Exponents, Factors, and Fractions. Chapter 3


 Tobias Craig
 2 years ago
 Views:
Transcription
1 Exponents, Factors, and Fractions Chapter 3
2 Exponents and Order of Operations Lesson 31
3 Terms An exponent tells you how many times a number is used as a factor A base is the number that is multiplied is the base, 5 is the exponent. It means 4 x 4 x 4 x 4 x 4 It does NOT MEAN 4 x 5
4 Simplify Using Order of Operations Simplify 3 4 (72) 3 First: Parentheses = Second: Exponents = Third: Multiply = 10,125
5 Simplify Powers with Negatives 5 4 and (5) 4 are not equivalent means the negative of 5 4, so the base is 5, not = ( ) = 625 But watch out for: here the base is the number in the parentheses (5) 4 = (5)(5)(5)(5) = 625
6 Partner Practice Exponents and Order of Operations
7 Scientific Notation Lesson 32
8 Definition A number in scientific notation is written as the product of two factors, one greater than or equal to 1 but less than 10, and the other as a power of 10 7,500,000,000,000 = 7.5 x 10 12
9 Example The moon orbits the earth at a distance of 384,000 km. Write the number in scientific notation First: move the decimal point to get a factor greater than 1 but less than ,000. becomes Then: rewrite as 3.84 x 10 5 because I moved the decimal point 5 places
10 From Scientific Notation to Standard Form Mars is 2.3 x 10 8 miles from Earth Write in standard form: Move the decimal point to the right 8 places 230,000,000
11 Think, Pair, Share dc46f73b98/worksheetworks_scientific_nota tion_1.pdf
12 Divisibility Tests Lesson 33
13 Definition Facts/Characteristics A whole number is all even numbers are divisible by another if divisible by 2 the remainder is zero Vocabulary Word Divisible 48 4 = 12 Examples 47 4 = 11 r 3 NonExamples
14 Divisibility of Whole Numbers A whole number is divisible by 2 if it ends in 0, 2, 4, 6 or 8 3 if the sum of its digits is divisible by 3 5 if it ends in 0 or 5 0 if the sum of the digits is divisible by 9 10 if it ends in 0
15 Prime Factorization Lesson 34
16 Definition Factors are numbers that are multiplied Facts/Characteristics When divided there is no remainder Vocabulary Word Factor 3 x 4 = = = 2 r2 Examples NonExamples
17 Definition Facts/Characteristics A whole number numbers that can be greater than 1 with more divided evenly by more than two factors than just 1 and itself Vocabulary Word Composite number 1 x 20 1 x 19 2 x 10 4 x 5 Examples NonExamples
18 Definition Facts/Characteristics A whole number with The whole numbers 0 exactly two factors, 1 and 1 are neither prime and the number itself nor composite Vocabulary Word Prime number x 19 1 x 20 2 x 10 4 x 5 Examples NonExamples
19 Prime Factorization What does this mean??? Writing a composite number as a product of prime numbers gives the prime factorization.ok, so what does that mean??? And how do I do it??
20 Method One: Division Ladder Find the prime factorization of 84 Divide 84 by prime numbers starting with 2 and work your way up. 2) 84 2) 42 3) 21 7 Divide 84 by the prime number 2. Work down. The result is 42. Since 42 is even, divide by 2, again. The result is 21. Divide by the prime number 3. The prime factorization of 42 is 2 x 2 x 3 x 7
21 Some things to remember When using division ladders, start by first dividing with the smallest prime number. For even numbers, that divisor will be 2. Keep dividing until you reach a prime number as the quotient.
