Multisim Electronics Workbench Tutorial

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Multisim Electronics Workbench Tutorial"

Transcription

1 Multisim Electronics Workbench Tutorial Multisim Electronics Workbench is available in several different versions including a professional version, a demo version, a student version, and a textbook version. The professional version is available in the labs on the CECS network and has all of the Workbench features. The demo version may be downloaded from the Workbench website at The demo version is limited in that the user is unable to save or print results. A more fully featured student suite version (limited to 100 components) is available for home use from Prentice-Hall for about $80 dollars. Finally, the textbook version is packaged with certain text books including the book currently being used in EE 210/215. It has some limited features such as the user may have only 50 components but this version can read and simulate larger files created on the professional version. This tutorial focuses on the features in the textbook version. Figure 1 shows the opening screen of Workbench. To use the program you choose a set of components from the Parts Bin toolbar located on the left side of the screen and place them on the screen. The components are connected by using the cursor to drag "wires" between the parts. When the circuit is complete, you choose some type of measuring instrument from the Instruments toolbar on the right side of the screen. For example, you might connect an oscilloscope to the output of your circuit. This done, you can simulate your circuit and observe the output on the instruments you connected. Figure 1 The Multisim opening screen Figure 2 lists the commonly used icons from the toolbars. Note that on the textbook version some icons are grayed out since they are not available on this version (for example there is no spectrum analyzer).

2 Parts Bin Source components. Includes dependent and independent sources and grounds Basic components. Resistors, capacitors, inductors and variations Diodes. Includes LED's and bridge networks Bipolar and MOS transistors Analog components. Includes op amps and other amplifiers TTL. A wide selection of 74 and 74LS packages CMOS. 4xxx and 74HC components Miscellaneous digital including VHDL and Verilog Mixed analog/digital including converters and 555 timer Indicators. voltmeter and ammeter, indicator lamps, and displays Miscellaneous components including a vacuum tube and a motor Control system components such as summers, multipliers, etc. RF components Instruments Multimeter. Amps, volts, or Ohms. Function generator. Sine, square, and triangular waveforms Wattmeter. Oscilloscope (2-Channel) Bode plotter. Does both magnitude and phase Logic Analyzer Mode and Simulation Component mode button. Click this to add components Component editor to modify component parameters. Instruments. Click this to add an instrument. Simulate button. Alternatively, push F5 to toggle start/stop and F6 to pause. Analysis. Transient, AC, DC, and Fourier included. VHDL and Verilog simulation. Electromechanical including a coil, Report. Click this to generate a report. transformer, and a relay. Figure 2 The principle icons on the three main tool bars of Workbench.

3 Example 1 A simple resistor network The circuit which we will simulate has a dependent voltage controlled current source, four resistors, a battery, and a meter to measure the output. The finished circuit is shown in Figure E1. R1 R3 V1 10V 1.0kohm R2 2.0kohm I Mho 2.0kohm R4 1.0kohm XMM1 Figure E1-1 A resistor network with a dependent current source. To begin click on the Source Components icon on the Parts Bin tool bar. This produces a selection of parts including various sources. Select a battery source from the menu by clicking on it. Click once more on the blank screen to place the battery. Figure E2 shows the result. Figure E1-2 Select a battery voltage source and place it on the blank screen. After placing the battery on the screen, double click on it to get a menu to set the battery values. Change the battery value to 10 volts.

4 With the battery in place the next item to chose will be the voltage dependent current source. Choose this from the Source Components in the Parts Bin. A voltage dependent current source has a value in mhos or amps/volt. Set this value to mhos. The circuit also has a ground on either side of the dependent source. Select a ground symbol from the Source Components and place them on the diagram. Your circuit should look something like that shown in Figure E3. There are four resistors to be added to the circuit and we are done with the sources menu. You can close the source menu and open the Basic Components menu on the Parts Bin tool bar. Note that there are two types of resistors in the parts bin. One type is a "real world" resistor that has a value that you can purchase. The second type is a "virtual" resistor that is idealized and can have any value you choose to assign to it. Choose a 1KΩ resistor and place it on the circuit diagram between the battery and dependent source. Similary choose a 2KΩ resistor and place it immediately to the left of the dependent source. You can rotate a resistor by right clicking on it and choosing one of the rotation options. Choose another 1KΩ and 2KΩ resistor and place them to the right of the dependent source. Rotate the resistors as needed so that your circuit looks like that shown in Figure E4. Figure E1-3 A battery and a voltage dependent current source have been placed.

5 Figure E1-4 The circuit with all of the components in place. Note that resistors can be rotated by right clicking on them and choosing one of the rotation options. With the components in place you are ready to connect the wires. Workbench has no wire mode. You connect wires by moving the cursor to a component wire end, click on it, go to a second component and click on its wire end. Workbench will then fill in a wire between those two components. If you get a wire wrong, simply click on the wire and push delete to get rid of it. It may be tempting to place components close enough together so that their terminals touch and thereby avoid having to connect them together with a wire. But this doesn't work in Workbench. Components must be connected together by wires. On occasion you may want to connect the end of one wire to a component. You cannot begin a new wire from an old one unless you place a junction on the wire first. You can do this from the Place menu at the top of the screen. Sometimes Workbench does not choose a very good path between two points and the wire makes the circuit appear cluttered or unnecessarily complicated or the wire path passes through text. You can choose the path for any wire by clicking on intermediate points on the screen to form corners or junctions. You do this by first clicking on a component wire end, clicking on one or more intermediate points, and finally clicking on the component wire end of the second component. The wire path will then go from the first component through each intermediate point to the second component. After connecting the wires in the example your circuit should look like that shown in Figure E5. R1 R4 V1 10V 1.0kohm R2 2.0kohm I Mho 2.0kohm R3 1.0kohm Figure E1-5 The complete circuit with all of the components and wires in place.

6 The circuit in this example is ready for simulation except that we have no way to see the output. The simulator in Workbench outputs only to instruments which you connect to the circuit diagram. For this dc example we will connect a voltmeter across R3 which we will take as the output. The connect the voltmeter, select the multimeter from the Instruments toolbar on the right side of the screen. Place the multimeter near the R3 resistor and connect the plus terminal to the top of R3 and the minus terminal to the bottom of R3 as shown in Figure E6. Double click on the multimeter and verify that it is set up as a dc voltmeter. Let the multimeter set up screen open so that you can view the results of the simulation. Figure E1-6 Connect a multimeter across R3. The voltage across R3 is taken as the output voltage. Double click on the multimeter to open the meter's setup and view screen. You can start the simulation by pushing the F5 function key, by pressing the on/off switch at the top right corner of the Workbench screen, or by selecting run from the Simulation menu at the top of the screen. The result of the simulation will be shown on the multimeter. Figure E7 The multimeter showing the results of the simulation. The Multimeter also allow can be used as an ammeter or an ohmmeter and, by clicking on the Set... button you can manually set the impedance of the meters to conform to real world instruments. Workbench also has a voltmeter and an ammeter in the Indicators section of the Parts Bin.

7 Example 2 An RC network using the oscilloscope and Bode plotter In this example we use the oscilloscope and the Bode plotter in an RC circuit that has an AC source. The circuit which we will construct is shown in Figure E2-1. Figure E2-1 The complete circuit showing the oscilloscope and Bode plotter. Begin by placing a 10KΩ resistor, a 1.0uF capacitor, a 100Ω resistor, an AC voltage source, and an analog ground as shown in Figure E2-2. Use the cursor to draw in the connecting wires. If you are unfamiliar with placing components and connecting wires refer to Example 1. R1 10kohm V1 10V 1000Hz 0Deg C1 1.0uF R2 100ohm Figure E2-2 The basic RC circuit with all components in place. Note that you will have to change the default value of the AC voltage source to 10 Volts by double clicking on the source and setting the value on the pop-up menu. For this circuit we will take the input to be the 10 volt AC source and the output to be the voltage across the series combination of C1 and R2. Select the oscilloscope from the Instruments toolbar and connect the A channel to the top of V1 and the B channel to the top of C1. It's not necessary to connect the oscilloscope ground. Your circuit should look like that shown in Figure E2-3. Double click on the oscilloscope to open the oscilloscope control window and set the values as shown in the figure.

