Force. A force is a push or a pull. Pushing on a stalled car is an example. The force of friction between your feet and the ground is yet another.


 Esmond Powers
 2 years ago
 Views:
Transcription
1 Force A force is a push or a pull. Pushing on a stalled car is an example. The force of friction between your feet and the ground is yet another.
2 Force Weight is the force of the earth's gravity exerted downward upon your body. It is true that the more mass you have, the more you weigh. Weight and mass are proportional but they are not the same thing! All forces have a direction. Weight, being a force, always points down, toward the center of the earth. Mass has no direction.
3 Force vs. Mass Mass is related to how much matter there is in an object. An anvil has a great deal of mass, and here on Earth it weighs quite of bit, too.
4 Force vs. Mass But in space, where there is no gravity, the astronaut and the anvil are both weightless. They both have the same amount of mass they did on earth.
5 Mass and Weight Weight is the force of gravity exerted upon a mass. Weight and mass are related, but are not the same. An object's weight depends upon two things: 1. its mass 2. the acceleration of gravity in the part of the universe it occupies.
6 Weight is Proportional to Mass Here is the equation for weight. weight = mass x acceleration of gravity
7 Weight also Depends on Gravity On the surface of the earth, the acceleration of gravity is 9.8 m/s 2. It is quite a bit less on the moon: 1.6 m/s 2. It is too small to notice in interstellar space. Consequently, an object from Earth would weigh less on the Moon, and would weigh almost nothing in space.
8 Metric Units of Weight Many people mistakenly use the kilogram as a unit of weight. This is wrong. The kilogram is actually a unit of mass. w = mg w = (1 kg)(9.8 m/s 2 ) w = 9.8 Newtons 1 kilogram actually weighs 9.8 newtons.
9 Isaac Newton The metric unit of force is named after Isaac Newton ( ), one of the greatest figures in all of science. His mathematical description of the world went unchallenged until the twentieth century.
10 Newton's First Law of Motion An object at rest tends to remain at rest and an object in motion tends to move in a straight line at a constant speed, unless acted upon by an unbalanced force.
11 Why Things Move Force is a push or a pull. An unbalanced force causes an object to accelerate. The direction of a force is just as important as its size.
12 Why Things Move If the unbalanced force is in the same direction that the object was already moving, then the object speeds up. Force motion
13 Why Things Move If the unbalanced force is in the opposite direction as the object was moving, then it slows down. motion Force
14 Why Things Move If the unbalanced force is applied sideways to the object's motion, then the object will change direction.
15 Why Things Move When an unbalanced force is applied to an object, it will either speed up, slow down, or change direction. All of these results are called acceleration.
16 Why Things Move When a single force is applied to a motionless object, it will cause the object's motion to change. The single force was unbalanced. The football will now accelerate.
17 Why Things Move The direction of a force is important. Two equal forces, applied to the same object but in opposite directions, cancel each other out. In this case, there is no unbalanced force, and the object has no change in its motion.
18 Why Things Move The term net force has the same meaning as unbalanced force. To find the net force means to sum up the effects of all the forces acting upon an object. Only a net force can change the motion of an object.
19 Why Things Move When you push on a book, the force of friction resists you. What is the net force acting on this book?
20 Why Things Move Two students try to push a stalled car. What is the net force acting upon this car?
21 Why Things Move The larger the net force, the greater the acceleration becomes.
22 Why Things Move If the net force is doubled, that causes the acceleration to double. We say that the acceleration is directly proportional to the net force. a F net
23 Why Things Move In the previous example, we had to hold the mass of the object constant while we changed the applied force. What do you predict would happen if we used the same net force on a larger amount of mass?
24 Why Things Move The larger the mass, the smaller the amount of acceleration.
25 Why Things Move Note that the objects still speed up, but not as quickly as before. In fact, if you double the mass, the acceleration of it becomes only half as great. The acceleration is proportional to the inverse of the mass. a 1 m
26 Newton's 2 nd Law of Motion Combining both proportionalities into one equation:
27 ActionReaction Forces come in pairs! Whenever an object exerts a force on another object, the other object exerts the same amount of force back on the first, but in the opposite direction. This is known as Newton's 3 rd Law of Motion. It is popularly known as the law of actionreaction.
28 Newton's 3 rd Law Newton's 3 rd Law is always true, even when the objects are different sizes... Hammer's force drives the nail; Nail's force decelerates hammer.