22 Method Two: Factor Trees Gets us to the same result, just a different way Circle the prime numbers Prime factorization of 84: 2 x 2 x 3 x 7
23 GCF The greatest common factor of two or more numbers is the greatest factor shared by all the numbers. Find the GCF three different ways: Use a list of factors Use a division ladder Use factor trees
24 Simplifying Fractions Lesson 35
25 Definition Equivalent fractions are fractions that name the same amount Form equivalent fractions by multiplying the numerator and denominator by the same nonzero number
26 Simplest Form Fractions are in simplest form when the only common factor of the numerator and denominator is 1 Example: 2 is on simplest form since 2 and 3 3 only have the number 1 as a common factor
27 Partner Practice Get the fractions into simplest form Write the Fraction in Simplest Form Fractions Puzzlers Task Cards
28 Comparing and Ordering Fractions Lesson 36
29 Least Common Denominator To compare fractions, start with the LCD The Least Common Denominator of two or more fractions is the Least Common Multiple of the denominators Ex: compare 3/4 and 5/6
30 Compare ¾ and 5/6 Step One: Find LCM for 4 and 6 Option 1: Use a List of Multiples Multiples of 4: 4, 8, 12, 16, 20, 24 Multiples of 6: 6, 12, 18, 24, 30, is the least common multiple for 4 and 6
31 Compare ¾ and 5/6 Step Two: Write equivalent fractions using LCM as the common denominator 3/4 = 9/12 5/6 = 10/12 3/4 < 5/6
32 How to Find LCM Find LCM for 8, 10 and 20 Option 2: Use Prime Factorization Prime Factorization for 8 = 2 x 2 x 2 Prime Factorization for 10 = 2 x 5 Prime Factorization for 20 = 2 x 2 x 2 x 5 Circle each different factor: 2 x 2 x 2 x 5 = 40 LCM for 8, 10 and 20 is 40
33 Partner Practice Use either method for practice Find the LCM for each pair What Happens If You Watch TV All Day?
34 Mixed Numbers and Improper Fractions Lesson 38
35 Key Terms A proper fraction has a numerator that is less than its denominator: ⅜ An improper fraction has a numerator that is greater than or equal to its denominator: 8 / 5 A mixed number is a number written with both a whole number and a fraction: 2⅔
36 Write Mixed Numbers as Improper Fractions Write 6⅔ as an improper fraction First: Multiply the whole number by the denominator (6 x 3 thirds = 18 thirds) Second: Add the numerator (18 thirds + 2 thirds = 20 thirds) Example: 6⅔ = (6 x 3) + 2 =
37 Write Improper Fractions as Mixed Numbers Write 9 6 as a mixed number First: divide the numerator by the denominator Second: write the remainder as a fraction Third: simplify 1 6) = 1 3/ 6 6 = 1⅟ 2
38 Partner Practice With your partner, convert Mixed Numbers to Improper Fractions Convert Mixed Numbers and Fractions Cryptic Quiz
39 Fractions and Decimals Lesson 39
40 Terminating Decimals Write fractions as decimals by dividing the numerator by the denominator. A decimal that stops, or terminates, is a terminating decimal Ex: 5/8 = 5 8 = 0.625
41 Repeating Decimal If when we divide, we discover the same digit or group of digits in the quotient repeats without end, that decimal is a repeating decimal Ex: 3/11 = 3 11 = = 0.27
42 convert Practice
43 Rational Numbers Lesson 310
44 Rational Number A rational number is a number that can be written as a quotient of two integers, where the divisor is not 0. Examples: ⅝, 0.46, 6 and 3⅟ 2 All integers are rational numbers as all integers can be written with a denominator of 1
45 Negative Rational Numbers Negative Rational Numbers can be written in three ways 6 = 6 =
46 Compare Negative Rational Numbers Compare ⅟ 2 and  3 / 4 Option 1: Use a number line. Since  3 / 4 is farther to the left, it is the smaller number
47 Compare Negative Rational Numbers Compare ⅟ 2 and  3 / 4 Option 2: make equivalent fractions ⅟ 2 =  2 / 4 Since  3 / 4 <  2 / 4, then  3 / 4 < ⅟ 2
48 Ordering Rational Numbers Order these numbers from greatest to least ⅟ 4, 0.2,  2 / 9, 1.1 Step One: convert the fractions to decimals by dividing ⅟ 4 = 0.25 and  2 / 9 = Now order: 0.22, 0.2, 0.25, 1.1
49 Partner Practice at/ip.pdf
Math 101 Study Session Quiz 1 Chapter 3 Sections 1 through 4
Math 101 Study Session Quiz 1 Chapter 3 Sections 1 through 4 July 28, 2016 Chapter 3 Section 1: The Least Common Multiple and Greatest Common Factor Natural number factors of a number divide that number
More informationChapter 4 Fractions and Mixed Numbers
Chapter 4 Fractions and Mixed Numbers 4.1 Introduction to Fractions and Mixed Numbers Parts of a Fraction Whole numbers are used to count whole things. To refer to a part of a whole, fractions are used.