8 Figure E2-3 The circuit with the oscilloscope connected. The time base is set to 200µsec/div. Set channel A to 10 V/Div and channel B to 200 mv/div. Set the y-position of channel A to +1.4 volts and the y-position of channel B to -1.6 volts. Push the F5 function key to run the simulation (or push the rocker switch at the top right of the Workbench screen). The oscilloscope display will look like that shown in Figure E2-4. Figure E2-4 The oscilloscope showing the simulation. The oscilloscope display has two arrows in red and blue near the top of the display. Use the cursor to move the red arrow to a peak of the channel A display and move the blue arrow to the peak in the channel B display. The display will then show the difference in time as T2-T1 about equal to 160 µsec. Note that the input voltage source is at 1KHz so the phase shift between the two is (160/1000)x360 o = 57.6 o. Note that the oscilloscope has a Save button. This allows you to save the data collected and displayed by the scope into an ascii file. The file can then be read by other program such as Matlab or Excel for reports or graphs. When you click on Save, you are

9 prompted to enter a file name which has the extension.scp by default. For this example the first few lines of such a file look like that shown in Figure E2-5 when read by a program like Notepad. Oscilloscope data for Time base: seconds per division Time offset: seconds Channel A sensitivity : volts per division Channel A offset: volts Channel B sensitivity : volts per division Channel B offset: volts Channel A connected: yes Channel B connected: yes Column 1 Time (S) Column 2 Channel_A Voltage(V) Column 3 Channel_B Voltage(V) Time Channel_A Channel_B e e e e e e e e e e e e e e e e e e e e e Figure E2-5 This is the first part of a file containing the oscilloscope data. The data is in ascii format and may be read by other program such as Excel. The file can be read into Excel directly and the column data can be plotted using the Excel plot features. To read the program into Matlab you must first strip off the header data so that the file consists only of the time base, Channel A, and Channel B data. You can then load and plot the three columns of data into a single Matlab variable with a MatLab statement such as s = load('rcbode.txt'); %RCBode.txt is the amended scope file name. plot(s); Note that when plotting data in either Matlab or Excel the scaling that is done by the oscilloscope is lost. The Bode plotter is an instrument that allows you to look at the frequency response of your circuit. Select the Bode plotter from the Instruments tool bar on the right side of the screen. The Bode plotter has both input and output terminals and has the additional requirement that your circuit must have at least one AC source as a circuit element. For our example connect the input terminals of the Bode plotter directly across the AC source and the output terminals across the series combination of C1 and R2. This is shown in Figure E2-1 where a ground is used as a common connection. In use, the Bode plotter disables the AC source so that it has no real effect on the Bode plot. The plotter applies a series of sinusoids to the input and monitors the sinusoids on the output to determine the gain and the phase shift produced by the circuit.

10 Double click on the Bode plotter to get the control and output screen for the instrument. By tradition, a Bode plot is logarithmic plot of gain magnitude and phase vs. frequency. On Workbench you can alter the vertical and horizontal scales to be either linear or logarithmic. For this example we will leave the traditional log plot in place. Change the horizontal frequency scale so that the starting frequency (in window marked I) is at 10Hz and the ending frequency (in the window marked F) is at 100KHz. Run the simulation to get the Bode plot similar to that shown in Figure E2-6 below. Figure E2-6 The Bode plot simulation showing the magnitude function. Note that you can move the red arrow horizontally and read out values in the window. The window above shows that the gain is at DB at a frequency of Hz. Click on the Phase button to see the phase curve. If you move the horizontal arrow to 1000Hz you will see the display shown in Figure E2-7. Figure E2-7 The phase curve with the marker set to about 1KHz. The phase is o which agrees with the phase measurement taken on the oscilloscope. Like the oscilloscope, the Bode plotter also has a Save option which allows you to save the data taken by the plotter as an ascii file. The first part of the Bode data file is shown in Figure E2-8. You can read the data file directly into Excel and make a prettier plot or you can strip off the header information and read the data into Matlab.

11 Bode data for column 1 Frequency (Hz) column 2 Gain (db) column 3 Gain (Linear) column 4 Phase (Deg) trace name: Bode Result Frequency Gain (db) Gain Phase e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e Figure E2-8 The first portion of the text file created by the Bode plotter. Click on the Save button to create this file. To get the Matlab plot, open the Bode plot data file in a word processor such as Word or Notepad, strip off all of the information above the raw data appearing in the 4 columns, and save the resulting file in a txt format. In Matlab you can plot the magnitude data using the following commands: s = load('bodedata.txt'); semilogx(s(:,1),s(:,2));

12 Example 3 Transient and AC Analysis For this example we will look at the analysis options under the simulate menu. Begin by constructing the circuit shown in Figure E3-1. Figure E3-1 An RC circuit with a Bode plotter and an AC source for use in doing the analysis options. Note that in this circuit we have changed the AC voltage source from the default 10 volts to 1 volt. You might be tempted to use the function generator in place of the AC voltage source but the function generator will not work with AC Analysis. Workbench requires at least one AC voltage source in the circuit. We have also numbered the nodes since it is necessary to know the node numbers for the analysis. You can number the nodes in your circuit by choosing Options Preferences and checking the Show node names box. The output node is number 3. Figure E3-2 The Bode plotter set up and result. Double click on the Bode plotter and set the frequency range to run from 100Hz to 1MHz. (Note that in the Bode plot set up mhz stands for milli-hertz and MHz stands for MegaHertz.) Run the simulation by pushing F5 and you will get he Bode plot shown in Figure E3-2. AC Analysis The first analysis that we will run on this circuit will be an AC analysis. From the menu select Simulate Analysis AC Analysis. This will give you a menu screen similar to that shown in Figure E3-3. Choose the starting and ending frequency range to run from 100Hz to 1MHz and set the sweep type to linear with 100 points and a logarithmic vertical scale.

13 Figure E3-3 Choose Simulate Analysis AC Analysis and set up the frequency parameters as shown. Next choose the Output variables tab from the top of the menu, select node 3 from the left side of the page and click on the arrow to move it to the right side. Figure E3-4 The output variables screen for AC Analysis. Select node from the left and click on the "Plot during simulation" button to move it to the right. Click on Simulate to complete the AC Analysis simulation. The results will appear in a new window called "Analysis Graphs" as shown in Figure E3-5. Note that the Bode plot which we did before also appears in this window under its own tab. The AC analysis and the Bode plot both show the same information but they are plotted with different scales. The Bode plot has a logarithmic frequency scale and we chose a linear frequency scale for the AC analysis.

14 Figure E3-5 The AC Analysis. Note that this graph provides the same information as does the Bode plotter but the scales are different. Transient Analysis In some books the term "Transient Analysis" refers to the step and impulse response of a given circuit. For Workbench the term simply means the analysis of the circuit beginning at time 0 and running for a user specified time. The input is not limited to a step or impulse. To do a transient analysis choose Simulate Analysis Transient from the menu. This will produce an options screen similar to that shown in Figure E3-6. Change the end time (TSTOP) to 0.01 seconds. Click on the Output variables tab and verify that node 3 is the output variable. Click on the simulate button to get the results of the simulation. This is shown in Figure E3-7. Since we have an AC source as the input the transient analysis shows the sinusoidal start up at the output. The transient start up rapidly dies away within a couple of cycles and settles to the steady state response of the circuit. To get a step response we would need to change the input voltage source to a Pulse Voltage Source and set the frequency and duty cycle such that the circuit settles out during each cycle. For this particular example, delete the AC Voltage source by clicking on it one time and pushing delete. Select a Pulse Voltage Source from the Parts Bin and connect it in place of the AC source. Double click on the pulse source and set the voltage pulse to go from 0 to 1 volt, set the delay time to 0, the rise and fall times to 1 nsec, and pulse width to 10 msec with a period of 20 msec. Choose simulate to see the results shown in Figure E3-8.

