AQA STATISTICS 1 REVISION NOTES


 Ralph Harris
 1 years ago
 Views:
Transcription
1 AQA STATISTICS 1 REVISION NOTES AVERAGES AND MEASURES OF SPREAD Mode : the most commo or most popular data value the oly average that ca be used for qualitative data ot suitable if the data values are very varied Mea : importat as it uses all the data values Disadvatage affected by extreme values If the data is grouped use the midpoit of each group as your x Media : the middle value whe the data are i order For data values the media is the + 1 th value 2 Not affected by extreme values For 10 values the media will be the 5½ th value halfway betwee the 5 th ad the 6 th values Rage biggest value smallest value  greatly affected by extreme values Iterquartile Rage Upper quartile Lower quartile  measures the spread of the middle 50% of the data ad is ot affected by extreme values LQ M UQ IQR = 94 = LQ M UQ IQR = = 4 Stadard Deviatio Deviatio from the mea is the differece from a value from the mea value The stadard deviatio is the average of all of these deviatios Formulas to work out stadard deviatio are give i the q SCALING DATA Additio if you add a to each umber i the list of data : New mea = old mea + a New media = old media + a New mode = old mode + a Stadard Deviatio is UNCHANGED Multiplicatio  If you multiply each umber i the list of data by b : New mea = old mea b New media = old media b New mode = old mode b New Stadard Deviatio = old stadard deviatio b
2 PROBABILITY Outcome : each thig that ca happe i a experimet Sample Space : list of all the possible values q NOTATION A Ç B A ad B both happe A È B either A or B or both happe C' C does t happe C P(C ) = 1 P(C) P(A È B) = P(A) + P(B) P(A Ç B) Mutually Exclusive Evets two or more evets that caot happe at the same time P(A È B) = P(A) + P(B) Idepedet Evets the outcome of oe evet does ot affect the outcome of aother P( B ) = P(A) P(B) A Ç Coditioal Probability : whe the outcome of the first evet affects the outcome of a secod evet, the probability of the secod evet depeds o what has happeed P(B/A) meas the coditioal probability of B give A P(B/A) = P(A Ç B) P(A) A Ç so P( B )= P(A) P(B/A) q If the questio states that the evets are idepedet the a tree diagram might be a good idea multiply alog the braches the add the appropriate combiatios together q Probability of at least 1 = 1 Probability of oe q If you are asked to fid probabilities usig data i a table work out the row/colum totals before you start
3 BINOMIAL DISTRIBUTION q A questio is biomial if: Probability of a evet happeig is give (p) Number of people/trials/objects chose give () q EQUALS or EXACTLY use the formula P(x=r) Make sure you write it out with the values substituted i C r p r (1 p) r Check that your powers add to make (umber of trials) from your calculator make sure you write dow this value q MORE/LESS THAN/AT LEAST use tables Remember tables give less tha or equal to Make sure you list the umbers ad idetify which oes you eed to iclude P(X>5) = 1 P(X 5) P(X<5) = P(X 4) q MEAN ad VARIANCE Mea = p Variace = p(1p) stadard deviatio = p(1 p) q ASSUMPTIONS Idepedet evets with a fixed probability of success Radomly selected q COMPARISONS You may be asked to calculate the mea ad stadard deviatio of a biomial distributio ad compare them to the mea ad stadard deviatio of a sample (table of results)  if both the meas are approximately the same AND both stadard deviatios (or variaces) are approximately equal the you ca say that biomial model appears to fit the data ad that it must be idepedet, radom observatios.
