Standing Waves Physics Lab I

Save this PDF as:

Size: px
Start display at page:

Transcription

1 Standing Waves Physics Lab I Objective In this series of experiments, the resonance conditions for standing waves on a string will be tested experimentally. Equipment List PASCO SF-9324 Variable Frequency Mechanical Wave Driver, PASCO PI-9587B Digital Frequency Generator, Table Rod, Elastic String, Table Clamp with Pulley, Set of 50 g and 100 g Masses with Mass Holder, Meter Stick. Theoretical Background Consider an elastic string. One end of the string is tied to a rod. The other end is under tension by a hanging mass and pulley arrangement. The string is held taut by the applied force of the hanging mass. Suppose the string is plucked at or near the taut end. The string begins to vibrate. As the string vibrates, a wave travels along the string toward the fixed end. Upon arriving at the fixed end, the wave is reflected back toward the taut end of the string with the same amount of energy given by the pluck, ideally. Suppose you were to repeatedly pluck the string. The time between each pluck is 1 second and you stop plucking after 10 seconds. The frequency of your pluck is then defined as 1 pluck per every second. Frequency is a measure of the number of repeating cycles or oscillations completed within a definite time frame. Frequency has units of Hertz abbreviated Hz. As you continue to pluck the string you notice that the set of waves travelling back and forth between the taut and fixed ends of the string constructively and destructively interact with each other as they propagate along the string. The wave patterns move left to right and right to left from end to end as a result of constructive and destructive interactions for the given frequency (1 pluck per second). At certain frequencies however the interaction between the waves from either end is not present and the resulting wave pattern is a standing wave. Standing waves occur when there is no left or right motion

2 2 Standing Waves of the wave patterns. Frequencies producing standing waves are resonant frequencies. Figure 1 shows the first and second set of standing wave patterns for a string held taut. Figure 1: Standing Waves on a String As shown on Figure 1, the stationary string positions in the standing wave pattern are known as nodes, while the positions with maximum amplitude in the pattern are known as antinodes. The first standing wave pattern is referred to as the fundamental or first harmonic of the string. In this pattern, there are no nodes between the two ends of the string (the fixed ends are nodes for the pattern, though they are generally disregarded since they are present in all the patterns). The next standing pattern, with one node between the two ends, is known as the second harmonic. Standing waves with more nodes between the ends are higher harmonics (i.e. third harmonic, forth harmonic, etc.). It is possible to determine the resonant frequencies for standing waves on a string by considering some properties of the standing wave and the string. First notice that the distance between two nodes represents half a wavelength, λ, of the standing wave, as shown as in Figure 1. The wavelength can be related to the length bounded by the two ends. This is the length of the string undergoing propagation, L. For the fundamental, one half of the full wavelength is contained within the bounds. For the second harmonic, one full wavelength is contained within bounds. The third harmonic would have two nodes, which would mean there would be one and a half wavelengths between the string ends. The progression of wavelengths can be expressed by the following mathematical equation: λ n = 2L n = 1, 2, 3... (1) n In this equation, λ n is the wavelength of the standing wave, L is the length of the string bounded by the left and right ends, and n is the standing wave pattern, or harmonic, number. For the fundamental, n would be one; For the second harmonic, n would be two, etc. The resonant frequency can be found by using the relationship between the wavelength and the frequency for waves as shown in the following equation: v = λf. (2)

3 Standing Waves 3 In this equation, v is the (phase) velocity of the waves on the string, λ is the wavelength of the standing wave, and f is the resonant frequency for the standing wave. For waves on a string the velocity of the waves is given by the following equation: T v = µ, µ = m l. (3) In this equation, v is the velocity of the waves on the string, T is the tension in the string, and µ is the mass density of the string given by the total mass of the string m divided by the total length of the string l. Note: l includes the length of the string bounded by the left and right ends and the length of the string stretched by the hanging mass. These relationships will be tested experimentally in this series of experiments. Procedure Figure 2: Experimental Arrangement Wave Velocity Determination In this section, the propagation speed for waves on the stretched string used in this series of experiments will be determined. 1. Place 200 g on the mass holder which is draped over the table. Record the mass of the hanging weight on your data sheet as M; Be sure to include the mass of the hanger. 2. Measure the length of the stretched string from the end of the wave driver to the center of the pulley. Record this length on your data sheet as L. 3. With the power turned off, turn the amplitude on the frequency generator down to its minimum setting. With the amplitude at its minimum setting, turn the power on and set the range to Hz. Do this by pressing the down arrow ( ) on the function generator.

4 4 Standing Waves 4. Turn the frequency adjustment down until the frequency display reads about 5 Hz. 5. With the frequency adjustment set to 5 Hz, turn the amplitude adjustment to half way between the minimum and maximum value. 6. Increase the frequency until the fundamental standing wave mode is excited on the string. Continue increasing the frequency until this mode reaches its maximum amplitude value. Note, the amplitude referred to here is measured qualitatively. You should see the height of wave pattern increase as the frequency increases. The maximum frequency value corresponding to the maximum height of the string should be recorded. It is important that the amplitude adjust knob on the frequency generator remains fixed. Frequency as a Function of Wavelength In this portion of the lab, the frequency the higher harmonic modes will be measured experimentally. 1. With the string vibrating in the fundamental standing wave mode, continue increasing the drive frequency to find the higher harmonics. With each of the harmonics at maximum amplitude, record the frequency displayed on the frequency generator on your data sheet as f exp. 2. Estimate and record the uncertainty in the length of the string and the uncertainty in the frequency. Data Analysis Wave Velocity Determination 1. Use the mode number (n = 1) and the string length L to calculate the wavelength of the standing wave λ. λ n = 2L n n = 1, 2, 3... (4) 2. Use the wavelength λ and the measured resonant frequency of the standing wave f to calculate the wave speed v. v = λf. (5) 3. Use the mass of the hanging weight M to calculate the tension T in the string, then use this tension and the wave velocity v to calculate the mass density µ of the string. T T = Mg, v = µ. (6)

5 Standing Waves 5 Frequency as a Function of Wavelength 1. For each standing wave mode n, use the length of the string L to calculate the wavelength of the standing wave λ. λ n = 2L n n = 1, 2, 3... (7) 2. For each wavelength, use the wave velocity calculated previously to calculate and record the theoretical value of each standing wave frequency f theo. v = λf. (8) 3. Calculate the percent difference between experimental value and theoretical value of the resonant frequency. 4. From the theory for resonance on string, it can be shown that each of the harmonics is an integer multiple of the fundamental. Test this relationship by taking each experimentally measured frequency and divide by the fundamental frequency measured previously. f n = nf 1 = n exp = f exp f 1. (9) 5. Graph the experimental frequency f exp as a function of the inverse of the wavelength 1/λ, also known as the wave number k. Draw the line that comes closest to these data point, and determine the slope and y-intercept of this line. 6. Calculate the percent uncertainty in the length and the frequency using the following equation: % uncertainty = 100 measurement uncertainty smallest measured value. (10) 7. From the percent uncertainty in the length and frequency, determine the largest percent uncertainty in the experiment. Selected Questions 1. If additional mass had been added to the hanger, the string would have stretched more and the total length of the string would have increased. What effect would this have on the following: the mass density µ, the wave velocity v, the standing wave wavelength λ, and the standing wave resonant frequency f? 2. Instead of using v = λf to determine the wave velocity a method involving the alternate formula, v = T/µ, could have been used: measure and record the total mass and length of the string, calculate µ, measure and record the hanging mass, calculate the tension, calculate the wave velocity. Why is this a less than ideal way to determine the wave velocity for this experiment? (Hint: Consider the previous question.)

STANDING WAVES. Objective: To verify the relationship between wave velocity, wavelength, and frequency of a transverse wave.