More informationMAT Mathematical Concepts and Applications
MAT.1180  Mathematical Concepts and Applications Chapter (Aug, 7) Number Theory: Prime and Composite Numbers. The set of Natural numbers, aka, Counting numbers, denoted by N, is N = {1,,, 4,, 6,...} If
More informationSection R.2. Fractions
Section R.2 Fractions Learning objectives Fraction properties of 0 and 1 Writing equivalent fractions Writing fractions in simplest form Multiplying and dividing fractions Adding and subtracting fractions
More informationHow To Math Properties
CLOSURE a + b is a real number; when you add 2 real numbers, the result is also a real number. and 5 are both real numbers, + 5 8 and the sum, 8, is also a real number. a b is a real number; when you subtract
More informationIntroduction to Fractions
Introduction to Fractions Fractions represent parts of a whole. The top part of a fraction is called the numerator, while the bottom part of a fraction is called the denominator. The denominator states
More informationAdding and Subtracting Fractions. 1. The denominator of a fraction names the fraction. It tells you how many equal parts something is divided into.
Tallahassee Community College Adding and Subtracting Fractions Important Ideas:. The denominator of a fraction names the fraction. It tells you how many equal parts something is divided into.. The numerator
More informationOperations on Decimals
Operations on Decimals Addition and subtraction of decimals To add decimals, write the numbers so that the decimal points are on a vertical line. Add as you would with whole numbers. Then write the decimal
More informationMATH0910 Review Concepts (Haugen)
Unit 1 Whole Numbers and Fractions MATH0910 Review Concepts (Haugen) Exam 1 Sections 1.5, 1.6, 1.7, 1.8, 2.1, 2.2, 2.3, 2.4, and 2.5 Dividing Whole Numbers Equivalent ways of expressing division: a b,
More informationPrime and Composite Numbers Prime Factorization
Prime and Composite Numbers Prime Factorization Reteaching Math Course, Lesson A prime number is a whole number greater than that has exactly two factors, the number itself and. Examples: Factors of are
More informationeday Lessons Mathematics Grade 8 Student Name:
eday Lessons Mathematics Grade 8 Student Name: Common Core State Standards Expressions and Equations Work with radicals and integer exponents. 3. Use numbers expressed in the form of a single digit times
More informationFactoring Whole Numbers
2.2 Factoring Whole Numbers 2.2 OBJECTIVES 1. Find the factors of a whole number 2. Find the prime factorization for any number 3. Find the greatest common factor (GCF) of two numbers 4. Find the GCF for
More informationThe wavelength of infrared light is meters. The digits 3 and 7 are important but all the zeros are just place holders.
Section 6 2A: A common use of positive and negative exponents is writing numbers in scientific notation. In astronomy, the distance between 2 objects can be very large and the numbers often contain many
More informationNAME TEST DATE FRACTION STUDY GUIDE/EXTRA PRACTICE PART 1: PRIME OR COMPOSITE?
NAME TEST DATE FRACTION STUDY GUIDE/EXTRA PRACTICE PART 1: PRIME OR COMPOSITE? A prime number is a number that has exactly 2 factors, one and itself. Examples: 2, 3, 5, 11, 31 2 is the only even number
More information18. [Multiples / Factors / Primes]
18. [Multiples / Factors / Primes] Skill 18.1 Finding the multiples of a number. Count by the number i.e. add the number to itself continuously. OR Multiply the number by 1, then 2,,, 5, etc. to get the
More informationFractions and Decimals (pages 62 66)
A Fractions and Decimals (pages 6 66) A decimal that ends, such as 0., is a terminating decimal. All terminating decimals are rational numbers. 0.,000 A decimal that repeats, such as 0. is a repeating
More informationQ N R. Sep 5 7:55 AM THE NUMBER SYSTEM
Q W I TITLE: Q N R Sep 5 7:55 AM THE NUMBER SYSTEM N NATURAL NUMBERS All positive non zero numbers; in other words, all positive numbers. This does not include zero. These are the numbers we use to count.
More informationGrade 9 Mathematics Unit #1 Number Sense SubUnit #1 Rational Numbers. with Integers Divide Integers
Page1 Grade 9 Mathematics Unit #1 Number Sense SubUnit #1 Rational Numbers Lesson Topic I Can 1 Ordering & Adding Create a number line to order integers Integers Identify integers Add integers 2 Subtracting
More informationExponents, Radicals, and Scientific Notation
General Exponent Rules: Exponents, Radicals, and Scientific Notation x m x n = x m+n Example 1: x 5 x = x 5+ = x 7 (x m ) n = x mn Example : (x 5 ) = x 5 = x 10 (x m y n ) p = x mp y np Example : (x) =
More informationSection 5.1 Number Theory: Prime & Composite Numbers
Section 5.1 Number Theory: Prime & Composite Numbers Objectives 1. Determine divisibility. 2. Write the prime factorization of a composite number. 3. Find the greatest common divisor of two numbers. 4.
More informationHow do you compare numbers? On a number line, larger numbers are to the right and smaller numbers are to the left.
The verbal answers to all of the following questions should be memorized before completion of prealgebra. Answers that are not memorized will hinder your ability to succeed in algebra 1. Number Basics
More informationCOMPASS Numerical Skills/PreAlgebra Preparation Guide. Introduction Operations with Integers Absolute Value of Numbers 13
COMPASS Numerical Skills/PreAlgebra Preparation Guide Please note that the guide is for reference only and that it does not represent an exact match with the assessment content. The Assessment Centre
More information3 cups ¾ ½ ¼ 2 cups ¾ ½ ¼. 1 cup ¾ ½ ¼. 1 cup. 1 cup ¾ ½ ¼ ¾ ½ ¼. 1 cup. 1 cup ¾ ½ ¼ ¾ ½ ¼
cups cups cup Fractions are a form of division. When I ask what is / I am asking How big will each part be if I break into equal parts? The answer is. This a fraction. A fraction is part of a whole. The
More informationMultiplying and Dividing Fractions
Multiplying and Dividing Fractions 1 Overview Fractions and Mixed Numbers Factors and Prime Factorization Simplest Form of a Fraction Multiplying Fractions and Mixed Numbers Dividing Fractions and Mixed
More informationCopy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.
Algebra 2  Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers  {1,2,3,4,...}
More informationClick on the links below to jump directly to the relevant section
Click on the links below to jump directly to the relevant section Basic review Writing fractions in simplest form Comparing fractions Converting between Improper fractions and whole/mixed numbers Operations
More information27. Warm Up Problem of the Day Lesson Presentation Lesson Quizzes
Warm Up Problem of the Day Lesson Presentation Lesson Quizzes Warm Up Write each mixed number as an improper fraction. 1. 1 3. 1 3 4 6 7 4 11 6 2. 2 7 8 23 8 4. 8 1 12 97 12 211 27 I will Learn to compare
More informationSometimes it is easier to leave a number written as an exponent. For example, it is much easier to write
4.0 Exponent Property Review First let s start with a review of what exponents are. Recall that 3 means taking four 3 s and multiplying them together. So we know that 3 3 3 3 381. You might also recall
More informationPrime Factorization, Greatest Common Factor (GCF), and Least Common Multiple (LCM)
Prime Factorization, Greatest Common Factor (GCF), and Least Common Multiple (LCM) Definition of a Prime Number A prime number is a whole number greater than 1 AND can only be divided evenly by 1 and itself.
More informationDay One: Least Common Multiple
Grade Level/Course: 5 th /6 th Grade Math Lesson/Unit Plan Name: Using Prime Factors to find LCM and GCF. Rationale/Lesson Abstract: The objective of this two part lesson is to give students a clear understanding
More informationnorth seattle community college
INTRODUCTION TO FRACTIONS If we divide a whole number into equal parts we get a fraction: For example, this circle is divided into quarters. Three quarters, or, of the circle is shaded. DEFINITIONS: The
More informationMath Tech 1 Unit 1 Real Numbers. Name Pd
Math Tech Unit Real Numbers Name Pd  Comparing and Ordering Real Numbers A. Ordering integers  Write the integers in order from least to greatest. Ex.  7 6 02 B. Ordering decimals a. Make sure each
More informationa) b) 4 + ( 5) c) d) 2  ( 2) f)
CLASS VII New Integers A 1. The integer consist of, and numbers 2. The numbers less than zero are called integer. 3. All the numbers which are less than zero have sign. 4. Zero is greater than integer.