4 NORMAL DISTRIBUTION FINDING PROBABILITIES q State the mea ad variace (stadard deviatio) q Stadardise to fid the z value z = x mea stadard deviatio q Sketch a graph ad shade i the area to represet the probability P(z <1.2) P(z >0.8) q Use the table to fid the probability  take care with egative zvalues P(z > 0.8) = P(z < 0.8) P(z < 0.8) = 1 P(z < 0.8) q ALWAYS CHECK YOUR ANSWER WITH YOUR GRAPH if your shaded area is more that ½ ad your aswer is 0.4 (for example) you kow you have goe wrog somewhere!! WORKING BACKWARDS to fid the mea/stadard deviatio or both (simultaeous equatios) q State the probability you kow ad sketch a graph P(X < 34) = Stadard deviatio = 8 q Use tables to fid the appropriate z value q Write dow the equatio used to stadardise with all of the kow values substituted q Rearrage to fid the mea = 34 mea 8
5 SAMPLES ad PROBABILITIES If you are asked to calculate probabilities ivolvig samples remember to divide the (populatio) stadard deviatio by the square root of the sample size whe you stadardise. z = x mea s or z = x mea variace ESTIMATION estimatig the populatio mea from a sample mea ad fidig a cofidece iterval If a radom sample of size is take from a ormal populatio ad the sample mea x is foud, the the 95% cofidece iterval of the populatio mea is give by where 2 Z value x s is either the populatio variace (if give) or a ubiased estimate of the populatio variace (foud from the sample see below) s 2, x s 2 q CASE 1 : Stadard deviatio or Variace of the populatio is stated i the questio  from the data you oly eed to calculate the mea  use your tables to fid the appropriate z value  write out the above expressios for the cofidece itervals with all your values substituted i  calculate the two values for your cofidece itervals ad state clearly (3 sf) CHECK your aswer add the two aswers together ad divide by 2 this should be the sample mea!!! q CASE 2 : Stadard deviatio or Variace of the populatio is UNKNOWN  you will eed to use the data to calculate the variace of the sample ad the a ubiased estimate of the populatio variace  your calculator will give you value of the stadard deviatio for the sample you have etered s x  square this to calculate the sample variace A ubiased estimate of the populatio variace is Sample variace 1 Use this as the value of s 2 i your cofidece iterval whe substitutig the values i q INTERPRETATION a 95% cofidece iterval tells us that if we took the same size sample 100 times the 95 of the cofidece itervals we would calculate should cotai the TRUE populatio mea.
6 CENTRAL LIMIT THEOREM you oly eed to use the cetral limit theorem if you are ot told that the sample is selected from a populatio which is Normally Distributed The theorem cocers the distributio of the sample meas ad as log as the sample size is large eough (greater tha 30) the the sample meas will be ormally distributed ad so we ca calculate cofidece itervals REGRESSION fidig the equatio of the lie of best fit least squares y = a + bx Gradiet the chage i y for each uit chage i x e.g for every 1 degree rise i temperature sales icrease by b Itercept  the value of y whe x is zero. e.g. Whe the temperature is 0 C ice cream sales are 10 q If you are asked to iterpret the values of a ad b, make sure you discuss it i the cotext of the questio NOT i terms of x ad y (see examples above) q If you are give a table of values use your calculator to fid a ad b I your workigs state a =. b =.. ad show your values substituted ito y = a + bx q If you are calculatig a ad b usig the formulae make sure you use the formula book showig how you substituted the values i Always work out b first Use b ad the meas of x ad y to work out a a = (mea of y)  b(mea of x) q TO PLOT THE REGRESSION LINE choose 2 differet values of x use your equatio y=a + bx to work out the predicted yvalues  plot the two poits ad joi with a straight lie q RESIDUAL = OBSERVED(actual value) PREDICTED(usig equatio y= a + bx)  the smaller the residuals the greater the accuracy of the lie of best fit i predictig values  sometimes a average residual ca be used to make predictios usig the lie of best fit e.g if a idividual has a average residual of 5 the to predict for this particular perso usig the lie, 5 should be added to the value predicted usig the equatio. q RELIABILITY OF PREDICTIONS  Iterpolatio predictig usig a xvalue withi the rage of xvalues used to calculate the a ad b cosidered to be a reliable predictio  Extrapolatio predictig usig a xvalue outside of the rage of xvalues used to calculate a ad b UNRELIABLE estimate  because you are assumig that the liear tred cotiues idefiitely use your commo sese to explai why this may be icorrect  watch out for NEGATIVE (or urealistic) y values which may result for the x values suggested agai use your commo sese to explai why this is urealistic
7 q SCALING either the x or the y values will chage the equatio e.g y = x If the x values are doubled the the equatio becomes y = (2x) y = x CORRELATION If 5 is added o to each of the y values the the equatio becomes y + 5 = x y = x (always rearrage to get y = a + b x) The Product Momet Correlatio Coefficiet : is a umerical measures of the stregth ad type of correlatio deoted by r ad will lie i the rage 1 r 1 q idicates how well the data, whe plotted i a scatter graph, fits a straight lie patter q NOT APPROPRIATE if the data does ot follow a liear patter whe plotted (straight lie) so scatter graph is eeded to check this q If you are give a table of values use your calculator to fid r (If you have time it s a good idea to check that you have etered your values correctly) q If you are calculatig usig summary values make sure you use the formula book showig how you substituted the values ito the formula INTERPRETING r make sure you do this i the cotext of the questio (ot just positive correlatio) e.g. There appears to be a fairly strog relatioship betwee temperature ad ice cream sales, higher temperatures appear to correspod to higher values of icecream sales ad vice versa. q Scalig data a liear trasformatio or scalig of oe or both of the variables will ot affect the correlatio coefficiet all of the poits will stay i the same positio RELATIVE to each other TAKE CARE q Not all correlatio will be liear For this data, the correlatio coefficiet is close to 0 This does ot mea that there is o correlatio but simply mea that there is o liear correlatio (patter appears to be quadratic) q Spurious Correlatio A strog correlatio betwee 2 variables does ot mea that oe thig causes the other high marks i a maths exam do ot ecessarily cause high marks i a Statistics exam, they are likely to both be depedet o a commo third variable : the studets mathematical ability q Outliers Oe or two outliers ca have a dramatic effect o a correlatio coefficiet
GCSE STATISTICS. 4) How to calculate the range: The difference between the biggest number and the smallest number.
GCSE STATISTICS You should kow: 1) How to draw a frequecy diagram: e.g. NUMBER TALLY FREQUENCY 1 3 5 ) How to draw a bar chart, a pictogram, ad a pie chart. 3) How to use averages: a) Mea  add up all
More informationNPTEL STRUCTURAL RELIABILITY
NPTEL Course O STRUCTURAL RELIABILITY Module # 0 Lecture 1 Course Format: Web Istructor: Dr. Aruasis Chakraborty Departmet of Civil Egieerig Idia Istitute of Techology Guwahati 1. Lecture 01: Basic Statistics
More information1 Correlation and Regression Analysis
1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio
More informationMeasures of Spread and Boxplots Discrete Math, Section 9.4
Measures of Spread ad Boxplots Discrete Math, Sectio 9.4 We start with a example: Example 1: Comparig Mea ad Media Compute the mea ad media of each data set: S 1 = {4, 6, 8, 10, 1, 14, 16} S = {4, 7, 9,
More informationCHAPTER 7: Central Limit Theorem: CLT for Averages (Means)
CHAPTER 7: Cetral Limit Theorem: CLT for Averages (Meas) X = the umber obtaied whe rollig oe six sided die oce. If we roll a six sided die oce, the mea of the probability distributio is X P(X = x) Simulatio:
More informationSection 73 Estimating a Population. Requirements
Sectio 73 Estimatig a Populatio Mea: σ Kow Key Cocept This sectio presets methods for usig sample data to fid a poit estimate ad cofidece iterval estimate of a populatio mea. A key requiremet i this sectio
More informationsum of all values n x = the number of values = i=1 x = n n. When finding the mean of a frequency distribution the mean is given by
Statistics Module Revisio Sheet The S exam is hour 30 miutes log ad is i two sectios Sectio A 3 marks 5 questios worth o more tha 8 marks each Sectio B 3 marks questios worth about 8 marks each You are
More informationDefinition. Definition. 72 Estimating a Population Proportion. Definition. Definition
7 stimatig a Populatio Proportio I this sectio we preset methods for usig a sample proportio to estimate the value of a populatio proportio. The sample proportio is the best poit estimate of the populatio
More informationHypothesis testing. Null and alternative hypotheses
Hypothesis testig Aother importat use of samplig distributios is to test hypotheses about populatio parameters, e.g. mea, proportio, regressio coefficiets, etc. For example, it is possible to stipulate
More informationI. Chisquared Distributions
1 M 358K Supplemet to Chapter 23: CHISQUARED DISTRIBUTIONS, TDISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad tdistributios, we first eed to look at aother family of distributios, the chisquared distributios.
More informationStat 104 Lecture 16. Statistics 104 Lecture 16 (IPS 6.1) Confidence intervals  the general concept
Statistics 104 Lecture 16 (IPS 6.1) Outlie for today Cofidece itervals Cofidece itervals for a mea, µ (kow σ) Cofidece itervals for a proportio, p Margi of error ad sample size Review of mai topics for
More informationx : X bar Mean (i.e. Average) of a sample
A quick referece for symbols ad formulas covered i COGS14: MEAN OF SAMPLE: x = x i x : X bar Mea (i.e. Average) of a sample x i : X sub i This stads for each idividual value you have i your sample. For
More informationConfidence Intervals for the Population Mean
Cofidece Itervals Math 283 Cofidece Itervals for the Populatio Mea Recall that from the empirical rule that the iterval of the mea plus/mius 2 times the stadard deviatio will cotai about 95% of the observatios.