15 Figure E3-6 The Transient Analysis menu options. Change the value of TSTOP to 0.01 seconds. Figure E3-7 The transient analysis results showing the sinusoidal start up at time 0. Figure E3-8 The step response of the circuit.

16 Example 4 Combinational Logic A 2 to 4 decoder with enable For this example we will simulate a 2-line to 4-line decoder with mechanical switches as input devices and LED's as out put displays. The decoder logic will be made from 74LS TTL parts. The completed circuit is shown in Figure E4-1. Figure E4-1 A 2-line to 4-line decoder with an enable. The red LED's indicate the state of the output. Begin by placing the TTL parts on the diagram first. Select the TTL icon from the Parts Bin and choose the 74LS series. The 3-input nand gates are of type 74LS10 and there are three gates per package so you will need two packages. For the inverters use the 74LS04 part which has 6 gates per package and will need only three gates. Note that you can rearrange the text that goes with each package to allow for a neater configuration. In Figure E4-1 I have moved the UXX package designations onto the gates themselves. The pin numbers shown would be used if you were actually building this circuit but since this is just a simulation example the pin numbers for an individual gate are of no importance. Be sure to right click on the two bottom most inverters and rotate each counterclockwise. Your circuit should look something like that shown in Figure E4-2.

17 Figure E4-2 Place the 3-input together using two packages of 74LS10 type. Use one package of 74LS04 type for the inverters. Right click on the bottom most inverters and rotate them counter-clockwise. Next we place the LED's on the board. These are on the Diodes menu in the Parts Bin. You have a choice of several colors. I have rotated the LEDs clockwise and moved their names around to tighten the configuration. After placing the first LED you can copy it and paste it for the others or you can select another LED from the in use list at the top center of the Workbench page. Add in four 330Ω resistors as shown in Figure E4-3. Figure E4-3 Place four LEDs and four 330Ω resistors on the board as show. Finally we need to add the switches and the power supplies. Workbench has switches in two places. The switches we will use are located on the Basic menu and they are single pole double throw (SPDT) switches. (There are some momentary contact switches on the Electromechanical menu also.) Add three of the switches to the circuit and flip each horizontally as shown in Figure E4-4. Add in the digital power supply in three places for convenience.

18 Notice that each switch has a corresponding "key" parameter. This refers to the key on the keyboard which activates the switch during simulation. Double click on any switch and you get a menu that allows you to change this key. Change the two bottom switches to have keys of A and B and set the top most switch to have a key of space. Figure E4-4 The circuit with all of the components in place. Note that the key parameter of the three switches has been set to space, A, and B. Connect the wires on the circuit so that your final circuit looks like that shown in Figure E4-1. Test your completed circuit by running the simulation (push F5). If all is correct, you should be able to activate the switches by pushing the space bar, the A, or the B keys on the keyboard. To get the LEDs to light the top switch will need to be in the ground position (active low) to enable the circuit. With the top switch down you will be able to light any LED by varying the two A and B switches to one of four different configurations. Complete the project by adding some text to your circuit. Add text by selecting Place Place Text from the menu. Click the cursor at the location on the screen where you want the text and enter the text by typing it in. After entering the text you can change its color by right clicking on it and selecting a color from the menu. You can also change the text font by selecting Options Preferences Font and selecting a font from the menu.

19 Example 5 Sequential Logic D-Type and JK Flip Flops For this example we will simulate a circuit containing a D-Type and a JK flip-flop and make use of the function generator as a clock driver. The final circuit is shown in Figure E5-1. Figure E5-1 A D-Type and JK flip-flop. Begin by adding the two flip-flops to the diagram. These are both on the TTL XXLS series menu in the Parts Bin. For both the 74LS74 and the 74LS76 there are two independent flip-flops per package so you choose just one section from each package. After placing the flip-flops, choose a function generator and an oscilloscope and place them as shown in Figure E5-2. Figure E5-2 In this diagram we have chosen one section from the 74LS74 and one section from the 74LS76 flip flop packages. These are in the TTL Parts Bin. The function generator and the oscilloscope are chosen from the Instruments menu on the right. This circuit is all digital. We will add three 5 volt Vcc power sources and three digital grounds to the circuit from the Sources menu in the Parts Bin. Connect the wiring to the diagram as shown in Figure E5-1. Be sure to connect the clear and preset terminals of the flip-flops to +5. Note that the center terminal of the function generator is grounded and the negative terminal is not used. The function generator is specified as having an amplitude, a frequency, a duty cycle, and an offset. The output wave is assumed to be centered vertically around 0 so that, for a square wave, an amplitude setting of 2.5 volts and offset setting of 2.5 volts produces a 5 volt square wave that goes from 0 volts to 5 volts. The negative terminal of the function generator puts out a signal of the opposite polarity and is not used in this simulation. Set up the function generator and the

20 oscilloscope to look like those shown in Figure E5-3. (Double click on the function generator or the oscilloscope to get the set up screens.) Figure E5-3 Set up the function generator and the oscilloscope as shown above. Click on the simulate button in the top right corner or push function key F5. The simulation shows the JK flip-flop running at one half of the clock frequency. Figure E5-4 A simulation of the flip-flop circuit.

21 Example 6 Displays, Probes, Buzzers, and Busses For this example we will simulate a circuit containing several indicators to illustrate how they are used and we will add a bus to the system to simplify the wiring. We will first simulate the system without a bus as shown in Figure E6-1. Figure E6-1 This circuit uses a decade counter to illustrate the use of displays, probes, and buzzers. For this circuit we need two TTL LS components which are the 74LS190 decade counter and one section of a 74LS04 inverter. Select these items from the Parts Bin and place them on the blank screen. Add a Clock Source from the Sources menu of the parts bin and set its frequency to 120Hz and its voltage to +5volts. You will also need a 5 Volt Vcc source and two digital grounds. Your circuit should look like that shown in Figure E6-2. Figure E6-2 The TTL components and the sources have been added. Add the three indicators as the next items. Click on the indicators icon on the Parts Bin and select the Hex Display item and select the part named DCD_HEX. (All of the displays are somewhat idealized. The hex display shows a seven segment hex number that corresponds to the logic level on its four input pins. No power supply is necessary. Likewise the other two displays have no power

22 connection and light up when the input terminals are activated.) Place the hex display on the screen. Select a Buzzer from the same indicator menu and place it on the screen. Double click on the buzzer to set its voltage trip level. Set this voltage to 3 volts. You can also set a current level but we won't use that feature for this example. Click on the red probe and place four of these on the circuit diagram. Each of these has a trip point for being on or off which defaults to 2.5 volts. Connect the wires to your circuit and get a final circuit similar to that shown in Figure E6-1. Note that for the hex display the least significant bit is pin 1 and the most significant bit is pin 4. For the 74LS190 counter the least significant bit is pin 3 and the most significant bit is pin 7. You might be tempted to flip the hex display horizontally by right clicking on it and selecting "flip horizontal" since this would place the least significant bit closer to that of the counter's least significant bit and result in less wire crossover. But if you do this with the display, Workbench also flips the display so the numbers displayed will appear as if you were looking at it from behind. For a real circuit it's unlikely that you will have a circuit like this connected to a 120Hz clock source. If you did things would change so fast that you would be unable to see them. But if you slow the clock down to a reasonable rate such as 10Hz the simulation takes a very long time. Simulate your finished circuit and verify that it does count upward from 0 to 9, that the probes do indicate the binary state of the output lines, and that the buzzer actually buzzes when the counter rolls over from 9 back to 0. Adding a Bus Before you add a bus to the system you will need to rearrange the hex display and the probes and delete the wires which the bus will replace. Rearrange your circuit to look something like that shown in Figure E6-3. To add the bus, click on Place Place Bus from the menu at the top of the screen. Adding the bus is like adding a wire. Click on the starting point and click on first corner and double click at the end point. The bus will be drawn to be a series of lines between your clicks. If you double click on the completed bus you'll see that it has only one parameter which you can change and that's the reference ID. This defaults to the name bus for this example but you can make it anything you like. Note that a bus need not look continuous. You can place another bus anywhere else in the circuit and give it the same reference ID. Workbench then takes it to be the same set of lines. This allows you to draw complicated connections without having to drag the bus all over the diagram.

23 Figure E6-3 The hex display and the probes have been rearranged and the wires connecting them have been replaced with a bus. For this example connect the counter to the bus by connecting a wire to one of the counter outputs and connecting the other end to the bus. When you do this you will get a pop up screen that asks you to give the wire a name. In Figure E6-4 the wire is being named QB and one wire QA has already been named. Figure E6-4 This pop up screen appears when you connect a wire to the bus. You can name the bus line or you can select a name already chosen. For this example our bus will have only four wires and we will name them QA, QB, QC, and QD after the four outputs of the counter. After you connect the counter to the bus similarly connect the hex display and the probes as shown in Figure E6-5. Note that you should be careful to get the bits in the right order. In our case QA is the least significant bit and QD is the most significant bit.

24 Figure E6-5 The circuit with a bus replacing the wiring connections. Finally, simulate your circuit to verify that it works as before.

CHAPTER 3: MULTISIM 3.1 INTRODUCTION TO MULTISIM

CHAPTER 3: MULTISIM 3.1 INTRODUCTION TO MULTISIM MULTISIM CHAPTER 3: MULTISIM 3. INTRODUCTION TO MULTISIM Multisim is a virtual electronic circuit design, analysis, and simulation programme that design and analyse analogue, digital and mixed mode circuits

More information

PSPICE tutorial: a simple DC circuit Getting started

PSPICE tutorial: a simple DC circuit Getting started PSPICE tutorial: a simple DC circuit We will learn some of the basic maneuvers of using the Cadence schematic capture program and PSPice engine through a simple example -- a diode rectifier circuit. The

More information

King Fahd University of Petroleum & Minerals. Department of Electrical Engineering EE201. Electric Circuits. Laboratory Manual.

King Fahd University of Petroleum & Minerals. Department of Electrical Engineering EE201. Electric Circuits. Laboratory Manual. King Fahd University of Petroleum & Minerals Department of Electrical Engineering EE201 Electric Circuits Laboratory Manual August 2003 Prepared by Dr. A. H. Abdur-Rahim Noman Tasadduq Preface The EE 201

More information

Electronic WorkBench tutorial

Electronic WorkBench tutorial Electronic WorkBench tutorial Introduction Electronic WorkBench (EWB) is a simulation package for electronic circuits. It allows you to design and analyze circuits without using breadboards, real components

More information

Lab 3. Transistor and Logic Gates

Lab 3. Transistor and Logic Gates Lab 3. Transistor and Logic Gates Laboratory Instruction Today you will learn how to use a transistor to amplify a small AC signal as well as using it as a switch to construct digital logic circuits. Introduction

More information

Lab #2: Capacitors and the 555 Timer

Lab #2: Capacitors and the 555 Timer 1 Introduction Lab #2: Capacitors and the 555 Timer The goal of this lab is to introduce capacitors in their role as elements of timing circuits and to convert an analog oscillation into a digital oscillation

More information

Lab 3: Introduction to Data Acquisition Cards

Lab 3: Introduction to Data Acquisition Cards Lab 3: Introduction to Data Acquisition Cards INTRODUCTION: In this lab, you will be building a VI to display the input measured on a channel. However, within your own VI you will use LabVIEW supplied

More information

MATERIALS. Multisim screen shots sent to TA.

MATERIALS. Multisim screen shots sent to TA. Page 1/8 Revision 0 9-Jun-10 OBJECTIVES Learn new Multisim components and instruments. Conduct a Multisim transient analysis. Gain proficiency in the function generator and oscilloscope. MATERIALS Multisim

More information

Chapter 5 System Timing

Chapter 5 System Timing LED Array Scope, Part 2 Chap 5: Page 1 L.E.D. Oscilloscope Learn Electronics by Doing - Theory is pretty thin stuff until it s mixed with experience.- Chapter 5 System Timing To be able to sweep the dot

More information

Charge and Discharge of a Capacitor

Charge and Discharge of a Capacitor Charge and Discharge of a Capacitor INTRODUCTION Capacitors 1 are devices that can store electric charge and energy. Capacitors have several uses, such as filters in DC power supplies and as energy storage

More information

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ECE 1250 Lab 6 Generate Voltages using a Function Generator and Measure Voltages using an Oscilloscope Building: Digital Circuit Build an Electronic Candle Overview: In Lab 6 you will: Build an electronic

More information

CHAPTER 11: Flip Flops

CHAPTER 11: Flip Flops CHAPTER 11: Flip Flops In this chapter, you will be building the part of the circuit that controls the command sequencing. The required circuit must operate the counter and the memory chip. When the teach

More information

MULTISIM TUTORIAL. Click on Start All Programs National Instruments Circuit Design Suite 10.0 Multisim. Virtual Component Toolbar. Instrument Toolbar

MULTISIM TUTORIAL. Click on Start All Programs National Instruments Circuit Design Suite 10.0 Multisim. Virtual Component Toolbar. Instrument Toolbar MULTISIM TUTORIAL Start Click on Start All Programs National Instruments Circuit Design Suite 10.0 Multisim. Component Toolbar Ammeter/ Voltmeter Toolbar Virtual Component Toolbar Simulation Toolbar Instrument

More information

ORCAD 16.2 Tutorial. Document Modified August, 2012

ORCAD 16.2 Tutorial. Document Modified August, 2012 ORCAD 16.2 Tutorial Document Modified August, 2012 Note:- This document serves as a tutorial for OrCAD 16.2, the version being used in the 2012 BME/ECE#462 course. Please read carefully before you come

More information

1.1 The 7493 consists of 4 flip-flops with J-K inputs unconnected. In a TTL chip, unconnected inputs

1.1 The 7493 consists of 4 flip-flops with J-K inputs unconnected. In a TTL chip, unconnected inputs CALIFORNIA STATE UNIVERSITY LOS ANGELES Department of Electrical and Computer Engineering EE-246 Digital Logic Lab EXPERIMENT 1 COUNTERS AND WAVEFORMS Text: Mano, Digital Design, 3rd & 4th Editions, Sec.

More information

Cadence Tutorial A: Schematic Entry and Functional Simulation Created for the MSU VLSI program by Professor A. Mason and the AMSaC lab group.

Cadence Tutorial A: Schematic Entry and Functional Simulation Created for the MSU VLSI program by Professor A. Mason and the AMSaC lab group. Cadence Tutorial A: Schematic Entry and Functional Simulation Created for the MSU VLSI program by Professor A. Mason and the AMSaC lab group. Revision Notes: July 2004 Created tutorial for analog simulation

More information

SainSmart DDS Series User Manual (Software)

SainSmart DDS Series User Manual (Software) SainSmart DDS Series User Manual (Software) For Oscilloscope, Signal Generator and Logic Analyzer Updated software and user manual can be downloaded from http://www.sainsmart.com/tools-equipments/oscilloscope-dso/sainsmart-dds.html

More information

INTEGRATED CIRCUITS LAB MANUAL EEC-551

INTEGRATED CIRCUITS LAB MANUAL EEC-551 INTEGRATED CIRCUITS LAB MANUAL EEC-551 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING 27, Knowledge Park-III, Greater Noida, (U.P.) Phone : 0120-2323854-58 website :- www.dronacharya.info CONTENTS

More information

EXPERIMENT NUMBER 5 BASIC OSCILLOSCOPE OPERATIONS

EXPERIMENT NUMBER 5 BASIC OSCILLOSCOPE OPERATIONS 1 EXPERIMENT NUMBER 5 BASIC OSCILLOSCOPE OPERATIONS The oscilloscope is the most versatile and most important tool in this lab and is probably the best tool an electrical engineer uses. This outline guides

More information

Practical Workbook Digital Logic Design / Logic Design & Switching Theory

Practical Workbook Digital Logic Design / Logic Design & Switching Theory Practical Workbook Digital Logic Design / Logic Design & Switching Theory Name : Year : Batch : Roll No : Department: Second edition - 2015 Dept. of Computer & Information Systems Engineering NED University

More information

Notes for ORCAD PSpice ECE 65 Created by: Kristi Tsukida (Spring 2006) Edited by: Eldridge Alcantara (Winter 2009) Updated (Fall 2009)

Notes for ORCAD PSpice ECE 65 Created by: Kristi Tsukida (Spring 2006) Edited by: Eldridge Alcantara (Winter 2009) Updated (Fall 2009) Notes for ORCAD PSpice ECE 65 Created by: Kristi Tsukida (Spring 2006) Edited by: Eldridge Alcantara (Winter 2009) Updated (Fall 2009) 1 OVERVIEW This tutorial will teach you all you need to know about

More information

Lab #9: AC Steady State Analysis

Lab #9: AC Steady State Analysis Theory & Introduction Lab #9: AC Steady State Analysis Goals for Lab #9 The main goal for lab 9 is to make the students familar with AC steady state analysis, db scale and the NI ELVIS frequency analyzer.

More information

PSPICE TUTORIAL (BASIC)

PSPICE TUTORIAL (BASIC) Department of Electrical & Computer Engineering PSPICE TUTORIAL (BASIC) Professor: Dr. Subbarao V. Wunnava Teaching Assistant: Rafael Romero COURTESY: ED LULE/ BORIS LINO/ORCAD Updated: Spring.2006, 07

More information

FACULTY OF ENGINEERING LAB SHEET EEE1036 DIGITAL LOGIC DESIGN TRIMESTER 3, 2015_2016

FACULTY OF ENGINEERING LAB SHEET EEE1036 DIGITAL LOGIC DESIGN TRIMESTER 3, 2015_2016 EEE06: Digital Logic Design, Lab Exp. DL FACULTY OF ENGINEERING LAB SHEET EEE06 DIGITAL LOGIC DESIGN TRIMESTER, 05_06 DL - Flip-Flops and Their Applications *Note: On-the-spot evaluation may be carried

More information

PHYSICS 176 UNIVERSITY PHYSICS LAB II. Experiment 4. Alternating Current Measurement

PHYSICS 176 UNIVERSITY PHYSICS LAB II. Experiment 4. Alternating Current Measurement PHYSICS 176 UNIVERSITY PHYSICS LAB II Experiment 4 Alternating Current Measurement Equipment: Supplies: Oscilloscope, Function Generator. Filament Transformer. A sine wave A.C. signal has three basic properties:

More information

LTspice Guide. Download LTspice from along with the Users Guides if you wish.

LTspice Guide. Download LTspice from  along with the Users Guides if you wish. LTspice Guide LTspice is a circuit simulator based on the SPICE simulator and available as a free download from Linear Technology (www.linear.com). LTspice is the most popular freeware SPICE simulator.

More information

The NPN Transistor Bias and Switching

The NPN Transistor Bias and Switching The NPN Transistor Bias and Switching Transistor Linear Amplifier Equipment Oscilloscope Function Generator (FG) Bread board 9V Battery and leads Resistors:, 10 kω, Capacitors: ( 2) NPN Transistor Potentiometer

More information

Physics 2306 Experiment 7: Time-dependent Circuits, Part 1

Physics 2306 Experiment 7: Time-dependent Circuits, Part 1 Name ID number Date Lab CRN Lab partner Lab instructor Objectives Physics 2306 Experiment 7: Time-dependent Circuits, Part 1 To study the time dependent behavior of the voltage and current in circuits

More information

Lab 1: Introduction to PSpice

Lab 1: Introduction to PSpice Lab 1: Introduction to PSpice Objectives A primary purpose of this lab is for you to become familiar with the use of PSpice and to learn to use it to assist you in the analysis of circuits. The software

More information

ECE201 Laboratory 1 Basic Electrical Equipment and Ohm s and Kirchhoff s Laws (Created by Prof. Walter Green, Edited by Prof. M. J.

ECE201 Laboratory 1 Basic Electrical Equipment and Ohm s and Kirchhoff s Laws (Created by Prof. Walter Green, Edited by Prof. M. J. ECE201 Laboratory 1 Basic Electrical Equipment and Ohm s and Kirchhoff s Laws (Created by Prof. Walter Green, Edited by Prof. M. J. Roberts) Objectives The objectives of Laboratory 1 are learn to operate

More information

A Primer for the ESyst Analog Systems ilab James Hardison - Document version 1.0

A Primer for the ESyst Analog Systems ilab James Hardison - Document version 1.0 A Primer for the ESyst Analog Systems ilab James Hardison - hardison@mit.edu Document version 1.0 This document is intended as an introduction to the ESyst Analog Systems ilab. The functionality of this

More information

The George Washington University School of Engineering and Applied Science Department of Electrical and Computer Engineering

The George Washington University School of Engineering and Applied Science Department of Electrical and Computer Engineering The George Washington University School of Engineering and Applied Science Department of Electrical and Computer Engineering Final Design Report Dual Channel Stereo Amplifier By: Kristen Gunia Prepared

More information

LABORATORY EXPERIMENT. Infrared Transmitter/Receiver

LABORATORY EXPERIMENT. Infrared Transmitter/Receiver LABORATORY EXPERIMENT Infrared Transmitter/Receiver (Note to Teaching Assistant: The week before this experiment is performed, place students into groups of two and assign each group a specific frequency

More information

ECE207 Electrical Engineering Fall Lab 1 Nodal Analysis, Capacitor and Inductor Models

ECE207 Electrical Engineering Fall Lab 1 Nodal Analysis, Capacitor and Inductor Models Lab 1 Nodal Analysis, Capacitor and Inductor Models Objectives: At the conclusion of this lab, students should be able to: use the NI mydaq to power a circuit using the power supply and function generator

More information

Analog Circuit Simulation with TINA-TI

Analog Circuit Simulation with TINA-TI Analog Circuit Simulation with TINA-TI ECE 480 Application Note Kyle Christian Team #7 November 4 th, 2013 1 P a g e Abstract TINA-TI is a SPICE based analog circuit simulation program designed by TEXAS

More information

Lab 4 Op Amp Filters

Lab 4 Op Amp Filters Lab 4 Op Amp Filters Figure 4.0. Frequency Characteristics of a BandPass Filter Adding a few capacitors and resistors to the basic operational amplifier (op amp) circuit can yield many interesting analog

More information

Tutorial #2: RC Circuit

Tutorial #2: RC Circuit Tutorial #2: RC Circuit In this tutorial, we will build and simulate the RC circuit shown in Figure 1. For simplicity, wires are referred to as w1-w5. Figure 1: Circuit to be simulated Step 1. Open the