29 Why Things Move Newton's 3 rd Law is always true, even when one or more of the objects doesn't move. You push on the wall; the wall pushes back on you.
30 Why Things Move Newton's 3 rd Law of Motion, also known as the Law of Force Pairs: For every force, there is a reaction force equal in magnitude but opposite in direction. If object A exerts a force on object B, then object B exerts the same amount of force back on object A.
31 Newton's 3 rd Law Actionreaction force pairs:
32 Notsoobvious Forces Forces that are often overlooked: The normal force is the force the table exerts on the cement block in reaction to the block pressing down upon it.
33 Notsoobvious Forces More forces that are easily overlooked: If the force of friction is as large as your push, then there is no unbalanced force and the block will not accelerate. It will move forward at constant speed.
34 The Freebody Diagram The five forces acting upon an automobile. Friction with the air Normal force Drive force Rolling friction Force of gravity (weight of car)
35 Explaining Changes in Motion How those five forces combine (sum up) will determine how much, if any, net force is exerted on the automobile. The magnitude of that net force, along with its direction will determine what will happen next to the car. In other words, whether it will speed up, slow down, change direction, or just continue to go ahead at constant speed.
36 Explaining Changes in Motion Imagine you are taking a trip in your car. See if you can use Newton's Laws of Motion to explain what will happen when you... Stop at a stop light. Accelerate when the light turns green Make a left turn Jam on the brakes when a pedestrian steps in front of your car
Newton s Laws of Motion
Physics Newton s Laws of Motion Newton s Laws of Motion 4.1 Objectives Explain Newton s first law of motion. Explain Newton s second law of motion. Explain Newton s third law of motion. Solve problems
More informationNewton s First Law (Law of Inertia) An object will remain at rest or in a constant state of motion unless acted upon by net external forces.
Newton s Third Law Newton s First Law (Law of Inertia) F = 0 An object will remain at rest or in a constant state of motion unless acted upon by net external forces. Newton s First Law If F = 0 => No Change
More informationDynamics Why do objects move as they do? What makes an object at rest, begin to move? What makes a body accelerate or decelerate?
Dynamics Why do objects move as they do? What makes an object at rest, begin to move? What makes a body accelerate or decelerate? What makes an object move in a circle? Force A Force is simply a push
More informationChapter 4 Newton s Laws: Explaining Motion
Chapter 4 Newton s s Laws: Explaining Motion Newton s Laws of Motion The concepts of force, mass, and weight play critical roles. A Brief History! Where do our ideas and theories about motion come from?!
More informationSTAAR Science Tutorial 25 TEK 8.6C: Newton s Laws
Name: Teacher: Pd. Date: STAAR Science Tutorial 25 TEK 8.6C: Newton s Laws TEK 8.6C: Investigate and describe applications of Newton's law of inertia, law of force and acceleration, and law of actionreaction
More informationNewton's First Law. Newton s Laws. Page 1 of 6
Newton's First Law Newton s Laws In previous units, the variety of ways by which motion can be described (words, graphs, diagrams, numbers, etc.) was discussed. In this unit (Newton's Laws of Motion),
More informationNewton s 3 rd Law Study Guide Chapter 7
1. The Big Idea is for every force there is an equal and opposite force 2. If you lean over and push on a wall, why don t you fall over? The wall pushes back on you 3. When you paddle a kayak, your paddle
More informationSection Review Answers. Chapter 12
Section Review Answers Chapter 12 Section 1 1. Answers may vary. Students should say in their own words that an object at rest remains at rest and an object in motion maintains its velocity unless it experiences
More informationNewton s Laws of Motion. Chapter 4
Newton s Laws of Motion Chapter 4 Changes in Motion Section 4.1 Force is simply a push or pull It is an interaction between two or more objects Force is a vector so it has magnitude and direction In the
More informationPS5.1 Explain the relationship among distance, time, direction, and the velocity of an object.
PS5.1 Explain the relationship among distance, time, direction, and the velocity of an object. It is essential for students to Understand Distance and Displacement: Distance is a measure of how far an
More informationChapter 4. Forces and Newton s Laws of Motion
Chapter 4 Forces and Newton s Laws of Motion 4.1 The Concepts of Force and Mass A force is a push or a pull. Contact forces arise from physical contact. Actionatadistance forces do not require contact
More informationTHE NATURE OF FORCES Forces can be divided into two categories: contact forces and noncontact forces.
