Mathematics Higher Level

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Mathematics Higher Level"

Transcription

1 Mthemtics Higher Level Higher Mthemtics Exmintion

2 Section : The Exmintion Mthemtics Higher Level. Structure of the exmintion pper The Higher Mthemtics Exmintion is divided into two ppers s detiled below: Pper Pper There re 70 mrks vilble in totl for this pper nd the time lloction is hour nd 30 minutes. Clcultors cnnot be used in this pper nd the pper is divided into two sections: Section A contins 0 objective test type questions worth mrks ech. Ech question hs 4 possible nswers only one of which is correct. The mjority of these questions should be firly stright-forwrd nd will ssess your knowledge of the bsic theory of the course. Section B will contin questions worth 30 mrks in totl nd re clled written response questions. The exminers re looking for written solutions to these questions. There will usully be 3 to 5 questions in this section. There re 60 mrks vilble for this pper nd the time lloction is hour 0 minutes. Clcultors cn be used in this pper, however you will find tht for mny of the questions you will not need to use clcultor. In ll of the questions in this pper the exminers re looking for written solutions. There will usully be 6 to 9 questions in this pper. Exmintion Guide Pge

3 . Formul List Mthemtics Higher Level A formul list is given in the Higher exmintion nd is printed inside both exmintion ppers. The formule given re... Circle: The eqution The eqution x y gx fy c = 0 represents circle centre ( g, f) nd rdius ( x ) ( y b) r + = represents circle centre (, ) b nd rdius r. g + f c. Sclr Product : b. = b cos θ, where θ is the ngle between nd b. or b b. = b + b + b 3 3, where = nd b = b. b 3 3 Trigonometric formule: sin(a ± B) = sin A cos B ± cos Asin B cos(a ± B) = cos A cos B sin A sin B sin A = sin A cos A = cos A cos A sin A = cos A = sin A Tble of stndrd derivtives : f( x ) f ( x) sin x cos x cos x sin x Tble of stndrd integrls : f( x ) f ( x) dx sin x cos x + C cos x sin x + C Exmintion Guide Pge 3

4 Section : Essentil Formule Mthemtics Higher Level. Formule nd fcts from previous levels There re number of formule, from both Stndrd Grde/Intermedite, tht you will find very useful for the Higher Mthemtics exmintion. These re listed below nd you should know them. Qudrtic Formul is b ± b 4c x=, 0. Trigonometric identities : sin A + cos A = sin A tn A = cos A Trigonometric exct vlues... ngle in degrees sin 0 3 cos 3 0 tn Trigonometric Grphs y y = sin x y y = cos x x x Exmintion Guide Pge 4

5 . Higher Level Formule Mthemtics Higher Level You will find the following very helpful. You must know the following: Given ny two points ( x, y) nd ( x, y ) then the : midpoint is given by x + y, x + y distnce between them is ( x x ) + ( y y ) y y grdient of line through the points is m=, where x x x x Grdient cn lso be found using m = tn θ Sequences Any sequence given by recurrence reltion of the form u = + n+ un b hs limit L if nd only if < <. This limit L cn be found by solving b L = L + b OR L = The discriminnt : = b 4 c. ( ) n n f x = kx f ( x) = knx n k n+ kx dx = x + c, n n + n n+ ( x + b) dx = ( x + b) + c, n n ( + ) Logrithmic nd Exponentil form x y = log y = x Lws of Logrithms. log pq = log p + log q 4. log. p log = log p log q 5. log = 0 q n 3. log p = nlog p Exmintion Guide Pge 5

6 Section 3 : Attempting Exmintion Questions Mthemtics Higher Level 3. Objective Test Questions This is the first set of questions tht you will meet in the exmintion. Although it is up to you how long you spend ttempting these questions try not to spend more thn 45 minutes nswering them. The mjority of objective test questions cn be nswered directly from the question without looking t the options. You should ttempt s mny questions s you cn in this mnner. Below is n exmple of n objective test question nd how it will look in the exmintion. Exmple A sequence is defined by the recurrence reltion Wht is the vlue of u? 7 u 5u 8 u 4 = + = n+ n with 5 A B 4 C 8 5 D 9 Options Question Your working for this question should look like this : u = 5 n u + + n 8 u = 5 u + 8= = 4 u 6 5 = 5 u + 8 = = So the nswer is 9 nd nswer D You would then shde in D on the nswer grid for this question. There is no penlty for guessing here nd so if you re relly stuck nd do not know the nswer to ny question mke guess. Do not leve ny objective question without n nswer when you submit your exmintion pper. Exmintion Guide Pge 6