More informationAccuplacer Arithmetic Study Guide
Testing Center Student Success Center Accuplacer Arithmetic Study Guide I. Terms Numerator: which tells how many parts you have (the number on top) Denominator: which tells how many parts in the whole
More informationFinding Prime Factors
Section 3.2 PREACTIVITY PREPARATION Finding Prime Factors Note: While this section on fi nding prime factors does not include fraction notation, it does address an intermediate and necessary concept to
More informationChapter 5 Number Theory. 5.1 Primes, composites, and tests for divisibility
Chapter 5 Number Theory 5.1 Primes, composites, and tests for divisibility Primes and Composites Prime number (prime) a counting number with exactly two different factors Composite number (composite) a
More information6th Grade Vocabulary Words
1. sum the answer when you add Ex: 3 + 9 = 12 12 is the sum 2. difference the answer when you subtract Ex: 179 = 8 difference 8 is the 3. the answer when you multiply Ex: 7 x 8 = 56 56 is the 4. quotient
More informationPrime Numbers and Divisibility Section 2.1 Prime Number Any whole number that has exactly two factors, 1 and itself. numbers.
2 Summary DEFINITION/PROCEDURE EXAMPLE REFERENCE Prime Numbers and Divisibility Section 2. Prime Number Any whole number that has exactly two factors, and itself. 7, 3, 29, and 73 are prime numbers. p.
More informationPREPARATION FOR MATH TESTING at CityLab Academy
PREPARATION FOR MATH TESTING at CityLab Academy compiled by Gloria Vachino, M.S. Refresh your math skills with a MATH REVIEW and find out if you are ready for the math entrance test by taking a PRETEST
More informationSaxon Math Home School Edition. September 2008
Saxon Math Home School Edition September 2008 Saxon Math Home School Edition Lesson 4: Comparing Whole Lesson 5: Naming Whole Through Hundreds, Dollars and Cent Lesson 7: Writing and Comparing Through
More informationAddition with regrouping (carrying)
Addition with regrouping (carrying) tens 10's ones 1's Put the tens guy up in the tens column... Put the ones guy in the ones answer spot Subtraction with regrouping (borrowing) Place Value Chart Place
More informationMath 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.
Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used
More informationQuick Reference ebook
This file is distributed FREE OF CHARGE by the publisher Quick Reference Handbooks and the author. Quick Reference ebook Click on Contents or Index in the left panel to locate a topic. The math facts listed
More informationTips, tricks and formulae on H.C.F and L.C.M. Follow the steps below to find H.C.F of given numbers by prime factorization method.
Highest Common Factor (H.C.F) Tips, tricks and formulae on H.C.F and L.C.M H.C.F is the highest common factor or also known as greatest common divisor, the greatest number which exactly divides all the
More informationImproper Fractions and Mixed Numbers
This assignment includes practice problems covering a variety of mathematical concepts. Do NOT use a calculator in this assignment. The assignment will be collected on the first full day of class. All
More informationFoundations for Middle School 6 th Grade Syllabus
Unit 1:, and Percents (Lessons 0 19) and Percents (Lessons 0 19) Foundations for Middle School 6 th Grade Syllabus Solving for every variable Foundations for Middle School 6 th Grade Syllabus 1 Unit 1:
More informationSIXTH GRADE MATH. Quarter 1
Quarter 1 SIXTH GRADE MATH Numeration  Place value  Comparing and ordering whole numbers  Place value of exponents  place value of decimals  multiplication and division by 10, 100, 1,000  comparing
More informationMyMathLab ecourse for Developmental Mathematics
MyMathLab ecourse for Developmental Mathematics, North Shore Community College, University of New Orleans, Orange Coast College, Normandale Community College Table of Contents Module 1: Whole Numbers and
More information100 Math Facts 6 th Grade
100 Math Facts 6 th Grade Name 1. SUM: What is the answer to an addition problem called? (N. 2.1) 2. DIFFERENCE: What is the answer to a subtraction problem called? (N. 2.1) 3. PRODUCT: What is the answer
More informationA rational number is a number that can be written as where a and b are integers and b 0.