More information

ESE 216 LTSpice Quick Guide

ESE 216 LTSpice Quick Guide ESE 216 LTSpice Quick Guide Install the LTSpice from the webpage http://www.linear.com/ltspice and install it on your PC. It is free simulation software which has the SPICE simulator core and has many

More information

Data Conversion and Lab Lab 4 Fall Digital to Analog Conversions

Data Conversion and Lab Lab 4 Fall Digital to Analog Conversions Digital to Analog Conversions Objective o o o o o To construct and operate a binary-weighted DAC To construct and operate a Digital to Analog Converters Testing the ADC and DAC With DC Input Testing the

More information

Orcad 16.5 Getting Started Guide

Orcad 16.5 Getting Started Guide Orcad 16.5 Getting Started Guide To install OrCAD PSpice Release 16.5 Lite Edition 1. Go to http://www.cadence.com/products/orcad/pages/downloads.aspx#pspice and click on the Download FREE OrCAD 16.5 Demo

More information

PSPICE Schematic Student 9.1 Tutorial --X. Xiong

PSPICE Schematic Student 9.1 Tutorial --X. Xiong PSPICE Schematic Student 9.1 Tutorial --X. Xiong This tutorial will guide you through the creation and analysis of a simple MOSFET circuit in PSPICE Schematic. The circuit diagram below is what you will

More information

RLC Series Resonance

RLC Series Resonance RLC Series Resonance 11EM Object: The purpose of this laboratory activity is to study resonance in a resistor-inductor-capacitor (RLC) circuit by examining the current through the circuit as a function

More information

Sequential Logic Design

Sequential Logic Design Lab #4 Sequential Logic Design Objective: To study the behavior and applications of flip flops and basic sequential circuits including shift registers and counters. Preparation: Read the following experiment.

More information

Lab 5 Digital I/O. Figure 5.0. Four bit Digital Counter Circuit on NI ELVIS II Protoboard

Lab 5 Digital I/O. Figure 5.0. Four bit Digital Counter Circuit on NI ELVIS II Protoboard Lab 5 Digital I/O Digital electronics is the heart and soul of modern computers. The ability to set and read digital lines is essential to digital circuit diagnostics. Figure 5.0. Four bit Digital Counter

More information

Stepper Motor Driver (74194)

Stepper Motor Driver (74194) Stepper Motor Driver (74194) This page features an inexpensive stepper motor driver that could be used to power slow speed projects on the layout or other hobby applications. Based on the SN74LS194 - Bidirectional

More information

Electronic Instrumentation ENGR-4300 Experiment 6. Experiment 6 Electronic Switching

Electronic Instrumentation ENGR-4300 Experiment 6. Experiment 6 Electronic Switching Experiment 6 Electronic Switching Purpose: In this experiment we will discuss ways in which analog devices can be used to create binary signals. Binary signals can take on only two states: high and low.

More information

Digital Signal Generation. Air Washington Electronics ~ Introduction to Digital Logic Lab

Digital Signal Generation. Air Washington Electronics ~ Introduction to Digital Logic Lab Digital Signal Generation Air Washington Electronics ~ Introduction to Digital Logic Lab This work is licensed under the Creative Commons Attribution 3.0 Unported License. To view a copy of this license,

More information

LABORATORY 2 THE DIFFERENTIAL AMPLIFIER

LABORATORY 2 THE DIFFERENTIAL AMPLIFIER LABORATORY 2 THE DIFFERENTIAL AMPLIFIER OBJECTIVES 1. To understand how to amplify weak (small) signals in the presence of noise. 1. To understand how a differential amplifier rejects noise and common

More information

ENGR 210 Lab 11 Frequency Response of Passive RC Filters

ENGR 210 Lab 11 Frequency Response of Passive RC Filters ENGR 210 Lab 11 Response of Passive RC Filters The objective of this lab is to introduce you to the frequency-dependent nature of the impedance of a capacitor and the impact of that frequency dependence

More information

EE 442. Lab Experiment No. 1 1/12/2007. Introduction to the Function Generator and the Oscilloscope

EE 442. Lab Experiment No. 1 1/12/2007. Introduction to the Function Generator and the Oscilloscope EE 442 Lab Experiment No. 1 1/12/2007 Introduction to the Function Generator and the Oscilloscope 1 I. INTRODUCTION EE 442 Laboratory Experiment 1 The purpose of this lab is to learn the basic operation

More information

Computer Modeling of Electronic Circuits with LTSPICE. PHYS3360/AEP3630 Lecture 20/21

Computer Modeling of Electronic Circuits with LTSPICE. PHYS3360/AEP3630 Lecture 20/21 Computer Modeling of Electronic Circuits with LTSPICE PHYS3360/AEP3630 Lecture 20/21 1 SPICE Simulation Program with Integrated Circuit Emphasis Originally developed at EE Berkeley Uses mathematical models

More information

UNIVERSITI MALAYSIA PERLIS DKT DIGITAL SYSTEMS II. Lab 2 : Counter Design

UNIVERSITI MALAYSIA PERLIS DKT DIGITAL SYSTEMS II. Lab 2 : Counter Design UNIVERSITI MALAYSIA PERLIS DKT 212/3 : DIGITAL SYSTEM II Lab 2 : Counter Design Name : Matrix No. : Program : Date : OBJECTIVE 1. To understand state diagram in sequential circuit. 2. To build Karnaugh

More information

EE 242 EXPERIMENT 5: COMPUTER SIMULATION OF THREE-PHASE CIRCUITS USING PSPICE SCHEMATICS 1

EE 242 EXPERIMENT 5: COMPUTER SIMULATION OF THREE-PHASE CIRCUITS USING PSPICE SCHEMATICS 1 EE 242 EXPERIMENT 5: COMPUTER SIMULATION OF THREE-PHASE CIRCUITS USING PSPICE SCHEMATICS 1 Objective: To build, simulate, and analyze three-phase circuits using OrCAD Capture Pspice Schematics under balanced

More information

Faraday's Law and Inductance

Faraday's Law and Inductance Page 1 of 8 test2labh_status.txt Use Internet Explorer for this laboratory. Save your work often. NADN ID: guest49 Section Number: guest All Team Members: Your Name: SP212 Lab: Faraday's Law and Inductance

More information

Lab #4 Capacitors and Inductors. Capacitor and Inductor Transient Response

Lab #4 Capacitors and Inductors. Capacitor and Inductor Transient Response Capacitor and Inductor Transient Response Capacitor Theory Like resistors, capacitors are also basic circuit elements. Capacitors come in a seemingly endless variety of shapes and sizes, and they can all

More information

EXPERIMENT 1.2 CHARACTERIZATION OF OP-AMP

EXPERIMENT 1.2 CHARACTERIZATION OF OP-AMP 1.17 EXPERIMENT 1.2 CHARACTERIZATION OF OPAMP 1.2.1 OBJECTIVE 1. To sketch and briefly explain an operational amplifier circuit symbol and identify all terminals 2. To list the amplifier stages in a typical

More information

Electric Circuit Theory, Experiment 1: The Linear Resistor and OHM s Law

Electric Circuit Theory, Experiment 1: The Linear Resistor and OHM s Law Electric Circuit Theory, Experiment 1: The Linear Resistor and OHM s Law By: Moe Wasserman College of Engineering Boston University Boston, Massachusetts Purpose: To demonstrate that the resistor is a

More information

Lab 2: AC Measurements Capacitors and Inductors

Lab 2: AC Measurements Capacitors and Inductors Lab 2: AC Measurements Capacitors and Inductors Introduction The second most common component after resistors in electronic circuits is the capacitor. It is a two-terminal device that stores an electric

More information

This representation is compared to a binary representation of a number with N bits.

This representation is compared to a binary representation of a number with N bits. Chapter 11 Analog-Digital Conversion One of the common functions that are performed on signals is to convert the voltage into a digital representation. The converse function, digital-analog is also common.