7 3. Written Response Questions Mthemtics Higher Level Section B of Pper nd Pper consist of number of questions where the exminer wnts to see written solution to the question. There re two importnt instructions on the front of the exmintion pper tht you must remember.. Full credit will only be given where the solution contins pproprite working. It is importnt tht you show ll working, where it is needed. Questions worth or more mrks need some sort of working. If question is worth 4 mrks nd you simply write down the nswer it is highly unlikely tht you will receive ny mrks for tht question. The exminer must be ble to see where your nswer hs come from.. Answers obtined by redings from scle drwings will not receive ny credit. Therefore you must not use ny form of scle drwing to nswer ny question. Even if your nswer were correct you would receive no mrks. If you remember these two rules nd try to show the exminer where ech of your nswers hs come from, you should be ble to pick up s mny mrks in the exmintion s possible. Along with these two rules, there re some bsic fcts which if you remember when nswering questions in Higher Mthemtics, you should not drop mrks needlessly. These re: In generl : If question sttes Show tht..., you must show ll the steps in your solution nd end up with the result requested. Do not stop your solution until you get to tht finl result required. If exct vlues re sked for you will receive no mrks for pproximte vlues. More specificlly : Alwys simplify frctions s fr s possible. e.g. Write 8 s 9 Don t write frction with s the denomintor. e.g. 43 must be written s 43 Never leve deciml point on the numertor or denomintor of frction e.g. should be written s 50 (here nd would lso be uncceptble.) should be written s 90 You must evlute squre roots of perfect squres up to nd including 00. e.g. You must write 49 s 7 but could leve 96 (which is 4) unsimplified. Clculus questions involving sine nd cosine should lwys be ttempted using rdins do not use degrees nd then convert to rdins. You my lose more thn one mrk here if you do not del with the Mthemtics correctly!! Exmintion Guide Pge 7

Anti-derivatives/Indefinite Integrals of Basic Functions

Anti-derivatives/Indefinite Integrals of Basic Functions Anti-derivtives/Indefinite Integrls of Bsic Functions Power Rule: x n+ x n n + + C, dx = ln x + C, if n if n = In prticulr, this mens tht dx = ln x + C x nd x 0 dx = dx = dx = x + C Integrl of Constnt:

More information

The Quadratic Formula and the Discriminant

The Quadratic Formula and the Discriminant 9-9 The Qudrtic Formul nd the Discriminnt Objectives Solve qudrtic equtions by using the Qudrtic Formul. Determine the number of solutions of qudrtic eqution by using the discriminnt. Vocbulry discriminnt

More information

Notes for Thurs 8 Sept Calculus II Fall 2005 New York University Instructor: Tyler Neylon Scribe: Kelsey Williams

Notes for Thurs 8 Sept Calculus II Fall 2005 New York University Instructor: Tyler Neylon Scribe: Kelsey Williams Notes for Thurs 8 Sept Clculus II Fll 00 New York University Instructor: Tyler Neylon Scribe: Kelsey Willims 8. Integrtion by Prts This section is primrily bout the formul u dv = uv v ( ) which is essentilly

More information

Math 135 Circles and Completing the Square Examples

Math 135 Circles and Completing the Square Examples Mth 135 Circles nd Completing the Squre Exmples A perfect squre is number such tht = b 2 for some rel number b. Some exmples of perfect squres re 4 = 2 2, 16 = 4 2, 169 = 13 2. We wish to hve method for

More information

Warm-up for Differential Calculus

Warm-up for Differential Calculus Summer Assignment Wrm-up for Differentil Clculus Who should complete this pcket? Students who hve completed Functions or Honors Functions nd will be tking Differentil Clculus in the fll of 015. Due Dte:

More information

Integration by Substitution

Integration by Substitution Integrtion by Substitution Dr. Philippe B. Lvl Kennesw Stte University August, 8 Abstrct This hndout contins mteril on very importnt integrtion method clled integrtion by substitution. Substitution is

More information

Binary Representation of Numbers Autar Kaw

Binary Representation of Numbers Autar Kaw Binry Representtion of Numbers Autr Kw After reding this chpter, you should be ble to: 1. convert bse- rel number to its binry representtion,. convert binry number to n equivlent bse- number. In everydy

More information

Graphs on Logarithmic and Semilogarithmic Paper

Graphs on Logarithmic and Semilogarithmic Paper 0CH_PHClter_TMSETE_ 3//00 :3 PM Pge Grphs on Logrithmic nd Semilogrithmic Pper OBJECTIVES When ou hve completed this chpter, ou should be ble to: Mke grphs on logrithmic nd semilogrithmic pper. Grph empiricl

More information

NUMBER SYSTEMS CHAPTER 1. (A) Main Concepts and Results

NUMBER SYSTEMS CHAPTER 1. (A) Main Concepts and Results CHAPTER NUMBER SYSTEMS Min Concepts nd Results Rtionl numbers Irrtionl numbers Locting irrtionl numbers on the number line Rel numbers nd their deciml expnsions Representing rel numbers on the number line

More information

Use Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions.

Use Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions. Lerning Objectives Loci nd Conics Lesson 3: The Ellipse Level: Preclculus Time required: 120 minutes In this lesson, students will generlize their knowledge of the circle to the ellipse. The prmetric nd

More information

Addition and subtraction of rational expressions

Addition and subtraction of rational expressions Lecture 5. Addition nd subtrction of rtionl expressions Two rtionl expressions in generl hve different denomintors, therefore if you wnt to dd or subtrct them you need to equte the denomintors first. The

More information

Chapter 9: Quadratic Equations

Chapter 9: Quadratic Equations Chpter 9: Qudrtic Equtions QUADRATIC EQUATIONS DEFINITION + + c = 0,, c re constnts (generlly integers) ROOTS Synonyms: Solutions or Zeros Cn hve 0, 1, or rel roots Consider the grph of qudrtic equtions.

More information

1 Numerical Solution to Quadratic Equations

1 Numerical Solution to Quadratic Equations cs42: introduction to numericl nlysis 09/4/0 Lecture 2: Introduction Prt II nd Solving Equtions Instructor: Professor Amos Ron Scribes: Yunpeng Li, Mrk Cowlishw Numericl Solution to Qudrtic Equtions Recll

More information

4.11 Inner Product Spaces

4.11 Inner Product Spaces 314 CHAPTER 4 Vector Spces 9. A mtrix of the form 0 0 b c 0 d 0 0 e 0 f g 0 h 0 cnnot be invertible. 10. A mtrix of the form bc d e f ghi such tht e bd = 0 cnnot be invertible. 4.11 Inner Product Spces

More information

Square Roots Teacher Notes

Square Roots Teacher Notes Henri Picciotto Squre Roots Techer Notes This unit is intended to help students develop n understnding of squre roots from visul / geometric point of view, nd lso to develop their numer sense round this

More information

Review guide for the final exam in Math 233

Review guide for the final exam in Math 233 Review guide for the finl exm in Mth 33 1 Bsic mteril. This review includes the reminder of the mteril for mth 33. The finl exm will be cumultive exm with mny of the problems coming from the mteril covered

More information

2012 Mathematics. Higher. Finalised Marking Instructions

2012 Mathematics. Higher. Finalised Marking Instructions 0 Mthemts Higher Finlised Mrking Instructions Scottish Quliftions Authority 0 The informtion in this publtion my be reproduced to support SQA quliftions only on non-commercil bsis. If it is to be used

More information

www.mathsbox.org.uk e.g. f(x) = x domain x 0 (cannot find the square root of negative values)

www.mathsbox.org.uk e.g. f(x) = x domain x 0 (cannot find the square root of negative values) www.mthsbo.org.uk CORE SUMMARY NOTES Functions A function is rule which genertes ectl ONE OUTPUT for EVERY INPUT. To be defined full the function hs RULE tells ou how to clculte the output from the input

More information

Factoring Polynomials

Factoring Polynomials Fctoring Polynomils Some definitions (not necessrily ll for secondry school mthemtics): A polynomil is the sum of one or more terms, in which ech term consists of product of constnt nd one or more vribles

More information

1 PRECALCULUS READINESS DIAGNOSTIC TEST PRACTICE

1 PRECALCULUS READINESS DIAGNOSTIC TEST PRACTICE PRECALCULUS READINESS DIAGNOSTIC TEST PRACTICE Directions: Study the smples, work the problems, then check your nswers t the end of ech topic. If you don t get the nswer given, check your work nd look

More information

10.5 Graphing Quadratic Functions

10.5 Graphing Quadratic Functions 0.5 Grphing Qudrtic Functions Now tht we cn solve qudrtic equtions, we wnt to lern how to grph the function ssocited with the qudrtic eqution. We cll this the qudrtic function. Grphs of Qudrtic Functions

More information

Pythagoras theorem and trigonometry (2)

Pythagoras theorem and trigonometry (2) HPTR 10 Pythgors theorem nd trigonometry (2) 31 HPTR Liner equtions In hpter 19, Pythgors theorem nd trigonometry were used to find the lengths of sides nd the sizes of ngles in right-ngled tringles. These

More information

4.0 5-Minute Review: Rational Functions

4.0 5-Minute Review: Rational Functions mth 130 dy 4: working with limits 1 40 5-Minute Review: Rtionl Functions DEFINITION A rtionl function 1 is function of the form y = r(x) = p(x) q(x), 1 Here the term rtionl mens rtio s in the rtio of two

More information

Volumes of solids of revolution

Volumes of solids of revolution Volumes of solids of revolution We sometimes need to clculte the volume of solid which cn be obtined by rotting curve bout the x-xis. There is strightforwrd technique which enbles this to be done, using

More information

Example 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers.

Example 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers. 2 Rtionl Numbers Integers such s 5 were importnt when solving the eqution x+5 = 0. In similr wy, frctions re importnt for solving equtions like 2x = 1. Wht bout equtions like 2x + 1 = 0? Equtions of this

More information

1 Line Integrals of Scalar Functions

1 Line Integrals of Scalar Functions MA 242 - Fll 2010 Worksheet VIII 13.2 nd 13.3 1 Line Integrls of Sclr Functions There re (in some sense) four types of line integrls of sclr functions. The line integrls w.r.t. x, y nd z cn be plced under

More information

PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY

PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY MAT 0630 INTERNET RESOURCES, REVIEW OF CONCEPTS AND COMMON MISTAKES PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY Contents 1. ACT Compss Prctice Tests 1 2. Common Mistkes 2 3. Distributive

More information

Uniform convergence and its consequences

Uniform convergence and its consequences Uniform convergence nd its consequences The following issue is centrl in mthemtics: On some domin D, we hve sequence of functions {f n }. This mens tht we relly hve n uncountble set of ordinry sequences,

More information

Geometry Notes SIMILAR TRIANGLES

Geometry Notes SIMILAR TRIANGLES Similr Tringles Pge 1 of 6 SIMILAR TRIANGLES Objectives: After completing this section, you shoul be ble to o the following: Clculte the lengths of sies of similr tringles. Solve wor problems involving

More information

Pure C4. Revision Notes

Pure C4. Revision Notes Pure C4 Revision Notes Mrch 0 Contents Core 4 Alger Prtil frctions Coordinte Geometry 5 Prmetric equtions 5 Conversion from prmetric to Crtesin form 6 Are under curve given prmetriclly 7 Sequences nd

More information

Sequences and Series

Sequences and Series Centre for Eduction in Mthemtics nd Computing Euclid eworkshop # 5 Sequences nd Series c 014 UNIVERSITY OF WATERLOO While the vst mjority of Euclid questions in this topic re use formule for rithmetic

More information

Section 5-4 Trigonometric Functions

Section 5-4 Trigonometric Functions 5- Trigonometric Functions Section 5- Trigonometric Functions Definition of the Trigonometric Functions Clcultor Evlution of Trigonometric Functions Definition of the Trigonometric Functions Alternte Form

More information

For the Final Exam, you will need to be able to:

For the Final Exam, you will need to be able to: Mth B Elementry Algebr Spring 0 Finl Em Study Guide The em is on Wednesdy, My 0 th from 7:00pm 9:0pm. You re lloed scientific clcultor nd " by 6" inde crd for notes. On your inde crd be sure to rite ny

More information

Quadratic Equations. Math 99 N1 Chapter 8

Quadratic Equations. Math 99 N1 Chapter 8 Qudrtic Equtions Mth 99 N1 Chpter 8 1 Introduction A qudrtic eqution is n eqution where the unknown ppers rised to the second power t most. In other words, it looks for the vlues of x such tht second degree

More information

Vectors 2. 1. Recap of vectors

Vectors 2. 1. Recap of vectors Vectors 2. Recp of vectors Vectors re directed line segments - they cn be represented in component form or by direction nd mgnitude. We cn use trigonometry nd Pythgors theorem to switch between the forms

More information

Net Change and Displacement

Net Change and Displacement mth 11, pplictions motion: velocity nd net chnge 1 Net Chnge nd Displcement We hve seen tht the definite integrl f (x) dx mesures the net re under the curve y f (x) on the intervl [, b] Any prt of the

More information

Arc Length. P i 1 P i (1) L = lim. i=1

Arc Length. P i 1 P i (1) L = lim. i=1 Arc Length Suppose tht curve C is defined by the eqution y = f(x), where f is continuous nd x b. We obtin polygonl pproximtion to C by dividing the intervl [, b] into n subintervls with endpoints x, x,...,x

More information

Lesson 10. Parametric Curves

Lesson 10. Parametric Curves Return to List of Lessons Lesson 10. Prmetric Curves (A) Prmetric Curves If curve fils the Verticl Line Test, it cn t be expressed by function. In this cse you will encounter problem if you try to find

More information

Quadratic Equations - 1

Quadratic Equations - 1 Alger Module A60 Qudrtic Equtions - 1 Copyright This puliction The Northern Alert Institute of Technology 00. All Rights Reserved. LAST REVISED Novemer, 008 Qudrtic Equtions - 1 Sttement of Prerequisite

More information

Appendix D: Completing the Square and the Quadratic Formula. In Appendix A, two special cases of expanding brackets were considered:

Appendix D: Completing the Square and the Quadratic Formula. In Appendix A, two special cases of expanding brackets were considered: Appendi D: Completing the Squre nd the Qudrtic Formul Fctoring qudrtic epressions such s: + 6 + 8 ws one of the topics introduced in Appendi C. Fctoring qudrtic epressions is useful skill tht cn help you

More information

1. Find the zeros Find roots. Set function = 0, factor or use quadratic equation if quadratic, graph to find zeros on calculator

1. Find the zeros Find roots. Set function = 0, factor or use quadratic equation if quadratic, graph to find zeros on calculator AP Clculus Finl Review Sheet When you see the words. This is wht you think of doing. Find the zeros Find roots. Set function =, fctor or use qudrtic eqution if qudrtic, grph to find zeros on clcultor.

More information

Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( )

Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( ) Polynomil Functions Polynomil functions in one vrible cn be written in expnded form s n n 1 n 2 2 f x = x + x + x + + x + x+ n n 1 n 2 2 1 0 Exmples of polynomils in expnded form re nd 3 8 7 4 = 5 4 +

More information

Radius of the Earth - Radii Used in Geodesy James R. Clynch February 2006

Radius of the Earth - Radii Used in Geodesy James R. Clynch February 2006 dius of the Erth - dii Used in Geodesy Jmes. Clynch Februry 006 I. Erth dii Uses There is only one rdius of sphere. The erth is pproximtely sphere nd therefore, for some cses, this pproximtion is dequte.

More information

Two special Right-triangles 1. The

Two special Right-triangles 1. The Mth Right Tringle Trigonometry Hndout B (length of ) - c - (length of side ) (Length of side to ) Pythgoren s Theorem: for tringles with right ngle ( side + side = ) + = c Two specil Right-tringles. The

More information

Section 7-4 Translation of Axes

Section 7-4 Translation of Axes 62 7 ADDITIONAL TOPICS IN ANALYTIC GEOMETRY Section 7-4 Trnsltion of Aes Trnsltion of Aes Stndrd Equtions of Trnslted Conics Grphing Equtions of the Form A 2 C 2 D E F 0 Finding Equtions of Conics In the

More information

Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100

Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100 hsn.uk.net Higher Mthemtics UNIT 3 OUTCOME 1 Vectors Contents Vectors 18 1 Vectors nd Sclrs 18 Components 18 3 Mgnitude 130 4 Equl Vectors 131 5 Addition nd Subtrction of Vectors 13 6 Multipliction by

More information

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics. Basic Algebra

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics. Basic Algebra SCHOOL OF ENGINEERING & BUILT ENVIRONMENT Mthemtics Bsic Alger. Opertions nd Epressions. Common Mistkes. Division of Algeric Epressions. Eponentil Functions nd Logrithms. Opertions nd their Inverses. Mnipulting

More information

Sect 8.3 Triangles and Hexagons

Sect 8.3 Triangles and Hexagons 13 Objective 1: Sect 8.3 Tringles nd Hexgons Understnding nd Clssifying Different Types of Polygons. A Polygon is closed two-dimensionl geometric figure consisting of t lest three line segments for its

More information

Lecture 15 - Curve Fitting Techniques

Lecture 15 - Curve Fitting Techniques Lecture 15 - Curve Fitting Techniques Topics curve fitting motivtion liner regression Curve fitting - motivtion For root finding, we used given function to identify where it crossed zero where does fx

More information

not to be republished NCERT POLYNOMIALS CHAPTER 2 (A) Main Concepts and Results (B) Multiple Choice Questions

not to be republished NCERT POLYNOMIALS CHAPTER 2 (A) Main Concepts and Results (B) Multiple Choice Questions POLYNOMIALS (A) Min Concepts nd Results Geometricl mening of zeroes of polynomil: The zeroes of polynomil p(x) re precisely the x-coordintes of the points where the grph of y = p(x) intersects the x-xis.

More information

Reasoning to Solve Equations and Inequalities

Reasoning to Solve Equations and Inequalities Lesson4 Resoning to Solve Equtions nd Inequlities In erlier work in this unit, you modeled situtions with severl vriles nd equtions. For exmple, suppose you were given usiness plns for concert showing

More information

Area Between Curves: We know that a definite integral

Area Between Curves: We know that a definite integral Are Between Curves: We know tht definite integrl fx) dx cn be used to find the signed re of the region bounded by the function f nd the x xis between nd b. Often we wnt to find the bsolute re of region

More information

14.2. The Mean Value and the Root-Mean-Square Value. Introduction. Prerequisites. Learning Outcomes

14.2. The Mean Value and the Root-Mean-Square Value. Introduction. Prerequisites. Learning Outcomes he Men Vlue nd the Root-Men-Squre Vlue 4. Introduction Currents nd voltges often vry with time nd engineers my wish to know the men vlue of such current or voltge over some prticulr time intervl. he men

More information

Module Summary Sheets. C3, Methods for Advanced Mathematics (Version B reference to new book) Topic 2: Natural Logarithms and Exponentials

Module Summary Sheets. C3, Methods for Advanced Mathematics (Version B reference to new book) Topic 2: Natural Logarithms and Exponentials MEI Mthemtics in Ection nd Instry Topic : Proof MEI Structured Mthemtics Mole Summry Sheets C, Methods for Anced Mthemtics (Version B reference to new book) Topic : Nturl Logrithms nd Eponentils Topic

More information

Unit 6 Solving Oblique Triangles - Classwork

Unit 6 Solving Oblique Triangles - Classwork Unit 6 Solving Oblique Tringles - Clsswork A. The Lw of Sines ASA nd AAS In geometry, we lerned to prove congruence of tringles tht is when two tringles re exctly the sme. We used severl rules to prove

More information

Chapter 6 Solving equations

Chapter 6 Solving equations Chpter 6 Solving equtions Defining n eqution 6.1 Up to now we hve looked minly t epressions. An epression is n incomplete sttement nd hs no equl sign. Now we wnt to look t equtions. An eqution hs n = sign

More information

Solutions to Section 1

Solutions to Section 1 Solutions to Section Exercise. Show tht nd. This follows from the fct tht mx{, } nd mx{, } Exercise. Show tht = { if 0 if < 0 Tht is, the bsolute vlue function is piecewise defined function. Grph this

More information

Numerical integration

Numerical integration Chpter 4 Numericl integrtion Contents 4.1 Definite integrls.............................. 4. Closed Newton-Cotes formule..................... 4 4. Open Newton-Cotes formule...................... 8 4.4

More information

STRAND I: Geometry and Trigonometry. UNIT I2 Trigonometric Problems: Text * * Contents. Section. I2.1 Mixed Problems Using Trigonometry

STRAND I: Geometry and Trigonometry. UNIT I2 Trigonometric Problems: Text * * Contents. Section. I2.1 Mixed Problems Using Trigonometry Mthemtics SKE: STRND I UNIT I Trigonometric Prolems: Text STRND I: Geometry nd Trigonometry I Trigonometric Prolems Text ontents Section * * * I. Mixed Prolems Using Trigonometry I. Sine nd osine Rules

More information

9.3. The Scalar Product. Introduction. Prerequisites. Learning Outcomes

9.3. The Scalar Product. Introduction. Prerequisites. Learning Outcomes The Sclr Product 9.3 Introduction There re two kinds of multipliction involving vectors. The first is known s the sclr product or dot product. This is so-clled becuse when the sclr product of two vectors

More information

AREA OF A SURFACE OF REVOLUTION

AREA OF A SURFACE OF REVOLUTION AREA OF A SURFACE OF REVOLUTION h cut r πr h A surfce of revolution is formed when curve is rotted bout line. Such surfce is the lterl boundr of solid of revolution of the tpe discussed in Sections 7.

More information

Section A-4 Rational Expressions: Basic Operations

Section A-4 Rational Expressions: Basic Operations A- Appendi A A BASIC ALGEBRA REVIEW 7. Construction. A rectngulr open-topped bo is to be constructed out of 9- by 6-inch sheets of thin crdbord by cutting -inch squres out of ech corner nd bending the

More information

5.6 Substitution Method

5.6 Substitution Method 5.6 Substitution Method Recll the Chin Rule: (f(g(x))) = f (g(x))g (x) Wht hppens if we wnt to find f (g(x))g (x) dx? The Substitution Method: If F (x) = f(x), then f(u(x))u (x) dx = F (u(x)) + C. Steps:

More information

Exponents base exponent power exponentiation

Exponents base exponent power exponentiation Exonents We hve seen counting s reeted successors ddition s reeted counting multiliction s reeted ddition so it is nturl to sk wht we would get by reeting multiliction. For exmle, suose we reetedly multily

More information

Solving Linear Equations - Formulas

Solving Linear Equations - Formulas 1. Solving Liner Equtions - Formuls Ojective: Solve liner formuls for given vrile. Solving formuls is much like solving generl liner equtions. The only difference is we will hve severl vriles in the prolem

More information

Basic Math Review. Numbers. Important Properties. Absolute Value PROPERTIES OF ADDITION NATURAL NUMBERS {1, 2, 3, 4, 5, }

Basic Math Review. Numbers. Important Properties. Absolute Value PROPERTIES OF ADDITION NATURAL NUMBERS {1, 2, 3, 4, 5, } ƒ Bsic Mth Review Numers NATURAL NUMBERS {1,, 3, 4, 5, } WHOLE NUMBERS {0, 1,, 3, 4, } INTEGERS {, 3,, 1, 0, 1,, } The Numer Line 5 4 3 1 0 1 3 4 5 Negtive integers Positive integers RATIONAL NUMBERS All

More information

FUNCTIONS AND EQUATIONS. xεs. The simplest way to represent a set is by listing its members. We use the notation

FUNCTIONS AND EQUATIONS. xεs. The simplest way to represent a set is by listing its members. We use the notation FUNCTIONS AND EQUATIONS. SETS AND SUBSETS.. Definition of set. A set is ny collection of objects which re clled its elements. If x is n element of the set S, we sy tht x belongs to S nd write If y does

More information

Example A rectangular box without lid is to be made from a square cardboard of sides 18 cm by cutting equal squares from each corner and then folding

Example A rectangular box without lid is to be made from a square cardboard of sides 18 cm by cutting equal squares from each corner and then folding 1 Exmple A rectngulr box without lid is to be mde from squre crdbord of sides 18 cm by cutting equl squres from ech corner nd then folding up the sides. 1 Exmple A rectngulr box without lid is to be mde

More information

MATH 126 NOTES J. WARNER

MATH 126 NOTES J. WARNER MATH 6 NOTES J. WARNER Nottion R will denote the set of ll rel numbers. If A nd B re sets, we denote tht A is subset of B by A B. f : A B denotes function f with domin A nd codomin B. At times, for convenience,

More information

The Parallelogram Law. Objective: To take students through the process of discovery, making a conjecture, further exploration, and finally proof.