STANDING WAVES Objective: To verify the relationship between wave velocity, wavelength, and frequency of a transverse wave. Apparatus: Magnetic oscillator, string, mass hanger and assorted masses, pulley,

Standing Waves in Strings

Standing Waves in Strings APPARATUS 1. Buzzer (vibrating at a given frequency) mounted on a board with a pulley 2. Electronic balance 3. 2 Strings, one light and one heavy 4. Set of known masses (slotted

PHY 157 Standing Waves on a String (Experiment 5)

PHY 157 Standing Waves on a String (Experiment 5) Name: 1 Introduction In this lab you will observe standing waves on a string. You will also investigate the relationship between wave speed and tension

Lab 14: Standing Waves

Lab 14: Standing Waves Objectives: To understand superposition of waves To understand how a standing wave is created To understand relationships between physical parameters such as tension and length of

Standing Waves on a String

1 of 6 Standing Waves on a String Summer 2004 Standing Waves on a String If a string is tied between two fixed supports, pulled tightly and sharply plucked at one end, a pulse will travel from one end

physics 111N oscillations & waves

physics 111N oscillations & waves periodic motion! often a physical system will repeat the same motion over and over! we call this periodic motion, or an oscillation the time it takes for the motion to

MAKE SURE TA & TI STAMPS EVERY PAGE BEFORE YOU START

Laboratory Section: Last Revised on September 21, 2016 Partners Names: Grade: EXPERIMENT 11 Velocity of Waves 0. Pre-Laboratory Work [2 pts] 1.) What is the longest wavelength at which a sound wave will

Waves I: Generalities, Superposition & Standing Waves

Chapter 5 Waves I: Generalities, Superposition & Standing Waves 5.1 The Important Stuff 5.1.1 Wave Motion Wave motion occurs when the mass elements of a medium such as a taut string or the surface of a

Conservation of Energy Physics Lab VI

Conservation of Energy Physics Lab VI Objective This lab experiment explores the principle of energy conservation. You will analyze the final speed of an air track glider pulled along an air track by a

6: STANDING WAVES IN STRINGS

6: STANDING WAVES IN STRINGS 1. THE STANDING WAVE APPARATUS It is difficult to get accurate results for standing waves with the spring and stopwatch (last week s Lab 4B). In contrast, very accurate results

Contents 1 PENDULUM EXPERIMENT 3 2 SIMPLE HARMONIC MOTION 9 3 STANDING WAVES ON STRINGS 15 4 STANDING WAVES IN AIR COLUMNS 21

Contents 1 PENDULUM EXPERIMENT 3 2 SIMPLE HARMONIC MOTION 9 3 STANDING WAVES ON STRINGS 15 4 STANDING WAVES IN AIR COLUMNS 21 5 SOUND INTENSITY - THE DECIBEL SCALE 27 6 REVERBERATION TIME 31 1 2 CONTENTS

Chapter 21 Mechanical Waves. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University

Chapter 21 Mechanical Waves A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University 2007 Objectives: After completion of this module, you should be able

Newton s Second Law. ΣF = m a. (1) In this equation, ΣF is the sum of the forces acting on an object, m is the mass of

Newton s Second Law Objective The Newton s Second Law experiment provides the student a hands on demonstration of forces in motion. A formulated analysis of forces acting on a dynamics cart will be developed

Chapter 15 Wave Motion. Copyright 2009 Pearson Education, Inc.

Chapter 15 Wave Motion Characteristics of Wave Motion Types of Waves: Transverse and Longitudinal Energy Transported by Waves Mathematical Representation of a Traveling Wave The Wave Equation Units of

Standing Waves and the Velocity of Sound

Chapter 8 Standing Waves and the Velocity of Sound 8.1 Purpose In this experiment we will be using resonance points of a sound wave traveling through an open tube to measure the speed of sound in air.