S E L S O N Rational Numbers Goal: Perform operations on rational numbers. Vocabulary Rational number: Additive inverse: A rational number is a number that can be a written as where a and b are integers
More informationBlack GCF and Equivalent Factorization
Black GCF and Equivalent Factorization Here is a set of mysteries that will help you sharpen your thinking skills. In each exercise, use the clues to discover the identity of the mystery fraction. 1. My
More informationmay be sent to:
B A S I C M A T H A SelfTutorial by Luis Anthony Ast Professional Mathematics Tutor LESSON 5: FACTORS, MULTIPLES & DIVISIBILITY Copyright 2005 All rights reserved. No part of this publication may be reproduced
More informationTable of Contents Sequence List
Table of Contents Sequence List 368102215 Level 1 Level 5 1 A1 Numbers 010 63 H1 Algebraic Expressions 2 A2 Comparing Numbers 010 64 H2 Operations and Properties 3 A3 Addition 010 65 H3 Evaluating
More information3.1. RATIONAL EXPRESSIONS
3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers
More information47 Numerator Denominator
JH WEEKLIES ISSUE #22 20122013 Mathematics Fractions Mathematicians often have to deal with numbers that are not whole numbers (1, 2, 3 etc.). The preferred way to represent these partial numbers (rational
More informationSequential Skills. Strands and Major Topics
Sequential Skills This set of charts lists, by strand, the skills that are assessed, taught, and practiced in the Skills Tutorial program. Each Strand ends with a Mastery Test. You can enter correlating
More informationAlgebra 1: Topic 1 Notes
Algebra 1: Topic 1 Notes Review: Order of Operations Please Parentheses Excuse Exponents My Multiplication Dear Division Aunt Addition Sally Subtraction Table of Contents 1. Order of Operations & Evaluating
More informationFRACTION WORKSHOP. Example: Equivalent Fractions fractions that have the same numerical value even if they appear to be different.
FRACTION WORKSHOP Parts of a Fraction: Numerator the top of the fraction. Denominator the bottom of the fraction. In the fraction the numerator is 3 and the denominator is 8. Equivalent Fractions: Equivalent
More informationScientific Notation Notes
Scientific Notation Notes Scientific notation is a short way to write very large or very small numbers. It is written as the product of a number between 1 and 10 and a power of 10. TO CONVERT A NUMBER
More informationINTRODUCTION TO FRACTIONS
Tallahassee Community College 16 INTRODUCTION TO FRACTIONS Figure A (Use for 1 5) 1. How many parts are there in this circle?. How many parts of the circle are shaded?. What fractional part of the circle
More informationUNIT 1 VOCABULARY: RATIONAL AND IRRATIONAL NUMBERS
UNIT VOCABULARY: RATIONAL AND IRRATIONAL NUMBERS 0. How to read fractions? REMEMBER! TERMS OF A FRACTION Fractions are written in the form number b is not 0. The number a is called the numerator, and tells
More informationThere are 8000 registered voters in Brownsville, and 3 8. of these voters live in
Politics and the political process affect everyone in some way. In local, state or national elections, registered voters make decisions about who will represent them and make choices about various ballot
More informationFraction Competency Packet
Fraction Competency Packet Developed by: Nancy Tufo Revised 00: Sharyn Sweeney Student Support Center North Shore Community College To use this booklet, review the glossary, study the examples, then work
More informationPreAlgebra Class 3  Fractions I
PreAlgebra Class 3  Fractions I Contents 1 What is a fraction? 1 1.1 Fractions as division............................... 2 2 Representations of fractions 3 2.1 Improper fractions................................
More information1.1. Basic Concepts. Write sets using set notation. Write sets using set notation. Write sets using set notation. Write sets using set notation.
1.1 Basic Concepts Write sets using set notation. Objectives A set is a collection of objects called the elements or members of the set. 1 2 3 4 5 6 7 Write sets using set notation. Use number lines. Know
More informationBecause 6 divides into 50 eight times with remainder 2, 6 is not a factor of 50.
CHAPTER 3 FACTORS AND MULTIPLES Factors and multiples deal with dividing and multiplying positive integers1,2,3,4,. In this chapter you will work with such concepts as Greatest Common Factor (GCF) and
More informationScientific Notation and Powers of Ten Calculations
Appendix A Scientific Notation and Powers of Ten Calculations A.1 Scientific Notation Often the quantities used in chemistry problems will be very large or very small numbers. It is much more convenient
More informationSession 29 Scientific Notation and Laws of Exponents. If you have ever taken a Chemistry class, you may have encountered the following numbers:
Session 9 Scientific Notation and Laws of Exponents If you have ever taken a Chemistry class, you may have encountered the following numbers: There are approximately 60,4,79,00,000,000,000,000 molecules
More information2. Perform the division as if the numbers were whole numbers. You may need to add zeros to the back of the dividend to complete the division
Math Section 5. Dividing Decimals 5. Dividing Decimals Review from Section.: Quotients, Dividends, and Divisors. In the expression,, the number is called the dividend, is called the divisor, and is called
More informationCD 1 Real Numbers, Variables, and Algebraic Expressions
CD 1 Real Numbers, Variables, and Algebraic Expressions The Algebra I Interactive Series is designed to incorporate all modalities of learning into one easy to use learning tool; thereby reinforcing learning
More informationChanging a Mixed Number to an Improper Fraction
Example: Write 48 4 48 4 = 48 8 4 8 = 8 8 = 2 8 2 = 4 in lowest terms. Find a number that divides evenly into both the numerator and denominator of the fraction. For the fraction on the left, there are
More informationAlgebra 1A and 1B Summer Packet
Algebra 1A and 1B Summer Packet Name: Calculators are not allowed on the summer math packet. This packet is due the first week of school and will be counted as a grade. You will also be tested over the
More informationIntroduction to Fractions
Section 0.6 Contents: Vocabulary of Fractions A Fraction as division Undefined Values First Rules of Fractions Equivalent Fractions Building Up Fractions VOCABULARY OF FRACTIONS Simplifying Fractions Multiplying
More informationNativity Catholic School Rising 7th grade IXL Language Arts and Math Summer Homework
Nativity Catholic School Rising 7th grade IXL Language Arts and Math Summer Homework Please work on the following skills listed in the 6th Grade Math and Language Arts IXL Program for a minimum of 60 minutes
More informationTeaching Textbooks PreAlgebra
Teaching Textbooks PreAlgebra Class Description: In this PreAlgebra course, the student will utilize Teaching Textbooks PreAlgebra to cover the standard topics, including: fractions, decimals, LCD,
More informationSelfDirected Course: Transitional Math Module 2: Fractions
Lesson #1: Comparing Fractions Comparing fractions means finding out which fraction is larger or smaller than the other. To compare fractions, use the following inequality and equal signs:  greater than
More informationUnit 1, Review Transitioning from Previous Mathematics Instructional Resources: McDougal Littell: Course 1
Unit 1, Review Transitioning from Previous Mathematics Transitioning from previous mathematics to Sixth Grade Mathematics Understand the relationship between decimals, fractions and percents and demonstrate
More informationIntroduction to Fractions, Equivalent and Simplifying (12 days)
Introduction to Fractions, Equivalent and Simplifying (12 days) 1. Fraction 2. Numerator 3. Denominator 4. Equivalent 5. Simplest form Real World Examples: 1. Fractions in general, why and where we use
More information( ) 4, how many factors of 3 5
Exponents and Division LAUNCH (9 MIN) Before Why would you want more than one way to express the same value? During Should you begin by multiplying the factors in the numerator and the factors in the denominator?
More informationTYPES OF NUMBERS. Example 2. Example 1. Problems. Answers
TYPES OF NUMBERS When two or more integers are multiplied together, each number is a factor of the product. Nonnegative integers that have exactly two factors, namely, one and itself, are called prime
More informationGreatest Common Factor and Least Common Multiple
Greatest Common Factor and Least Common Multiple Intro In order to understand the concepts of Greatest Common Factor (GCF) and Least Common Multiple (LCM), we need to define two key terms: Multiple: Multiples
More informationMathematical Procedures
CHAPTER 6 Mathematical Procedures 168 CHAPTER 6 Mathematical Procedures The multidisciplinary approach to medicine has incorporated a wide variety of mathematical procedures from the fields of physics,
More informationUnit 1 Number Sense. In this unit, students will study repeating decimals, percents, fractions, decimals, and proportions.