More informationLesson 17 Pearson s Correlation Coefficient
Outlie Measures of Relatioships Pearso s Correlatio Coefficiet (r) types of data scatter plots measure of directio measure of stregth Computatio covariatio of X ad Y uique variatio i X ad Y measurig
More informationGregory Carey, 1998 Linear Transformations & Composites  1. Linear Transformations and Linear Composites
Gregory Carey, 1998 Liear Trasformatios & Composites  1 Liear Trasformatios ad Liear Composites I Liear Trasformatios of Variables Meas ad Stadard Deviatios of Liear Trasformatios A liear trasformatio
More information1. C. The formula for the confidence interval for a population mean is: x t, which was
s 1. C. The formula for the cofidece iterval for a populatio mea is: x t, which was based o the sample Mea. So, x is guarateed to be i the iterval you form.. D. Use the rule : pvalue
More informationChapter 9: Correlation and Regression: Solutions
Chapter 9: Correlatio ad Regressio: Solutios 9.1 Correlatio I this sectio, we aim to aswer the questio: Is there a relatioship betwee A ad B? Is there a relatioship betwee the umber of emploee traiig hours
More informationTHE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n
We will cosider the liear regressio model i matrix form. For simple liear regressio, meaig oe predictor, the model is i = + x i + ε i for i =,,,, This model icludes the assumptio that the ε i s are a sample
More information7. Sample Covariance and Correlation
1 of 8 7/16/2009 6:06 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 7. Sample Covariace ad Correlatio The Bivariate Model Suppose agai that we have a basic radom experimet, ad that X ad Y
More informationZTEST / ZSTATISTIC: used to test hypotheses about. µ when the population standard deviation is unknown
ZTEST / ZSTATISTIC: used to test hypotheses about µ whe the populatio stadard deviatio is kow ad populatio distributio is ormal or sample size is large TTEST / TSTATISTIC: used to test hypotheses about
More informationCase Study. Normal and t Distributions. Density Plot. Normal Distributions
Case Study Normal ad t Distributios Bret Halo ad Bret Larget Departmet of Statistics Uiversity of Wiscosi Madiso October 11 13, 2011 Case Study Body temperature varies withi idividuals over time (it ca
More informationDescriptive statistics deals with the description or simple analysis of population or sample data.
Descriptive statistics Some basic cocepts A populatio is a fiite or ifiite collectio of idividuals or objects. Ofte it is impossible or impractical to get data o all the members of the populatio ad a small
More information3. Covariance and Correlation
Virtual Laboratories > 3. Expected Value > 1 2 3 4 5 6 3. Covariace ad Correlatio Recall that by takig the expected value of various trasformatios of a radom variable, we ca measure may iterestig characteristics
More informationHypothesis Tests Applied to Means
The Samplig Distributio of the Mea Hypothesis Tests Applied to Meas Recall that the samplig distributio of the mea is the distributio of sample meas that would be obtaied from a particular populatio (with
More informationTIEE Teaching Issues and Experiments in Ecology  Volume 1, January 2004
TIEE Teachig Issues ad Experimets i Ecology  Volume 1, Jauary 2004 EXPERIMENTS Evirometal Correlates of Leaf Stomata Desity Bruce W. Grat ad Itzick Vatick Biology, Wideer Uiversity, Chester PA, 19013
More information3.1 Measures of Central Tendency. Introduction 5/28/2013. Data Description. Outline. Objectives. Objectives. Traditional Statistics Average
5/8/013 C H 3A P T E R Outlie 3 1 Measures of Cetral Tedecy 3 Measures of Variatio 3 3 3 Measuresof Positio 3 4 Exploratory Data Aalysis Copyright 013 The McGraw Hill Compaies, Ic. C H 3A P T E R Objectives
More informationPSYCHOLOGICAL STATISTICS
UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION B Sc. Cousellig Psychology (0 Adm.) IV SEMESTER COMPLEMENTARY COURSE PSYCHOLOGICAL STATISTICS QUESTION BANK. Iferetial statistics is the brach of statistics
More informationKey Ideas Section 81: Overview hypothesis testing Hypothesis Hypothesis Test Section 82: Basics of Hypothesis Testing Null Hypothesis
Chapter 8 Key Ideas Hypothesis (Null ad Alterative), Hypothesis Test, Test Statistic, Pvalue Type I Error, Type II Error, Sigificace Level, Power Sectio 81: Overview Cofidece Itervals (Chapter 7) are
More informationConfidence Intervals for One Mean with Tolerance Probability
Chapter 421 Cofidece Itervals for Oe Mea with Tolerace Probability Itroductio This procedure calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) with
More informationConfidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the.
Cofidece Itervals A cofidece iterval is a iterval whose purpose is to estimate a parameter (a umber that could, i theory, be calculated from the populatio, if measuremets were available for the whole populatio).