Chapter 18 4/14/11. Superposition Principle. Superposition and Interference. Superposition Example. Superposition and Standing Waves

Superposition Principle Chapter 18 Superposition and Standing Waves If two or more traveling waves are moving through a medium, the resultant value of the wave function at any point is the algebraic sum

Hooke s Law and Simple Harmonic Motion

Hooke s Law and Simple Harmonic Motion OBJECTIVE to measure the spring constant of the springs using Hooke s Law to explore the static properties of springy objects and springs, connected in series and

Vibrations on a String and Resonance

Vibrations on a String and Resonance Umer Hassan and Muhammad Sabieh Anwar LUMS School of Science and Engineering March 5, 2015 Version 2015-1 How does our radio tune into different channels? Can a music

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A transverse wave is propagated in a string stretched along the x-axis. The equation

PHYS 130 Laboratory Experiment 11 Hooke s Law & Simple Harmonic Motion

PHYS 130 Laboratory Experiment 11 Hooke s Law & Simple Harmonic Motion NAME: DATE: SECTION: PARTNERS: OBJECTIVES 1. Verify Hooke s Law and use it to measure the force constant of a spring. 2. Investigate

The Sonometer The Resonant String and Timbre Change after plucking

The Sonometer The Resonant String and Timbre Change after plucking EQUIPMENT Pasco sonometers (pick up 5 from teaching lab) and 5 kits to go with them BK Precision function generators and Tenma oscilloscopes

STANDING WAVES IN AN AIR COLUMN

01/02 Tube - 1 STANDING WAVES IN AN AIR COLUMN The objective of the experiment is: To study the harmonic structure of standing waves in an air column. APPARATUS: Function generator, oscilloscope, speaker,

Nicholas J. Giordano. Chapter 12 Waves

Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 12 Waves Wave Motion A wave is a moving disturbance that transports energy from one place to another without transporting matter Questions

Unit 6 Practice Test: Sound

Unit 6 Practice Test: Sound Name: Multiple Guess Identify the letter of the choice that best completes the statement or answers the question. 1. A mass attached to a spring vibrates back and forth. At

Chapter 15: Making Waves

Chapter 15: Making Waves 1. Electromagnetic waves are generally A. transverse waves. B. longitudinal waves. C. a 50/50 combination of transverse and longitudinal waves. D. standing waves. 2. The period

Vibrations on a String and Resonance

Vibrations on a String and Resonance Umer Hassan and Muhammad Sabieh Anwar LUMS School of Science and Engineering September 7, 2010 How does our radio tune into different channels? Can a music maestro

Cutnell/Johnson Physics

Cutnell/Johnson Physics Classroom Response System Questions Chapter 17 The Principle of Linear Superposition and Interference Phenomena Interactive Lecture Questions 17.1.1. The graph shows two waves at

A B C D. Sensemaking TIPERs Instructors Manual Part E & F Copyright 2015 Pearson Education, Inc. 3

E WAVES E-RT0: WAVES WAVELENGTH The drawings represent snapshots taken of waves traveling to the right along strings. The grids shown in the background are identical. The waves all have speed, but their

A: zero everywhere. B: positive everywhere. C: negative everywhere. D: depends on position.

A string is clamped at both ends and then plucked so that it vibrates in a standing wave between two extreme positions a and c. (Let upward motion correspond to positive velocities.) When the

Sound Waves. PHYS102 Previous Exam Problems CHAPTER. Sound waves Interference of sound waves Intensity & level Resonance in tubes Doppler effect

PHYS102 Previous Exam Problems CHAPTER 17 Sound Waves Sound waves Interference of sound waves Intensity & level Resonance in tubes Doppler effect If the speed of sound in air is not given in the problem,

Project 2: Fourier Analysis of Waves

NAME DATE Project 2: Fourier Analysis of Waves Physics of Sound and Music: PHYS 152 The French mathematician Fourier showed that even complex-looking wave forms can be synthesized by summing simple sine

Chapter 14 Wave Motion

Query 17. If a stone be thrown into stagnating water, the waves excited thereby continue some time to arise in the place where the stone fell into the water, and are propagated from thence in concentric

Constructive and Destructive Interference Conceptual Question

Chapter 16 - solutions Constructive and Destructive Interference Conceptual Question Description: Conceptual question on whether constructive or destructive interference occurs at various points between

IB PHYSICS HL REVIEW PACKET: WAVES & VIBRATIONS

NAME IB PHYSICS HL REVIEW PACKET: WAVES & VIBRATIONS 1. This question is about waves and wave properties. (a) By making reference to waves, distinguish between a ray and a wavefront.......... (3) The diagram

transverse wave on a string Slinky waves

L 23 Vibrations and Waves [3] updated 10/23/07 resonance clocks pendulum springs harmonic motion mechanical waves sound waves golden rule for waves musical instruments The Doppler effect Doppler radar

Principles of Technology CH 12 Wave and Sound 1 Name

Principles of Technology CH 12 Wave and Sound 1 Name KEY OBJECTIVES At the conclusion of this chapter you will be able to: Define the terms periodic wave, wave motion, transverse wave, longitudinal wave,

NOTES Unit 13: Waves and Optics Wave Motion and Sound

Unit 13: Waves and Optics Wave Motion and Sound OBJECTIVES: Big Idea 6: Waves can transfer energy and momentum from one location to another without the permanent transfer of mass and serve as a mathematical

1) The time for one cycle of a periodic process is called the A) wavelength. B) period. C) frequency. D) amplitude.

practice wave test.. Name Use the text to make use of any equations you might need (e.g., to determine the velocity of waves in a given material) MULTIPLE CHOICE. Choose the one alternative that best completes

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

UNIVERSITY OF TENNESSEE CHATTANOOGA PHYSICS 1030L LAB 2/06/2013. PHYSICS 1030L Laboratory Measuring the Speed of Sound in Air Using a Resonance Tube

PHYSICS 1030L Laboratory Measuring the Speed of Sound in Air Using a Resonance Tube Objective: The purpose of this experiment is to measure the speed of sound in air by exploiting standing wave and resonance

Waves. Transverse Waves

Waves A wave is a repeated oscillation or disturbance that transfers energy through matter or space. The two primary types of waves are Transverse Longitudinal Transverse Waves In a transverse wave, the

Lab 17.1 Standing Waves in an Air Column

Name School Date Lab 17.1 Standing Waves in an Air Column Purpose To observe resonance of sound waves in an air column To determine the speed of sound in air To determine the effect of temperature on the

Simple Harmonic Motion Concepts

Simple Harmonic Motion Concepts INTRODUCTION Have you ever wondered why a grandfather clock keeps accurate time? The motion of the pendulum is a particular kind of repetitive or periodic motion called

LAB 9 Waves and Resonance

Cabrillo College Physics l0l Name LAB 9 Waves and Resonance Read Hewitt Chapter 19 What to learn and explore Almost all of the information that we receive from our environment comes to us in the form of

Simple Harmonic Motion

Simple Harmonic Motion Simple harmonic motion is one of the most common motions found in nature and can be observed from the microscopic vibration of atoms in a solid to rocking of a supertanker on the

Chapter 21. Superposition

Chapter 21. Superposition The combination of two or more waves is called a superposition of waves. Applications of superposition range from musical instruments to the colors of an oil film to lasers. Chapter

Experiment 9. The Pendulum

Experiment 9 The Pendulum 9.1 Objectives Investigate the functional dependence of the period (τ) 1 of a pendulum on its length (L), the mass of its bob (m), and the starting angle (θ 0 ). Use a pendulum

1 of 10 11/23/2009 6:37 PM

hapter 14 Homework Due: 9:00am on Thursday November 19 2009 Note: To understand how points are awarded read your instructor's Grading Policy. [Return to Standard Assignment View] Good Vibes: Introduction

The Physics of Guitar Strings

The Physics of Guitar Strings R. R. McNeil 1. Introduction The guitar makes a wonderful device to demonstrate the physics of waves on a stretched string. This is because almost every student has seen a

Sample Questions for the AP Physics 1 Exam

Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Multiple-choice Questions Note: To simplify calculations, you may use g 5 10 m/s 2 in all problems. Directions: Each

Name: Giant Slinky: Quantitative Exhibit Activity Materials: Tape Measure, Stopwatch, & Calculator. In this activity, we will explore wave properties using the Giant Slinky. Let s start by describing the