Unit 1 Number Sense In this unit, students will study repeating decimals, percents, fractions, decimals, and proportions. BLM Three Types of Percent Problems (p L34) is a summary BLM for the material
More informationMath Circle Beginners Group October 18, 2015
Math Circle Beginners Group October 18, 2015 Warmup problem 1. Let n be a (positive) integer. Prove that if n 2 is odd, then n is also odd. (Hint: Use a proof by contradiction.) Suppose that n 2 is odd
More informationObjective. Materials. find a relationship between Greatest Common Factor (GCF) and Least Common Multiple (LCM) justify why Oliver s method works
. Objective To discover a relationship between the Greatest Common Factor (GCF) and the Least Common Multiple (LCM) of two numbers A c t i v i t y 4 Oliver s Method Materials TI73 calculator Student Worksheet
More informationEXPONENTS. To the applicant: KEY WORDS AND CONVERTING WORDS TO EQUATIONS
To the applicant: The following information will help you review math that is included in the Paraprofessional written examination for the Conejo Valley Unified School District. The Education Code requires
More informationThe Euclidean Algorithm
The Euclidean Algorithm A METHOD FOR FINDING THE GREATEST COMMON DIVISOR FOR TWO LARGE NUMBERS To be successful using this method you have got to know how to divide. If this is something that you have
More informationHFCC Math Lab Intermediate Algebra  7 FINDING THE LOWEST COMMON DENOMINATOR (LCD)
HFCC Math Lab Intermediate Algebra  7 FINDING THE LOWEST COMMON DENOMINATOR (LCD) Adding or subtracting two rational expressions require the rational expressions to have the same denominator. Example
More informationGrade 6 Math Circles March 10/11, 2015 Prime Time Solutions
Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Lights, Camera, Primes! Grade 6 Math Circles March 10/11, 2015 Prime Time Solutions Today, we re going
More informationPearson Scott Foresman "envision" Grade 4
Pearson Scott Foresman "envision" Grade 4 KEY Number Sense Algebra & Functions Measurement & Geometry Statistics, Data Analysis & Probability Problem Solving ** Key Standard Testing & All Lessons are listed
More informationHOSPITALITY Math Assessment Preparation Guide. Introduction Operations with Whole Numbers Operations with Integers 9
HOSPITALITY Math Assessment Preparation Guide Please note that the guide is for reference only and that it does not represent an exact match with the assessment content. The Assessment Centre at George
More informationNow that we have a handle on the integers, we will turn our attention to other types of numbers.
1.2 Rational Numbers Now that we have a handle on the integers, we will turn our attention to other types of numbers. We start with the following definitions. Definition: Rational Number any number that
More informationLesson 4. Factors and Multiples. Objectives
Student Name: Date: Contact Person Name: Phone Number: Lesson 4 Factors and Multiples Objectives Understand what factors and multiples are Write a number as a product of its prime factors Find the greatest
More informationVocabulary Words and Definitions for Algebra
Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms
More informationSummer Math Packet. Number Sense & Math Skills For Students Entering PreAlgebra. No Calculators!!
Summer Math Packet Number Sense & Math Skills For Students Entering PreAlgebra No Calculators!! Within the first few days of your PreAlgebra course you will be assessed on the prerequisite skills outlined
More informationObjectives: In this fractions unit, we will
Objectives: In this fractions unit, we will subtract and add fractions with unlike denominators (pp. 101 102) multiply fractions(pp.109 110) Divide fractions (pp. 113 114) Review: Which is greater, 1/3
More informationFRACTIONS MODULE Part I
FRACTIONS MODULE Part I I. Basics of Fractions II. Rewriting Fractions in the Lowest Terms III. Change an Improper Fraction into a Mixed Number IV. Change a Mixed Number into an Improper Fraction BMR.Fractions
More informationmade up of 2 parts, a Saying a 3 To say or write a 7  seven eighths 8
Day 1 Fractions Obj: To learn how to write fractions, define,and classify fractions Def Fraction Numerator Denominator Fraction part of a whole; made up of 2 parts, a numerator and denominator. The denominator
More informationRules for Exponents and the Reasons for Them
Print this page Chapter 6 Rules for Exponents and the Reasons for Them 6.1 INTEGER POWERS AND THE EXPONENT RULES Repeated addition can be expressed as a product. For example, Similarly, repeated multiplication
More informationDECIMALS are special fractions whose denominators are powers of 10.
DECIMALS DECIMALS are special fractions whose denominators are powers of 10. Since decimals are special fractions, then all the rules we have already learned for fractions should work for decimals. The
More information