More information

hij Teacher Resource Bank GCE Electronics Schemes of Work AS

hij Teacher Resource Bank GCE Electronics Schemes of Work AS hij Teacher Resource Bank GCE Electronics Schemes of Work AS The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723)

More information

Analog Circuit Design and Simulation with TINA-TI

Analog Circuit Design and Simulation with TINA-TI Analog Circuit Design and Simulation with TINA-TI ECE480 Application Note April 5 th 2013 Keywords Analog Simulation tool, Circuit Design, Circuit Simulation, TINA-TI, Texas Instruments Abstract TINA-TI

More information

I. Purpose. 1. Introduce the measurement of sinusoids (ac voltages) using the oscilloscope 2. Introduce the operation of the function generator

I. Purpose. 1. Introduce the measurement of sinusoids (ac voltages) using the oscilloscope 2. Introduce the operation of the function generator Updated 17 AUG 2016 Name: Section: I. Purpose. 1. Introduce the measurement of sinusoids (ac voltages) using the oscilloscope 2. Introduce the operation of the function generator II. Equipment. Keysight

More information

2!;!JOUSPEVDJOH! DSPDPEJMF!DMJQT!

2!;!JOUSPEVDJOH! DSPDPEJMF!DMJQT! Gjstu!djsdvjut! 2!;!JOUSPEVDJOH! DSPDPEJMF!DMJQT! Crocodile Clips is a circuit simulation program for Windows 98, 95 and NT computers and also for Macintosh computers. Using the program, you can design

More information

HALF WAVE AND FULL WAVE RECTIFIER CIRCUITS

HALF WAVE AND FULL WAVE RECTIFIER CIRCUITS FAKULTI KEJURUTERAAN MEKANIKAL UNIVERSITI TEKNOLOGI MALAYSIA KAMPUS SKUDAI JOHOR SKMM 2921 ELECTRIC LABORATORY EXPERIMENT-2 HALF WAVE AND FULL WAVE RECTIFIER CIRCUITS Prepared by: 1. Dr. Bambang Supriyo

More information

12 Converting Between Digital and Analog

12 Converting Between Digital and Analog 12 CONVERTING BETWEEN DIGITAL AND ANALOG 12 Converting Between Digital and Analog For many applications, it is necessary to convert analog signals from a circuit or sensor to digital signals that can be

More information

The OpEL will close at 4:30PM on Thursday Nov 8. Week 9 is due next Wed (Nov 7) as usual. The make-up lab (photoflash) is due Wed Nov 14.

The OpEL will close at 4:30PM on Thursday Nov 8. Week 9 is due next Wed (Nov 7) as usual. The make-up lab (photoflash) is due Wed Nov 14. The OpEL will close at 4:30PM on Thursday Nov 8. Week 9 is due next Wed (Nov 7) as usual. The make-up lab (photoflash) is due Wed Nov 14. 1 As an Astable Multivibrator 2 3 An integrated chip that is used

More information

This section explains the Scope menu and operations.

This section explains the Scope menu and operations. This section explains the Scope menu and operations. NOTE: i Most of the SCOPE toolbars and controls work the same as the MULTIMETER. Only the differences are covered in this section. Figure 6-1 Scope

More information

Lab 1: The Digital Oscilloscope

Lab 1: The Digital Oscilloscope PHYSICS 220 Physical Electronics Lab 1: The Digital Oscilloscope Object: To become familiar with the oscilloscope, a ubiquitous instrument for observing and measuring electronic signals. Apparatus: Tektronix

More information

Laboratory 4 Logic, Latching and Switch Debounce

Laboratory 4 Logic, Latching and Switch Debounce Laboratory 4 Logic, Latching and Switch Debounce = Required to submit your Multisim circuit files before you start the lab. Pre-lab Questions 1. Attach the detailed wiring diagram you used to construct

More information

Module 5A2: Laboratory: Flip-Flops

Module 5A2: Laboratory: Flip-Flops Excelsior College ELEC201 Digital Electronics Module 5A2: Laboratory: Flip-Flops Objectives The objectives of this experiment are to: 1. Examine the operation of the RS latch. 2. Examine the operation

More information

Resistors in Series and Parallel

Resistors in Series and Parallel Resistors in Series and Parallel INTRODUCTION Direct current (DC) circuits are characterized by the quantities current, voltage and resistance. Current is the rate of flow of charge. The SI unit is the

More information

BASIC ELECTRONICS PROF. T.S. NATARAJAN DEPT OF PHYSICS IIT MADRAS LECTURE-4 SOME USEFUL LAWS IN BASIC ELECTRONICS

BASIC ELECTRONICS PROF. T.S. NATARAJAN DEPT OF PHYSICS IIT MADRAS LECTURE-4 SOME USEFUL LAWS IN BASIC ELECTRONICS BASIC ELECTRONICS PROF. T.S. NATARAJAN DEPT OF PHYSICS IIT MADRAS LECTURE-4 SOME USEFUL LAWS IN BASIC ELECTRONICS Hello everybody! In a series of lecture on basic electronics, learning by doing, we now

More information

Meters, Power Supplies and Generators

Meters, Power Supplies and Generators 1. Meters Meters, Power Supplies and Generators Generally analog meters respond to the average of the signal being measured. This is due to the mechanical mass of the pointer and the RC response time of

More information

Experiment 2 Diode Applications: Rectifiers

Experiment 2 Diode Applications: Rectifiers ECE 3550 - Practicum Fall 2007 Experiment 2 Diode Applications: Rectifiers Objectives 1. To investigate the characteristics of half-wave and full-wave rectifier circuits. 2. To recognize the usefulness

More information

Filters & Wave Shaping

Filters & Wave Shaping Module 8 AC Theory Filters & Wave Shaping Passive Filters & Wave Shaping What you'll learn in Module 8. Module 8 Introduction Recognise passive filters with reference to their response curves. High pass,

More information

Lab 4 - Data Acquisition

Lab 4 - Data Acquisition Spring 11 Lab 4 - Data Acquisition Lab 4-1 Lab 4 - Data Acquisition Format This lab will be conducted during your regularly scheduled lab time in a group format. Each student is responsible for learning

More information

LAB #4 Sequential Logic, Latches, Flip-Flops, Shift Registers, and Counters

LAB #4 Sequential Logic, Latches, Flip-Flops, Shift Registers, and Counters LAB #4 Sequential Logic, Latches, Flip-Flops, Shift Registers, and Counters LAB OBJECTIVES 1. Introduction to latches and the D type flip-flop 2. Use of actual flip-flops to help you understand sequential

More information

DIGITAL SYSTEM DESIGN LAB

DIGITAL SYSTEM DESIGN LAB EXPERIMENT NO: 7 STUDY OF FLIP FLOPS USING GATES AND IC S AIM: To verify various flip-flops like D, T, and JK. APPARATUS REQUIRED: Power supply, Digital Trainer kit, Connecting wires, Patch Chords, IC

More information

Wires & Connections Component Circuit Symbol Function of Component. Power Supplies Component Circuit Symbol Function of Component

Wires & Connections Component Circuit Symbol Function of Component. Power Supplies Component Circuit Symbol Function of Component Lista Dei Simboli Dei Circuiti Per i Componenti Elettronici Wires & Connections Wire Wires joined Wires not joined To pass current very easily from one part of a circuit to another. A 'blob' should be

More information

Lab 4 Multisim Evaluation of an RC Network

Lab 4 Multisim Evaluation of an RC Network Lab 4 Multisim Evaluation of an RC Network Prelab Exercises All graphs must be fully labeled and drawn neatly! No answers are complete without the units! as always, show your work! 2 R 1 = 10kΩ 5V + V