The Parallelogram Law. Objective: To take students through the process of discovery, making a conjecture, further exploration, and finally proof. The Prllelogrm Lw Objective: To tke students through the process of discovery, mking conjecture, further explortion, nd finlly proof. I. Introduction: Use one of the following Geometer s Sketchpd demonstrtion

More information

Number Systems & Working With Numbers

Number Systems & Working With Numbers Presenting the Mths Lectures! Your best bet for Qunt... MATHS LECTURE # 0 Number Systems & Working With Numbers System of numbers.3 0.6 π With the help of tree digrm, numbers cn be clssified s follows

More information

Section 2.3. Motion Along a Curve. The Calculus of Functions of Several Variables

Section 2.3. Motion Along a Curve. The Calculus of Functions of Several Variables The Clculus of Functions of Severl Vribles Section 2.3 Motion Along Curve Velocity ccelertion Consider prticle moving in spce so tht its position t time t is given by x(t. We think of x(t s moving long

More information

LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES

LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES DAVID WEBB CONTENTS Liner trnsformtions 2 The representing mtrix of liner trnsformtion 3 3 An ppliction: reflections in the plne 6 4 The lgebr of

More information

Curve Sketching. 96 Chapter 5 Curve Sketching

Curve Sketching. 96 Chapter 5 Curve Sketching 96 Chpter 5 Curve Sketching 5 Curve Sketching A B A B A Figure 51 Some locl mximum points (A) nd minimum points (B) If (x, f(x)) is point where f(x) reches locl mximum or minimum, nd if the derivtive of

More information

11. Fourier series. sin mx cos nx dx = 0 for any m, n, sin 2 mx dx = π.

11. Fourier series. sin mx cos nx dx = 0 for any m, n, sin 2 mx dx = π. . Fourier series Summry of the bsic ides The following is quick summry of the introductory tretment of Fourier series in MATH. We consider function f with period π, tht is, stisfying f(x + π) = f(x) for

More information

Rational Expressions

Rational Expressions C H A P T E R Rtionl Epressions nformtion is everywhere in the newsppers nd mgzines we red, the televisions we wtch, nd the computers we use. And I now people re tlking bout the Informtion Superhighwy,

More information

9.1 PYTHAGOREAN THEOREM (right triangles)

9.1 PYTHAGOREAN THEOREM (right triangles) Simplifying Rdicls: ) 1 b) 60 c) 11 d) 3 e) 7 Solve: ) x 4 9 b) 16 80 c) 9 16 9.1 PYTHAGOREAN THEOREM (right tringles) c If tringle is right tringle then b, b re the legs * c is clled the hypotenuse (side

More information

RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS

RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS Known for over 500 yers is the fct tht the sum of the squres of the legs of right tringle equls the squre of the hypotenuse. Tht is +b c. A simple proof is

More information

5.2 The Definite Integral

5.2 The Definite Integral 5.2 THE DEFINITE INTEGRAL 5.2 The Definite Integrl In the previous section, we sw how to pproximte totl chnge given the rte of chnge. In this section we see how to mke the pproximtion more ccurte. Suppose

More information

The Calculus of Variations: An Introduction. By Kolo Sunday Goshi

The Calculus of Variations: An Introduction. By Kolo Sunday Goshi The Clculus of Vritions: An Introduction By Kolo Sundy Goshi Some Greek Mythology Queen Dido of Tyre Fled Tyre fter the deth of her husbnd Arrived t wht is present dy Liby Irbs (King of Liby) offer Tell

More information

Rational Numbers - Grade 10 [CAPS]

Rational Numbers - Grade 10 [CAPS] OpenStx-CNX module: m848 Rtionl Numers - Grde 0 [CAPS] Free High School Science Texts Project Bsed on Rtionl Numers y Rory Adms Free High School Science Texts Project Mrk Horner Hether Willims This work

More information

Unit 6: Exponents and Radicals

Unit 6: Exponents and Radicals Eponents nd Rdicls -: The Rel Numer Sstem Unit : Eponents nd Rdicls Pure Mth 0 Notes Nturl Numers (N): - counting numers. {,,,,, } Whole Numers (W): - counting numers with 0. {0,,,,,, } Integers (I): -

More information

2 If a branch is prime, no other factors

2 If a branch is prime, no other factors Chpter 2 Multiples, nd primes 59 Find the prime of 50 by drwing fctor tree. b Write 50 s product of its prime. 1 Find fctor pir of the given 50 number nd begin the fctor tree (50 = 5 10). 5 10 2 If brnch

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com C Integrtion Volumes PhsicsAndMthsTutor.com. Using the sustitution cos u, or otherwise, find the ect vlue of d 7 The digrm ove shows sketch of prt of the curve with eqution, <

More information

15.6. The mean value and the root-mean-square value of a function. Introduction. Prerequisites. Learning Outcomes. Learning Style

15.6. The mean value and the root-mean-square value of a function. Introduction. Prerequisites. Learning Outcomes. Learning Style The men vlue nd the root-men-squre vlue of function 5.6 Introduction Currents nd voltges often vry with time nd engineers my wish to know the verge vlue of such current or voltge over some prticulr time

More information

Algorithms Chapter 4 Recurrences

Algorithms Chapter 4 Recurrences Algorithms Chpter 4 Recurrences Outline The substitution method The recursion tree method The mster method Instructor: Ching Chi Lin 林清池助理教授 chingchilin@gmilcom Deprtment of Computer Science nd Engineering

More information

Basically, logarithmic transformations ask, a number, to what power equals another number?