SESSION 2: NEWTON S LAWS Key Concepts In this session we Examine different types of forces Review and apply Newton's Laws of motion Use Newton's Law of Universal Gravitation to solve problems Xplanation
More informationChapter 06 Multiformat Test
Name: Class: Date: Chapter 06 Multiformat Test Modified True/False Indicate whether the statement is true or false. If false, change the identified word or phrase to make the statement true. 1. The inertia
More informationNewton s Laws of Motion
Section 3.2 Newton s Laws of Motion Objectives Analyze relationships between forces and motion Calculate the effects of forces on objects Identify force pairs between objects New Vocabulary Newton s first
More informationCh.4 Forces. Conceptual questions #1, 2, 12 Problem 1, 2, 5, 6, 7, 10, 12, 15, 16, 19, 20, 21, 23, 24, 26, 27, 30, 38, 39, 41, 42, 47, 50, 56, 66
Ch.4 Forces Conceptual questions #1, 2, 12 Problem 1, 2, 5, 6, 7, 10, 12, 15, 16, 19, 20, 21, 23, 24, 26, 27, 30, 38, 39, 41, 42, 47, 50, 56, 66 Forces Forces  vector quantity that changes the velocity
More informationChapter 3: Force and Motion
Force and Motion Cause and Effect Chapter 3 Chapter 3: Force and Motion Homework: All questions on the Multiple Choice and the oddnumbered questions on Exercises sections at the end of the chapter. In
More informationNewton s Laws of Motion. I. Law of Inertia II. F=ma III. ActionReaction
Newton s Laws of Motion I. Law of Inertia II. F=ma III. ActionReaction While most people know what Newton's laws say, many people do not know what they mean (or simply do not believe what they mean).
More informationNewton s Laws of Motion
Newton s Laws of Motion Newton s Laws and the Mousetrap Racecar Simple version of Newton s three laws of motion 1 st Law: objects at rest stay at rest, objects in motion stay in motion 2 nd Law: force
More informationChapter 5 Newton s Laws of Motion
Chapter 5 Newton s Laws of Motion Force and Mass Units of Chapter 5 Newton s First Law of Motion Newton s Second Law of Motion Newton s Third Law of Motion The Vector Nature of Forces: Forces in Two Dimensions
More informationForces. Isaac Newton was the first to discover that the laws that govern motions on the Earth also applied to celestial bodies.
Forces Now we will discuss the part of mechanics known as dynamics. We will introduce Newton s three laws of motion which are at the heart of classical mechanics. We must note that Newton s laws describe
More informationMore of Newton s Laws
More of Newton s Laws Announcements: Tutorial Assignments due tomorrow. Pages 1921, 23, 24 (not 22,25) Note Long Answer HW due this week. CAPA due on Friday. Have added together the clicker scores so
More informationChapter 4. Dynamics: Newton s Laws of Motion
Chapter 4 Dynamics: Newton s Laws of Motion The Concepts of Force and Mass A force is a push or a pull. Contact forces arise from physical contact. Actionatadistance forces do not require contact and
More informationForces. Lecturer: Professor Stephen T. Thornton
Forces Lecturer: Professor Stephen T. Thornton Reading Quiz: Which of Newton s laws refers to an action and a reaction acceleration? A) First law. B) Second law. C) Third law. D) This is a trick question.
More informationNewton's Law of Inertia (Newton s first Law of Motion) Every object continues in a state of rest, or of motion in a straight line at constant speed,
Newton's Law of Inertia (Newton s first Law of Motion) Every object continues in a state of rest, or of motion in a straight line at constant speed, unless it is compelled to change that state by forces
More informationQ: Who established the law of universal gravitation? A: Newton. Q: What is a spring scale used for? A: To measure weight
Q: Who established the law of universal gravitation? A: Newton Q: What is a spring scale used for? A: To measure weight Q: What is the Law of Universal Gravitation? A: Everything in the universe has gravity.
More informationNewton s Laws of Motion
Kari Eloranta 2015 Jyväskylän Lyseon lukio November 30, 2015 Kari Eloranta 2015 2.2.4 Newton s First Law of Motion Definition of Newton s First Law of Motion (Law of Inertia) An object at rest remains
More informationChapter 4: Newton s Laws of Motion
Chapter 4: Newton s Laws of Motion Dynamics: Study of motion and its causes. orces cause changes in the motion of an object. orce and Interactions Definition ( loose ): A force is a push or pull exerted
More information3.1 Force, Mass, and Acceleration
Sir Isaac Newton discovered one of the most important relationships in physics: the link between the force on an object, its mass, and its acceleration. In this section, you will learn about force and
More informationChapter 4. Forces and Newton s Laws of Motion. continued
Chapter 4 Forces and Newton s Laws of Motion continued Clicker Question 4.3 A mass at rest on a ramp. How does the friction between the mass and the table know how much force will EXACTLY balance the gravity
More informationNewton s Laws of Motion. Presented by:  Rakhi Gupta(166) Tamanpreet Kaur(211)
Newton s Laws of Motion Presented by:  Rakhi Gupta(166) Tamanpreet Kaur(211) Contents of the Presentation Newton s First law of Motion Balance and Unbalanced Force Newton s Second law of Motion Free Falling
More informationSection 3 Newton s Laws of Motion
Section 3 Newton s Laws of Motion Key Concept Newton s laws of motion describe the relationship between forces and the motion of an object. What You Will Learn Newton s first law of motion states that
More informationCOURSE CONTENT. Introduction. Definition of a Force Effect of Forces Measurement of forces. Newton s Laws of Motion
CHAPTER 13  FORCES COURSE CONTENT Introduction Newton s Laws of Motion Definition of a Force Effect of Forces Measurement of forces Examples of Forces A force is just a push or pull. Examples: an object
More informationNewton's laws of motion
Newton's laws of motion Forces Forces as vectors Resolving vectors Explaining motion  Aristotle vs Newton Newton s first law Newton s second law Weight Calculating acceleration Newton s third law Moving
More informationLecture Outline Chapter 5. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.
Lecture Outline Chapter 5 Physics, 4 th Edition James S. Walker Chapter 5 Newton s Laws of Motion Dynamics Force and Mass Units of Chapter 5 Newton s 1 st, 2 nd and 3 rd Laws of Motion The Vector Nature
More informationNewton s Laws of Motion
Chapter 4 Newton s Laws of Motion PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 4 To understand the meaning
More informationNEWTON S LAWS OF MOTION
Name Period Date NEWTON S LAWS OF MOTION If I am anything, which I highly doubt, I have made myself so by hard work. Isaac Newton Goals: 1. Students will use conceptual and mathematical models to predict
More informationReview Vocabulary force: a push or a pull. Vocabulary Newton s third law of motion
Standard 7.3.17: Investigate that an unbalanced force, acting on an object, changes its speed or path of motion or both, and know that if the force always acts toward the same center as the object moves,
More informationForces. When an object is pushed or pulled, we say that a force is exerted on it.
Forces When an object is pushed or pulled, we say that a force is exerted on it. Forces can Cause an object to start moving Change the speed of a moving object Cause a moving object to stop moving Change
More informationName Period Chapter 10 Study Guide
Name _ Period Chapter 10 Study Guide Modified True/False Indicate whether the statement is true or false. 1. Unbalanced forces do not change an object s motion. 2. Friction depends on the types of surfaces
More informationCollege Physics 140 Chapter 4: Force and Newton s Laws of Motion
College Physics 140 Chapter 4: Force and Newton s Laws of Motion We will be investigating what makes you move (forces) and how that accelerates objects. Chapter 4: Forces and Newton s Laws of Motion Forces
More informationConceptual Physics Review (Chapters 4, 5, & 6)
Conceptual Physics Review (Chapters 4, 5, & 6) Solutions Sample Questions and Calculations. If you were in a spaceship and launched a cannonball into frictionless space, how much force would have to be
More informationUnderstanding the motion of the Universe. Motion, Force, and Gravity
Understanding the motion of the Universe Motion, Force, and Gravity Laws of Motion Stationary objects do not begin moving on their own. In the same way, moving objects don t change their movement spontaneously.
More information1. What would a graph showing balanced forces look like? Draw a position vs. time
Forces, Motion, and Investigation 5, 7, and 9 LT 1 I can use data to show what happens when a constant net force is applied to an object. 1. What would a graph showing balanced forces look like? Draw a
More informationCh 4 Test Review. Why do we say a speeding object doesn t have force? (Assume this object is speeding through space) (Explain)
Ch 4 Test Review Why do we say a speeding object doesn t have force? (Assume this object is speeding through space) (Explain) If the forces that act on a cannonball and the recoiling cannon from which
More informationNewton s Wagon Newton s Laws
Newton s Wagon Newton s Laws What happens when you kick a soccer ball? The kick is the external force that Newton was talking about in his first law of motion. What happens to the ball after you kick it?
More informationb. Velocity tells you both speed and direction of an object s movement. Velocity is the change in position divided by the change in time.
I. What is Motion? a. Motion  is when an object changes place or position. To properly describe motion, you need to use the following: 1. Start and end position? 2. Movement relative to what? 3. How far
More information4 Gravity: A Force of Attraction
CHAPTER 1 SECTION Matter in Motion 4 Gravity: A Force of Attraction BEFORE YOU READ After you read this section, you should be able to answer these questions: What is gravity? How are weight and mass different?
More informationGravitation. Gravitation
1 Gravitation Newton s observations A constant center seeking force is required to keep an object moving along a circular path. You know that the moon orbits the earth and hence there should be a force
More informationGeneral Physics (PHY 2130)
General Physics (PHY 2130) Lecture 8 Forces Newton s Laws of Motion http://www.physics.wayne.edu/~apetrov/phy2130/ Classical Mechanics Describes the relationship between the motion of objects in our everyday
More informationChapter Test. Teacher Notes and Answers Forces and the Laws of Motion. Assessment
Assessment Chapter Test A Teacher Notes and Answers Forces and the Laws of Motion CHAPTER TEST A (GENERAL) 1. c 2. d 3. d 4. c 5. c 6. c 7. c 8. b 9. d 10. d 11. c 12. a 13. d 14. d 15. b 16. d 17. c 18.
More informationPhysical Science Chapter 2. Forces
Physical Science Chapter 2 Forces The Nature of Force By definition, a Force is a push or a pull. A Push Or A Pull Just like Velocity & Acceleration Forces have both magnitude and direction components
More informationUnit 3. Forces Part 1
Unit 3 Forces Part 1 1 Vocabulary: Force Acceleration Mass Net Force Balanced Forces Unbalanced Forces Friction Air resistance Gravity Weight Inertia Action Force Reaction Force Concepts: How does a force
More informationLAWS OF FORCE AND MOTION
reflect Does anything happen without a cause? Many people would say yes, because that often seems to be our experience. A cup near the edge of a table suddenly crashes to the fl oor. An apple falls from
More informationNEWTON S LAWS OF MOTION
NEWTON S LAWS OF MOTION Background: Aristotle believed that the natural state of motion for objects on the earth was one of rest. In other words, objects needed a force to be kept in motion. Galileo studied
More informationUnits DEMO spring scales masses
Dynamics the study of the causes and changes of motion Force Force Categories ContactField 4 fundamental Force Types 1 Gravity 2 Weak Nuclear Force 3 Electromagnetic 4 Strong Nuclear Force Units DEMO spring
More information5 Day 5: Newton s Laws and Kinematics in 1D
5 Day 5: Newton s Laws and Kinematics in 1D date Friday June 28, 2013 Readings Knight Ch 2.47, Ch 4.6, 4.8 Notes on Newton s Laws For next time: Knight 5.38 lecture demo car on a track, freefall in
More informationHow does the net force change between scenario 1 and 2?
How does the net force change between scenario 1 and 2? A) The magnitude decreases, the direction stays the same B) The magnitude stays the same, the direction changes C) The magnitude decreases AND the
More informationGround Rules. PC1221 Fundamentals of Physics I. Force. Zero Net Force. Lectures 9 and 10 The Laws of Motion. Dr Tay Seng Chuan
PC1221 Fundamentals of Physics I Lectures 9 and 10 he Laws of Motion Dr ay Seng Chuan 1 Ground Rules Switch off your handphone and pager Switch off your laptop computer and keep it No talking while lecture
More informationDescribe the relationship between gravitational force and distance as shown in the diagram.
Name Period Chapter 2 The Laws of Motion Review Describe the relationship between gravitational force and distance as shown in the diagram. Assess the information about gravity, mass, and weight. Read
More informationPhysics 101 Prof. Ekey. