types of problems given below, we make no guarantees about the completeness of the problems. Specifically,

More information

Zeros of Polynomial Functions

Zeros of Polynomial Functions Review: Synthetic Division Find (x 2-5x - 5x 3 + x 4 ) (5 + x). Factor Theorem Solve 2x 3-5x 2 + x + 2 =0 given that 2 is a zero of f(x) = 2x 3-5x 2 + x + 2. Zeros of Polynomial Functions Introduction

More information

This unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions.

This unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions. Algebra I Overview View unit yearlong overview here Many of the concepts presented in Algebra I are progressions of concepts that were introduced in grades 6 through 8. The content presented in this course

More information

sin(x) < x sin(x) x < tan(x) sin(x) x cos(x) 1 < sin(x) sin(x) 1 < 1 cos(x) 1 cos(x) = 1 cos2 (x) 1 + cos(x) = sin2 (x) 1 < x 2

sin(x) < x sin(x) x < tan(x) sin(x) x cos(x) 1 < sin(x) sin(x) 1 < 1 cos(x) 1 cos(x) = 1 cos2 (x) 1 + cos(x) = sin2 (x) 1 < x 2 . Problem Show that using an ɛ δ proof. sin() lim = 0 Solution: One can see that the following inequalities are true for values close to zero, both positive and negative. This in turn implies that On the

More information

SOLUTIONS TO EXERCISES FOR. MATHEMATICS 205A Part 3. Spaces with special properties

SOLUTIONS TO EXERCISES FOR. MATHEMATICS 205A Part 3. Spaces with special properties SOLUTIONS TO EXERCISES FOR MATHEMATICS 205A Part 3 Fall 2008 III. Spaces with special properties III.1 : Compact spaces I Problems from Munkres, 26, pp. 170 172 3. Show that a finite union of compact subspaces

More information

Mechanics 1: Conservation of Energy and Momentum

Mechanics 1: Conservation of Energy and Momentum Mechanics : Conservation of Energy and Momentum If a certain quantity associated with a system does not change in time. We say that it is conserved, and the system possesses a conservation law. Conservation

More information

Cartesian Products and Relations

Cartesian Products and Relations Cartesian Products and Relations Definition (Cartesian product) If A and B are sets, the Cartesian product of A and B is the set A B = {(a, b) :(a A) and (b B)}. The following points are worth special

More information

36 CHAPTER 1. LIMITS AND CONTINUITY. Figure 1.17: At which points is f not continuous?

36 CHAPTER 1. LIMITS AND CONTINUITY. Figure 1.17: At which points is f not continuous? 36 CHAPTER 1. LIMITS AND CONTINUITY 1.3 Continuity Before Calculus became clearly de ned, continuity meant that one could draw the graph of a function without having to lift the pen and pencil. While this

More information

Aim. Decimal Search. An Excel 'macro' was used to do the calculations. A copy of the script can be found in Appendix A.

Aim. Decimal Search. An Excel 'macro' was used to do the calculations. A copy of the script can be found in Appendix A. Aim The aim of this investigation is to use and compare three different methods of finding specific solutions to polynomials that cannot be solved algebraically. The methods that will be considered are;

More information

Nonhomogeneous Linear Equations

Nonhomogeneous Linear Equations Nonhomogeneous Linear Equations In this section we learn how to solve second-order nonhomogeneous linear differential equations with constant coefficients, that is, equations of the form ay by cy G x where

More information

Second-Order Linear Differential Equations

Second-Order Linear Differential Equations Second-Order Linear Differential Equations A second-order linear differential equation has the form 1 Px d 2 y dx 2 dy Qx dx Rxy Gx where P, Q, R, and G are continuous functions. We saw in Section 7.1

More information

Average rate of change

Average rate of change Average rate of change 1 1 Average rate of change A fundamental philosophical truth is that everything changes. 1 Average rate of change A fundamental philosophical truth is that everything changes. In

More information

The Division Algorithm for Polynomials Handout Monday March 5, 2012

The Division Algorithm for Polynomials Handout Monday March 5, 2012 The Division Algorithm for Polynomials Handout Monday March 5, 0 Let F be a field (such as R, Q, C, or F p for some prime p. This will allow us to divide by any nonzero scalar. (For some of the following,

More information

1 Shapes of Cubic Functions

1 Shapes of Cubic Functions MA 1165 - Lecture 05 1 1/26/09 1 Shapes of Cubic Functions A cubic function (a.k.a. a third-degree polynomial function) is one that can be written in the form f(x) = ax 3 + bx 2 + cx + d. (1) Quadratic

More information

Math 55: Discrete Mathematics

Math 55: Discrete Mathematics Math 55: Discrete Mathematics UC Berkeley, Spring 2012 Homework # 9, due Wednesday, April 11 8.1.5 How many ways are there to pay a bill of 17 pesos using a currency with coins of values of 1 peso, 2 pesos,

More information

Limits and Continuity

Limits and Continuity Math 20C Multivariable Calculus Lecture Limits and Continuity Slide Review of Limit. Side limits and squeeze theorem. Continuous functions of 2,3 variables. Review: Limits Slide 2 Definition Given a function

More information

SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS

SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS A second-order linear differential equation has the form 1 Px d y dx dy Qx dx Rxy Gx where P, Q, R, and G are continuous functions. Equations of this type arise

More information

5.1 Derivatives and Graphs

5.1 Derivatives and Graphs 5.1 Derivatives and Graphs What does f say about f? If f (x) > 0 on an interval, then f is INCREASING on that interval. If f (x) < 0 on an interval, then f is DECREASING on that interval. A function has

More information

CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA

CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical

More information

2.4 Real Zeros of Polynomial Functions

2.4 Real Zeros of Polynomial Functions SECTION 2.4 Real Zeros of Polynomial Functions 197 What you ll learn about Long Division and the Division Algorithm Remainder and Factor Theorems Synthetic Division Rational Zeros Theorem Upper and Lower

More information

6.3 Conditional Probability and Independence

6.3 Conditional Probability and Independence 222 CHAPTER 6. PROBABILITY 6.3 Conditional Probability and Independence Conditional Probability Two cubical dice each have a triangle painted on one side, a circle painted on two sides and a square painted

More information

Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year.

Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year. This document is designed to help North Carolina educators teach the Common Core (Standard Course of Study). NCDPI staff are continually updating and improving these tools to better serve teachers. Algebra

More information