Basically, logarithmic transformations ask, a number, to what power equals another number? Wht i logrithm? To nwer thi, firt try to nwer the following: wht i x in thi eqution? 9 = 3 x wht i x in thi eqution? 8 = 2 x Biclly, logrithmic trnformtion k, number, to wht power equl nother number? In

More information

Operations with Polynomials

Operations with Polynomials 38 Chpter P Prerequisites P.4 Opertions with Polynomils Wht you should lern: Write polynomils in stndrd form nd identify the leding coefficients nd degrees of polynomils Add nd subtrct polynomils Multiply

More information

FURTHER TRIGONOMETRY

FURTHER TRIGONOMETRY 0 YER The Improving Mthemtics Eduction in Schools (TIMES) Project FURTHER TRIGONOMETRY MESUREMENT ND GEOMETRY Module 24 guide for techers - Yer 0 June 20 Further Trigonometry (Mesurement nd Geometry: Module

More information

Let us recall some facts you have learnt in previous grades under the topic Area.

Let us recall some facts you have learnt in previous grades under the topic Area. 6 Are By studying this lesson you will be ble to find the res of sectors of circles, solve problems relted to the res of compound plne figures contining sectors of circles. Ares of plne figures Let us

More information

5.2. LINE INTEGRALS 265. Let us quickly review the kind of integrals we have studied so far before we introduce a new one.

5.2. LINE INTEGRALS 265. Let us quickly review the kind of integrals we have studied so far before we introduce a new one. 5.2. LINE INTEGRALS 265 5.2 Line Integrls 5.2.1 Introduction Let us quickly review the kind of integrls we hve studied so fr before we introduce new one. 1. Definite integrl. Given continuous rel-vlued

More information

Generalized Inverses: How to Invert a Non-Invertible Matrix

Generalized Inverses: How to Invert a Non-Invertible Matrix Generlized Inverses: How to Invert Non-Invertible Mtrix S. Swyer September 7, 2006 rev August 6, 2008. Introduction nd Definition. Let A be generl m n mtrix. Then nturl question is when we cn solve Ax

More information

Algebra Review. How well do you remember your algebra?

Algebra Review. How well do you remember your algebra? Algebr Review How well do you remember your lgebr? 1 The Order of Opertions Wht do we men when we write + 4? If we multiply we get 6 nd dding 4 gives 10. But, if we dd + 4 = 7 first, then multiply by then

More information

SUBSTITUTION I.. f(ax + b)

SUBSTITUTION I.. f(ax + b) Integrtion SUBSTITUTION I.. f(x + b) Grhm S McDonld nd Silvi C Dll A Tutoril Module for prctising the integrtion of expressions of the form f(x + b) Tble of contents Begin Tutoril c 004 g.s.mcdonld@slford.c.uk

More information

Physics 43 Homework Set 9 Chapter 40 Key

Physics 43 Homework Set 9 Chapter 40 Key Physics 43 Homework Set 9 Chpter 4 Key. The wve function for n electron tht is confined to x nm is. Find the normliztion constnt. b. Wht is the probbility of finding the electron in. nm-wide region t x

More information

1 Super-Brief Calculus I Review.

1 Super-Brief Calculus I Review. CALCULUS MATH 66 FALL 203 (COHEN) LECTURE NOTES For the purposes of this clss, we will regrd clculus s the study of limits nd limit processes. Without yet formlly reclling the definition of limit, let

More information

CHAPTER 11 Numerical Differentiation and Integration

CHAPTER 11 Numerical Differentiation and Integration CHAPTER 11 Numericl Differentition nd Integrtion Differentition nd integrtion re bsic mthemticl opertions with wide rnge of pplictions in mny res of science. It is therefore importnt to hve good methods

More information

Or more simply put, when adding or subtracting quantities, their uncertainties add.

Or more simply put, when adding or subtracting quantities, their uncertainties add. Propgtion of Uncertint through Mthemticl Opertions Since the untit of interest in n eperiment is rrel otined mesuring tht untit directl, we must understnd how error propgtes when mthemticl opertions re

More information

For a solid S for which the cross sections vary, we can approximate the volume using a Riemann sum. A(x i ) x. i=1.

For a solid S for which the cross sections vary, we can approximate the volume using a Riemann sum. A(x i ) x. i=1. Volumes by Disks nd Wshers Volume of cylinder A cylinder is solid where ll cross sections re the sme. The volume of cylinder is A h where A is the re of cross section nd h is the height of the cylinder.

More information

Theory of Forces. Forces and Motion

Theory of Forces. Forces and Motion his eek extbook -- Red Chpter 4, 5 Competent roblem Solver - Chpter 4 re-lb Computer Quiz ht s on the next Quiz? Check out smple quiz on web by hurs. ht you missed on first quiz Kinemtics - Everything

More information