More information

EXPERIMENT 4:- MEASUREMENT OF REACTANCE OFFERED BY CAPACITOR IN DIFFERENT FREQUENCY FOR R-C CIRCUIT

EXPERIMENT 4:- MEASUREMENT OF REACTANCE OFFERED BY CAPACITOR IN DIFFERENT FREQUENCY FOR R-C CIRCUIT Kathmandu University Department of Electrical and Electronics Engineering BASIC ELECTRICAL LAB (ENGG 103) EXPERIMENT 4:- MEASUREMENT OF REACTANCE OFFERED BY CAPACITOR IN DIFFERENT FREQUENCY FOR R-C CIRCUIT

More information

Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor)

Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor) Experiment #11: LRC Circuit (Power Amplifier, Voltage Sensor) Concept: circuits Time: 30 m SW Interface: 750 Windows file: RLC.SWS EQUIPMENT NEEDED Science Workshop Interface Power Amplifier (2) Voltage

More information

[INTRODUCTION TO PCB ARTIST]

[INTRODUCTION TO PCB ARTIST] 2013 ECE 480 Design Team 3 Justin Bohr [INTRODUCTION TO PCB ARTIST] This document will provide a guide of how to create relatively simple printed circuit board (PCB) with the PCB Artist tool. An overview

More information

Fundamentals of Signature Analysis

Fundamentals of Signature Analysis Fundamentals of Signature Analysis An In-depth Overview of Power-off Testing Using Analog Signature Analysis www.huntron.com 1 www.huntron.com 2 Table of Contents SECTION 1. INTRODUCTION... 7 PURPOSE...

More information

DIODE CIRCUITS LABORATORY. Fig. 8.1a Fig 8.1b

DIODE CIRCUITS LABORATORY. Fig. 8.1a Fig 8.1b DIODE CIRCUITS LABORATORY A solid state diode consists of a junction of either dissimilar semiconductors (pn junction diode) or a metal and a semiconductor (Schottky barrier diode). Regardless of the type,

More information

ARRL Morse Code Oscillator, How It Works By: Mark Spencer, WA8SME

ARRL Morse Code Oscillator, How It Works By: Mark Spencer, WA8SME The national association for AMATEUR RADIO ARRL Morse Code Oscillator, How It Works By: Mark Spencer, WA8SME This supplement is intended for use with the ARRL Morse Code Oscillator kit, sold separately.

More information

Using LTspice Simulation Software to Simulate a Digital Circuit

Using LTspice Simulation Software to Simulate a Digital Circuit Lab 9 Lab 9: Page 1 of 8 Using LTspice Simulation Software to Simulate a Digital Circuit Introduction: In this laboratory exercise you will use software to simulate the circuit action of the furnace controller

More information

Electronic Troubleshooting. Chapter 10 Digital Circuits

Electronic Troubleshooting. Chapter 10 Digital Circuits Electronic Troubleshooting Chapter 10 Digital Circuits Digital Circuits Key Aspects Logic Gates Inverters NAND Gates Specialized Test Equipment MOS Circuits Flip-Flops and Counters Logic Gates Characteristics

More information

Department of Mechatronics Engineering

Department of Mechatronics Engineering Department of Mechatronics Engineering COURSES COVERED LAB SUPERVISOR: ENGR. MUHAMMAD ISMAIL MANSOOR 2 MAIN EQUIPMENTS 3 Name Illustartion Breadboard trainer RIMS DEV-2767 Advanced electronic trainer To

More information

EXERCISES in ELECTRONICS and SEMICONDUCTOR ENGINEERING

EXERCISES in ELECTRONICS and SEMICONDUCTOR ENGINEERING Department of Electrical Drives and Power Electronics EXERCISES in ELECTRONICS and SEMICONDUCTOR ENGINEERING Valery Vodovozov and Zoja Raud http://learnelectronics.narod.ru Tallinn 2012 2 Contents Introduction...

More information

Oscilloscope, Function Generator, and Voltage Division

Oscilloscope, Function Generator, and Voltage Division 1. Introduction Oscilloscope, Function Generator, and Voltage Division In this lab the student will learn to use the oscilloscope and function generator. The student will also verify the concept of voltage

More information

Function Generator. Instruction Manual A PI Function Generator. AC to 15 V DC, 1.6 A power adapter (not shown)

Function Generator. Instruction Manual A PI Function Generator. AC to 15 V DC, 1.6 A power adapter (not shown) Instruction Manual 012-10425A Function Generator PI-8127 Frequency Adjust knob and Range Selection Waveform Selection Menu Voltage Adjust knob and Menu Selection Liquid Crystal Display (LCD) Power Output

More information

Lab 8: Basic Filters: Low- Pass and High Pass

Lab 8: Basic Filters: Low- Pass and High Pass Lab 8: Basic Filters: Low- Pass and High Pass Names: 1.) 2.) 3.) Beginning Challenge: Build the following circuit. Charge the capacitor by itself, and then discharge it through the inductor. Measure the

More information

Computer-Based Instruments for EMS

Computer-Based Instruments for EMS Electric Power / Controls 1-800-Lab-Volt www.labvolt.com 86718-E0 3086718E000006~ Computer-Based Instruments for EMS User uide Electric Power / Controls Computer-Based Instruments for EMS User uide 86718-E0

More information

Notes for ORCAD PSpice ECE 65, Spring 2006 Kristi Tsukida

Notes for ORCAD PSpice ECE 65, Spring 2006 Kristi Tsukida Notes for ORCAD PSpice ECE 65, Spring 2006 Kristi Tsukida Starting a Project: 1. Open OrCAD Capture 2. Go to File => New => Project 3. Enter a name (ie Ece65_Kristi_Lab1) 4. Choose "Analog or Mixed A/D"

More information

Laboratory 5 Counter and LED Display

Laboratory 5 Counter and LED Display Laboratory 5 Counter and LED Display = Required to submit your Multisim circuit files before you start the lab. Pre-lab Questions 1. Attach the detailed wiring diagram you used to construct a one decade

More information

EE 320L Electronics I Laboratory. Laboratory Exercise #4 Diode and Power Supply Circuit

EE 320L Electronics I Laboratory. Laboratory Exercise #4 Diode and Power Supply Circuit EE 320L Electronics I Laboratory Laboratory Exercise #4 Diode and Power Supply Circuit Department of Electrical and Computer Engineering University of Nevada, at Las Vegas Objective: The purpose of this

More information

EXPERIMENT NUMBER 8 CAPACITOR CURRENT-VOLTAGE RELATIONSHIP

EXPERIMENT NUMBER 8 CAPACITOR CURRENT-VOLTAGE RELATIONSHIP 1 EXPERIMENT NUMBER 8 CAPACITOR CURRENT-VOLTAGE RELATIONSHIP Purpose: To demonstrate the relationship between the voltage and current of a capacitor. Theory: A capacitor is a linear circuit element whose

More information

Teacher s Guide Physics Labs with Computers, Vol C P52: LRC Circuit. Teacher s Guide - Activity P52: LRC Circuit (Voltage Sensor)

Teacher s Guide Physics Labs with Computers, Vol C P52: LRC Circuit. Teacher s Guide - Activity P52: LRC Circuit (Voltage Sensor) Teacher s Guide Physics Labs with Computers, Vol. 2 012-06101C P52: LRC Circuit Teacher s Guide - Activity P52: LRC Circuit (Voltage Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win)

More information

Lab 3 - Using the Agilent 54621A Digital Oscilloscope as a Spectrum Analyzer Electronics Fundamentals using the Agilent 54621A Oscilloscope

Lab 3 - Using the Agilent 54621A Digital Oscilloscope as a Spectrum Analyzer Electronics Fundamentals using the Agilent 54621A Oscilloscope Lab 3 - Using the Agilent 54621A Digital Oscilloscope as a Spectrum Analyzer Electronics Fundamentals using the Agilent 54621A Oscilloscope By: Walter Banzhaf University of Hartford Ward College of Technology

More information