Chapter 13. Mechanical Waves

Chapter 13 Mechanical Waves A harmonic oscillator is a wiggle in time. The oscillating object will move back and forth between +A and A forever. If a harmonic oscillator now moves through space, we create

PHYS-2020: General Physics II Course Lecture Notes Section VII

PHYS-2020: General Physics II Course Lecture Notes Section VII Dr. Donald G. Luttermoser East Tennessee State University Edition 4.0 Abstract These class notes are designed for use of the instructor and

LECTURE 3 TRAVELING WAVES. Instructor: Kazumi Tolich

LECTURE 3 TRAVELING WAVES Instructor: Kazumi Tolich Lecture 3 2 Reading chapter 15-1 to 15-2 Transverse and longitudinal waves Moving displacement of a wave pulse Speed of waves Harmonic waves 3 Quiz:

Chapter 11. Waves & Sound

Chapter 11 Waves & Sound 11.2 Periodic Waves In the drawing, one cycle is shaded in color. The amplitude A is the maximum excursion of a particle of the medium from the particles undisturbed position.

Waves and Oscilla-ons

Waves and Oscilla-ons Lecture 12 Standing Waves Textbook reference: 18.1-18.4 Intro to Carl Sagan s Cosmos series Last -me: Superposi-on, interference Speed of a wave on a string T is Tension now! v =

Waves. Overview (Text p382>)

Waves Overview (Text p382>) Waves What are they? Imagine dropping a stone into a still pond and watching the result. A wave is a disturbance that transfers energy from one point to another in wave fronts.

1 of 8 1/23/2010 6:15 PM

1 of 8 1/23/2010 6:15 PM Chapter 21 Homework Due: 8:00am on Tuesday, January 26, 2010 Note: To understand how points are awarded, read your instructor's Grading Policy [Return to Standard Assignment View]

Prelab Exercises: Hooke's Law and the Behavior of Springs

59 Prelab Exercises: Hooke's Law and the Behavior of Springs Study the description of the experiment that follows and answer the following questions.. (3 marks) Explain why a mass suspended vertically

Physics 116. Oct 13, Lecture 9 Standing waves. R. J. Wilkes 10/13/11 phys 116.

Physics 116 Lecture 9 Standing waves Oct 13, 2011 http://okamusic.com/ R. J. Wilkes Email: ph116@u.washington.edu 1 HW2 (ch. 14) due today 5 pm HW3 open at 5pm (Ch.25, due 10/24) -- But focus on studying

University Physics 226N/231N Old Dominion University Wave Motion (Chapter 14)

University Physics 226N/231N Old Dominion University Wave Motion (Chapter 14) Dr. Todd Satogata (ODU/Jefferson Lab) http://www.toddsatogata.net/2012-odu Wednesday November 14, 2012 Happy Birthday to Travis

Waves and Sound. AP Physics B

Waves and Sound AP Physics B What is a wave A WAVE is a vibration or disturbance in space. A MEDIUM is the substance that all SOUND WAVES travel through and need to have in order to move. Two types of

PES 2130 Fall 2014, Spendier Lecture 10/Page 1

PES 2130 Fall 2014, Spendier Lecture 10/Page 1 Lecture today: Chapter 16 Waves-1 1) Wave on String and Wave Equation 2) Speed of a transverse wave on a stretched string 3) Energy and power of a wave traveling

General Physics I Can Statements

General Physics I Can Statements Motion (Kinematics) 1. I can describe motion in terms of position (x), displacement (Δx), distance (d), speed (s), velocity (v), acceleration (a), and time (t). A. I can

Wave Motion, Superposition, Standing Waves. Professor Michael Burton School of Physics, UNSW. Tunguska Meteorite, Siberia 30 June 1908

Chapters 17+18 Wave Motion, Superposition, Standing Waves Professor Michael Burton School of Physics, UNSW Tunguska Meteorite, Siberia 30 June 1908 I saw a moving light in the sky and felt my face become

Center of Mass/Momentum

Center of Mass/Momentum 1. 2. An L-shaped piece, represented by the shaded area on the figure, is cut from a metal plate of uniform thickness. The point that corresponds to the center of mass of the L-shaped

Physics 101: Lecture 32 Waves and Sound

Physics 101: Lecture 32 Waves and Sound Today s lecture will cover Textbook Sections 16.1-16.5 Review: Simple Harmonic Motion (Chapter 10) Please check all of the entries in your grade book to make sure

Standard Expression for a Traveling Wave

Course PHYSICS260 Assignment 3 Due at 11:00pm on Wednesday, February 20, 2008 Standard Expression for a Traveling Wave Description: Identify independant variables and parameters in the standard travelling

PHYS 2425 Engineering Physics I EXPERIMENT 9 SIMPLE HARMONIC MOTION

PHYS 2425 Engineering Physics I EXPERIMENT 9 SIMPLE HARMONIC MOTION I. INTRODUCTION The objective of this experiment is the study of oscillatory motion. In particular the springmass system and the simple

LABORATORY 9. Simple Harmonic Motion

LABORATORY 9 Simple Harmonic Motion Purpose In this experiment we will investigate two examples of simple harmonic motion: the mass-spring system and the simple pendulum. For the mass-spring system we

Waves-Wave Characteristics

1. What is the wavelength of a 256-hertz sound wave in air at STP? 1. 1.17 10 6 m 2. 1.29 m 3. 0.773 m 4. 8.53 10-7 m 2. The graph below represents the relationship between wavelength and frequency of

v = λ f this is the Golden Rule for waves transverse & longitudinal waves Harmonic waves The golden rule for waves Example: wave on a string Review

L 23 Vibrations and Waves [3] resonance clocks pendulum springs harmonic motion mechanical waves sound waves golden rule for waves musical instruments The Doppler effect Doppler radar radar guns Review

Experiment 5: Newton s Second Law

Name Section Date Introduction Experiment : Newton s Second Law In this laboratory experiment you will consider Newton s second law of motion, which states that an object will accelerate if an unbalanced

Chapter 3: Sound waves. Sound waves

Sound waves 1. Sound travels at 340 m/s in air and 1500 m/s in water. A sound of 256 Hz is made under water. In the air, A) the frequency remains the same but the wavelength is shorter. B) the frequency

Assignment 6. Problem 1: Creating a Standing Wave

Assignment 6 Problem 1: Creating a Standing Wave The wave is traveling in the +x direction Asin(kx + wt) = Asin(k(x + vt)) since vt is added to position, the wave is traveling in the negative direction.

Waves. Anatomy of a Wave Wave Speed Adding waves Natural Frequency Resonance

Waves Anatomy of a Wave Wave Speed Adding waves Natural Frequency Resonance Anatomy of a wave wavelength wavelength Wavelength is denoted by l Is this a wavelength (l)? A: Yes B: No Is this a wavelength

Chapter4: Superposition and Interference

Chapter4: Superposition and Interference Sections Superposition Principle Superposition of Sinusoidal Waves Interference of Sound Waves Standing Waves Beats: Interference in Time Nonsinusoidal Wave Patterns

Lab M1: The Simple Pendulum

Lab M1: The Simple Pendulum Introduction. The simple pendulum is a favorite introductory exercise because Galileo's experiments on pendulums in the early 1600s are usually regarded as the beginning of

11/27/2014 Partner: Diem Tran. Bungee Lab I: Exploring the Relationship Between Bungee Cord Length and Spring Force Constant

Bungee Lab I: Exploring the Relationship Between Bungee Cord Length and Spring Force Constant Introduction: This lab relies on an understanding of the motion of a spring and spring constant to facilitate

Waves - Transverse and Longitudinal Waves

Waves - Transverse and Longitudinal Waves wave may be defined as a periodic disturbance in a medium that carries energy from one point to another. ll waves require a source and a medium of propagation.