More informationQuadrat Sampling in Population Ecology
Quadrat Samplig i Populatio Ecology Backgroud Estimatig the abudace of orgaisms. Ecology is ofte referred to as the "study of distributio ad abudace". This beig true, we would ofte like to kow how may
More informationCHAPTER 8: CONFIDENCE INTERVAL ESTIMATES for Means and Proportions
CHAPTER 8: CONFIDENCE INTERVAL ESTIMATES for Meas ad Proportios Itroductio: We wat to kow the value of a parameter for a populatio. We do t kow the value of this parameter for the etire populatio because
More information5: Introduction to Estimation
5: Itroductio to Estimatio Cotets Acroyms ad symbols... 1 Statistical iferece... Estimatig µ with cofidece... 3 Samplig distributio of the mea... 3 Cofidece Iterval for μ whe σ is kow before had... 4 Sample
More informationAlternatives To Pearson s and Spearman s Correlation Coefficients
Alteratives To Pearso s ad Spearma s Correlatio Coefficiets Floreti Smaradache Chair of Math & Scieces Departmet Uiversity of New Mexico Gallup, NM 8730, USA Abstract. This article presets several alteratives
More informationUniversity of California, Los Angeles Department of Statistics. Distributions related to the normal distribution
Uiversity of Califoria, Los Ageles Departmet of Statistics Statistics 100B Istructor: Nicolas Christou Three importat distributios: Distributios related to the ormal distributio Chisquare (χ ) distributio.
More informationCorrelation. example 2
Correlatio Iitially developed by Sir Fracis Galto (888) ad Karl Pearso (8) Sir Fracis Galto 8 correlatio is a much abused word/term correlatio is a term which implies that there is a associatio betwee
More informationGrade 7. Strand: Number Specific Learning Outcomes It is expected that students will:
Strad: Number Specific Learig Outcomes It is expected that studets will: 7.N.1. Determie ad explai why a umber is divisible by 2, 3, 4, 5, 6, 8, 9, or 10, ad why a umber caot be divided by 0. [C, R] [C]
More informationMath C067 Sampling Distributions
Math C067 Samplig Distributios Sample Mea ad Sample Proportio Richard Beigel Some time betwee April 16, 2007 ad April 16, 2007 Examples of Samplig A pollster may try to estimate the proportio of voters
More informationConfidence Intervals for the Mean of Nonnormal Data Class 23, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom
Cofidece Itervals for the Mea of Noormal Data Class 23, 8.05, Sprig 204 Jeremy Orloff ad Joatha Bloom Learig Goals. Be able to derive the formula for coservative ormal cofidece itervals for the proportio
More informationThe following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles
The followig eample will help us uderstad The Samplig Distributio of the Mea Review: The populatio is the etire collectio of all idividuals or objects of iterest The sample is the portio of the populatio
More information3. Continuous Random Variables
Statistics ad probability: 31 3. Cotiuous Radom Variables A cotiuous radom variable is a radom variable which ca take values measured o a cotiuous scale e.g. weights, stregths, times or legths. For ay
More informationSimple Linear Regression
Simple Liear Regressio We have bee itroduced to the otio that a categorical variable could deped o differet levels of aother variable whe we discussed cotigecy tables. We ll exted this idea to the case
More informationSimple Linear Regression
Simple Liear Regressio W. Robert Stepheso Departmet of Statistics Iowa State Uiversity Oe of the most widely used statistical techiques is simple liear regressio. This techique is used to relate a measured
More informationThe shaded region above represents the region in which z lies.
GCE A Level H Maths Solutio Paper SECTION A (PURE MATHEMATICS) (i) Im 3 Note: Uless required i the questio, it would be sufficiet to just idicate the cetre ad radius of the circle i such a locus drawig.
More informationChapter 7: Confidence Interval and Sample Size
Chapter 7: Cofidece Iterval ad Sample Size Learig Objectives Upo successful completio of Chapter 7, you will be able to: Fid the cofidece iterval for the mea, proportio, ad variace. Determie the miimum
More informationDescriptive Statistics
Descriptive Statistics We leared to describe data sets graphically. We ca also describe a data set umerically. Measures of Locatio Defiitio The sample mea is the arithmetic average of values. We deote
More informationMR. STEIN S WORDS OF WISDOM
MR. STEIN S WORDS OF WISDOM P a g e 1 I am writig this review essay for two tests the AP Stat exam ad the Applied Stat Fial exam. The topics are more or less the same, so reviewig for the two tests should
More informationCenter, Spread, and Shape in Inference: Claims, Caveats, and Insights
Ceter, Spread, ad Shape i Iferece: Claims, Caveats, ad Isights Dr. Nacy Pfeig (Uiversity of Pittsburgh) AMATYC November 2008 Prelimiary Activities 1. I would like to produce a iterval estimate for the
More informationDefinition. A variable X that takes on values X 1, X 2, X 3,...X k with respective frequencies f 1, f 2, f 3,...f k has mean
1 Social Studies 201 October 13, 2004 Note: The examples i these otes may be differet tha used i class. However, the examples are similar ad the methods used are idetical to what was preseted i class.
More informationChapter 5 Discrete Probability Distributions
Slides Prepared by JOHN S. LOUCKS St. Edward s Uiversity Slide Chapter 5 Discrete Probability Distributios Radom Variables Discrete Probability Distributios Epected Value ad Variace Poisso Distributio
More informationOverview. Learning Objectives. Point Estimate. Estimation. Estimating the Value of a Parameter Using Confidence Intervals
Overview Estimatig the Value of a Parameter Usig Cofidece Itervals We apply the results about the sample mea the problem of estimatio Estimatio is the process of usig sample data estimate the value of
More informationMEI Structured Mathematics. Module Summary Sheets. Statistics 2 (Version B: reference to new book)
MEI Mathematics i Educatio ad Idustry MEI Structured Mathematics Module Summary Sheets Statistics (Versio B: referece to ew book) Topic : The Poisso Distributio Topic : The Normal Distributio Topic 3:
More informationUSING STATISTICAL FUNCTIONS ON A SCIENTIFIC CALCULATOR
USING STATISTICAL FUNCTIONS ON A SCIENTIFIC CALCULATOR Objective:. Improve calculator skills eeded i a multiple choice statistical eamiatio where the eam allows the studet to use a scietific calculator..
More informationStatistics Lecture 14. Introduction to Inference. Administrative Notes. Hypothesis Tests. Last Class: Confidence Intervals
Statistics 111  Lecture 14 Itroductio to Iferece Hypothesis Tests Admiistrative Notes Sprig Break! No lectures o Tuesday, March 8 th ad Thursday March 10 th Exteded Sprig Break! There is o Stat 111 recitatio
More informationYour grandmother and her financial counselor
Sectio 10. Arithmetic Sequeces 963 Objectives Sectio 10. Fid the commo differece for a arithmetic sequece. Write s of a arithmetic sequece. Use the formula for the geeral of a arithmetic sequece. Use the
More informationProperties of MLE: consistency, asymptotic normality. Fisher information.
Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout
More informationMeasures of Central Tendency
Measures of Cetral Tedecy A studet s grade will be determied by exam grades ( each exam couts twice ad there are three exams, HW average (couts oce, fial exam ( couts three times. Fid the average if the
More informationArithmetic Sequences
. Arithmetic Sequeces Essetial Questio How ca you use a arithmetic sequece to describe a patter? A arithmetic sequece is a ordered list of umbers i which the differece betwee each pair of cosecutive terms,
More informationSimple linear regression
Simple liear regressio Tro Aders Moger 3..7 Example 6: Populatio proportios Oe sample X Assume X ~ Bi(, P, so that P ˆ is a frequecy. P The ~ N(, P( P / (approximately, for large P Thus ~ N(, ( / (approximately,
More informationStat 104 Lecture 2. Variables and their distributions. DJIA: monthly % change, 2000 to Finding the center of a distribution. Median.
Stat 04 Lecture Statistics 04 Lecture (IPS. &.) Outlie for today Variables ad their distributios Fidig the ceter Measurig the spread Effects of a liear trasformatio Variables ad their distributios Variable:
More informationNow here is the important step
LINEST i Excel The Excel spreadsheet fuctio "liest" is a complete liear least squares curve fittig routie that produces ucertaity estimates for the fit values. There are two ways to access the "liest"
More informationConfidence Intervals for One Mean
Chapter 420 Cofidece Itervals for Oe Mea Itroductio This routie calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) at a stated cofidece level for a
More informationSampling Distribution And Central Limit Theorem
() Samplig Distributio & Cetral Limit Samplig Distributio Ad Cetral Limit Samplig distributio of the sample mea If we sample a umber of samples (say k samples where k is very large umber) each of size,
More informationChapter 10. Hypothesis Tests Regarding a Parameter. 10.1 The Language of Hypothesis Testing
Chapter 10 Hypothesis Tests Regardig a Parameter A secod type of statistical iferece is hypothesis testig. Here, rather tha use either a poit (or iterval) estimate from a simple radom sample to approximate
More informationSection 7.2 Confidence Interval for a Proportion
Sectio 7.2 Cofidece Iterval for a Proportio Before ay ifereces ca be made about a proportio, certai coditios must be satisfied: 1. The sample must be a SRS from the populatio of iterest. 2. The populatio
More information8 The Poisson Distribution
8 The Poisso Distributio Let X biomial, p ). Recall that this meas that X has pmf ) p,p k) p k k p ) k for k 0,,...,. ) Agai, thik of X as the umber of successes i a series of idepedet experimets, each
More informationThe Poisson Distribution
Lecture 5 The Poisso Distributio 5.1 Itroductio Example 5.1: Drowigs i Malta The book [Mou98] cites data from the St. Luke s Hospital Gazette, o the mothly umber of drowigs o Malta, over a period of early
More informationME 101 Measurement Demonstration (MD 1) DEFINITIONS Precision  A measure of agreement between repeated measurements (repeatability).
INTRODUCTION This laboratory ivestigatio ivolves makig both legth ad mass measuremets of a populatio, ad the assessig statistical parameters to describe that populatio. For example, oe may wat to determie
More informationConfidence Intervals and Sample Size
8/7/015 C H A P T E R S E V E N Cofidece Itervals ad Copyright 015 The McGrawHill Compaies, Ic. Permissio required for reproductio or display. 1 Cofidece Itervals ad Outlie 71 Cofidece Itervals for the
More informationUsing Excel to Construct Confidence Intervals
OPIM 303 Statistics Ja Stallaert Usig Excel to Costruct Cofidece Itervals This hadout explais how to costruct cofidece itervals i Excel for the followig cases: 1. Cofidece Itervals for the mea of a populatio
More informationCompare Multiple Response Variables
Compare Multiple Respose Variables STATGRAPHICS Mobile Rev. 4/7/006 This procedure compares the data cotaied i three or more Respose colums. It performs a oeway aalysis of variace to determie whether
More informationOutput Analysis (2, Chapters 10 &11 Law)
B. Maddah ENMG 6 Simulatio 05/0/07 Output Aalysis (, Chapters 10 &11 Law) Comparig alterative system cofiguratio Sice the output of a simulatio is radom, the comparig differet systems via simulatio should
More informationTHE LEAST SQUARES REGRESSION LINE and R 2
THE LEAST SQUARES REGRESSION LINE ad R M358K I. Recall from p. 36 that the least squares regressio lie of y o x is the lie that makes the sum of the squares of the vertical distaces of the data poits from
More informationChapter Gaussian Elimination
Chapter 04.06 Gaussia Elimiatio After readig this chapter, you should be able to:. solve a set of simultaeous liear equatios usig Naïve Gauss elimiatio,. lear the pitfalls of the Naïve Gauss elimiatio
More informationNATIONAL SENIOR CERTIFICATE GRADE 12
NATIONAL SENIOR CERTIFICATE GRADE MATHEMATICS P EXEMPLAR 04 MARKS: 50 TIME: 3 hours This questio paper cosists of 8 pages ad iformatio sheet. Please tur over Mathematics/P DBE/04 NSC Grade Eemplar INSTRUCTIONS
More information1 Computing the Standard Deviation of Sample Means
Computig the Stadard Deviatio of Sample Meas Quality cotrol charts are based o sample meas ot o idividual values withi a sample. A sample is a group of items, which are cosidered all together for our aalysis.
More information7 b) 0. Guided Notes for lesson P.2 Properties of Exponents. If a, b, x, y and a, b, 0, and m, n Z then the following properties hold: 1 n b
Guided Notes for lesso P. Properties of Expoets If a, b, x, y ad a, b, 0, ad m, Z the the followig properties hold:. Negative Expoet Rule: b ad b b b Aswers must ever cotai egative expoets. Examples: 5
More informationDetermining the sample size
Determiig the sample size Oe of the most commo questios ay statisticia gets asked is How large a sample size do I eed? Researchers are ofte surprised to fid out that the aswer depeds o a umber of factors
More informationFOUNDATIONS OF MATHEMATICS AND PRECALCULUS GRADE 10
FOUNDATIONS OF MATHEMATICS AND PRECALCULUS GRADE 10 [C] Commuicatio Measuremet A1. Solve problems that ivolve liear measuremet, usig: SI ad imperial uits of measure estimatio strategies measuremet strategies.
More informationHomework 7 Solutions Total Points
Homework 7 Solutios  165 Total Poits STAT 201502 Lecture 11, 12, & 13 Material 1. Studies that compare treatmets for chroic medical coditios such as headaches ca use the same subjects for each treatmet.
More informationThis document contains a collection of formulas and constants useful for SPC chart construction. It assumes you are already familiar with SPC.
SPC Formulas ad Tables 1 This documet cotais a collectio of formulas ad costats useful for SPC chart costructio. It assumes you are already familiar with SPC. Termiology Geerally, a bar draw over a symbol
More informationThe frequency relationship can also be written in term of logarithms
Pitch ad Frequecy by Mark Frech Departmet of Mechaical Egieerig Techology Purdue Uiversity rmfrech@purdue.edu There are two differet kids of scales importat to a guitar player, eve tempered ad diatoic.
More informationNonlife insurance mathematics. Nils F. Haavardsson, University of Oslo and DNB Skadeforsikring
Nolife isurace mathematics Nils F. Haavardsso, Uiversity of Oslo ad DNB Skadeforsikrig Mai issues so far Why does isurace work? How is risk premium defied ad why is it importat? How ca claim frequecy
More informationChapter 7 Methods of Finding Estimators
Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of
More information1 The Binomial Theorem: Another Approach
The Biomial Theorem: Aother Approach Pascal s Triagle I class (ad i our text we saw that, for iteger, the biomial theorem ca be stated (a + b = c a + c a b + c a b + + c ab + c b, where the coefficiets
More informationhp calculators HP 12C Platinum Statistics  correlation coefficient The correlation coefficient HP12C Platinum correlation coefficient
HP 1C Platium Statistics  correlatio coefficiet The correlatio coefficiet HP1C Platium correlatio coefficiet Practice fidig correlatio coefficiets ad forecastig HP 1C Platium Statistics  correlatio coefficiet
More informationwhen n = 1, 2, 3, 4, 5, 6, This list represents the amount of dollars you have after n days. Note: The use of is read as and so on.
Geometric eries Before we defie what is meat by a series, we eed to itroduce a related topic, that of sequeces. Formally, a sequece is a fuctio that computes a ordered list. uppose that o day 1, you have
More informationRadicals and Fractional Exponents
Radicals ad Roots Radicals ad Fractioal Expoets I math, may problems will ivolve what is called the radical symbol, X is proouced the th root of X, where is or greater, ad X is a positive umber. What it
More informationSTA 2023 Practice Questions Exam 2 Chapter 7 sec 9.2. Case parameter estimator standard error Estimate of standard error
STA 2023 Practice Questios Exam 2 Chapter 7 sec 9.2 Formulas Give o the test: Case parameter estimator stadard error Estimate of stadard error Samplig Distributio oe mea x s t (1) oe p ( 1 p) CI: prop.
More information, a Wishart distribution with n 1 degrees of freedom and scale matrix.
UMEÅ UNIVERSITET Matematiskstatistiska istitutioe Multivariat dataaalys D MSTD79 PA TENTAMEN 00409 LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK Multivariat dataaalys D, 5 poäg.. Assume that
More informationHypergeometric Distributions
7.4 Hypergeometric Distributios Whe choosig the startig lieup for a game, a coach obviously has to choose a differet player for each positio. Similarly, whe a uio elects delegates for a covetio or you
More informationTI83, TI83 Plus or TI84 for NonBusiness Statistics
TI83, TI83 Plu or TI84 for NoBuie Statitic Chapter 3 Eterig Data Pre [STAT] the firt optio i already highlighted (:Edit) o you ca either pre [ENTER] or. Make ure the curor i i the lit, ot o the lit
More information4.1 Sigma Notation and Riemann Sums
0 the itegral. Sigma Notatio ad Riema Sums Oe strategy for calculatig the area of a regio is to cut the regio ito simple shapes, calculate the area of each simple shape, ad the add these smaller areas
More information1 Hypothesis testing for a single mean
BST 140.65 Hypothesis Testig Review otes 1 Hypothesis testig for a sigle mea 1. The ull, or status quo, hypothesis is labeled H 0, the alterative H a or H 1 or H.... A type I error occurs whe we falsely
More information23.3 Sampling Distributions
COMMON CORE Locker LESSON Commo Core Math Stadards The studet is expected to: COMMON CORE SIC.B.4 Use data from a sample survey to estimate a populatio mea or proportio; develop a margi of error through
More informationNormal Distribution.
Normal Distributio www.icrf.l Normal distributio I probability theory, the ormal or Gaussia distributio, is a cotiuous probability distributio that is ofte used as a first approimatio to describe realvalued
More information8.1 Arithmetic Sequences
MCR3U Uit 8: Sequeces & Series Page 1 of 1 8.1 Arithmetic Sequeces Defiitio: A sequece is a comma separated list of ordered terms that follow a patter. Examples: 1, 2, 3, 4, 5 : a sequece of the first
More informationConfidence Intervals
Cofidece Itervals Cofidece Itervals are a extesio of the cocept of Margi of Error which we met earlier i this course. Remember we saw: The sample proportio will differ from the populatio proportio by more
More informationTrigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is
0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values
More information