Wave Motion. Solutions of Home Work Problems

Chapter 16 Wave Motion. s of Home Work Problems 16.1 Problem 16.17 (In the text book) A transverse wave on a string is described by the wave function [( πx ) ] y = (0.10 m) sin + 4πt 8 (a) Determine the

PHYS-2020: General Physics II Course Lecture Notes Section VIII

PHYS-2020: General Physics II Course Lecture Notes Section VIII Dr. Donald G. Luttermoser East Tennessee State University Edition 4.0 Abstract These class notes are designed for use of the instructor and

A Simple Introduction to Interference

Course PHYSICS260 Assignment 4 Due at 11:00pm on Wednesday, February 27, 2008 A Simple Introduction to Interference Description: Interference is discussed for pulses on strings and then for sinusoidal

State Newton's second law of motion for a particle, defining carefully each term used.

5 Question 1. [Marks 28] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding

1/26/2016. Chapter 21 Superposition. Chapter 21 Preview. Chapter 21 Preview

Chapter 21 Superposition Chapter Goal: To understand and use the idea of superposition. Slide 21-2 Chapter 21 Preview Slide 21-3 Chapter 21 Preview Slide 21-4 1 Chapter 21 Preview Slide 21-5 Chapter 21

THE CONSERVATION OF ENERGY - PENDULUM -

THE CONSERVATION OF ENERGY - PENDULUM - Introduction The purpose of this experiment is to measure the potential energy and the kinetic energy of a mechanical system and to quantitatively compare the two

Resonance in a Closed End Pipe

Experiment 12 Resonance in a Closed End Pipe 12.1 Objectives Determine the relationship between frequency and wavelength for sound waves. Verify the relationship between the frequency of the sound, the

Resonance. The purpose of this experiment is to observe and evaluate the phenomenon of resonance.

Resonance Objective: The purpose of this experiment is to observe and evaluate the phenomenon of resonance. Background: Resonance is the tendency of a system to oscillate with greater amplitude at some

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false?

1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The

Simple Pendulum 10/10

Physical Science 101 Simple Pendulum 10/10 Name Partner s Name Purpose In this lab you will study the motion of a simple pendulum. A simple pendulum is a pendulum that has a small amplitude of swing, i.e.,

MODELING AND TESTING OF THE MUSICAL INSTRUMENT STRING MOTION

AIAS ASSOCIAZIONE ITALIANA PER L ANALISI DELLE SOLLECITAZIONI 43 CONVEGNO NAZIONALE, 9-1 SETTEMBRE 014, ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA AIAS 014-463 MODELING AND TESTING OF THE MUSICAL INSTRUMENT

SOLUTIONS TO CONCEPTS CHAPTER 15

SOLUTIONS TO CONCEPTS CHAPTER 15 1. v = 40 cm/sec As velocity of a wave is constant location of maximum after 5 sec = 40 5 = 00 cm along negative x-axis. [(x / a) (t / T)]. Given y = Ae a) [A] = [M 0 L

Experiment P19: Simple Harmonic Motion - Mass on a Spring (Force Sensor, Motion Sensor)

PASCO scientific Physics Lab Manual: P19-1 Science Workshop S. H. M. Mass on a Spring Experiment P19: Simple Harmonic Motion - Mass on a Spring (Force Sensor, Motion Sensor) Concept Time SW Interface Macintosh

Resonance and the Speed of Sound

Name: Partner(s): Date: Resonance and the Speed of Sound 1. Purpose Sound is a common type of mechanical wave that can be heard but not seen. In today s lab, you will investigate the nature of sound waves

You may not realize it, but you are surrounded by waves. The waviness of a water wave is readily apparent, from the ripples on a pond to ocean waves large enough to surf. It s less apparent that sound

Experiment 8. The Pendulum

Experiment 8 The Pendulum 8.1 Objectives Investigate the functional dependence of the period ( ) 1 of a pendulum on its length (L), the mass of its bob (m), and the starting angle ( 0 ). Use a pendulum

Sound and Waves Investigations. Level A Investigations. Level B Investigations

Sound and Waves Investigations Level A Investigations A-1 Sound What is sound and how do we hear it? Students are introduced to the relationship between the sounds we hear and their frequencies. They learn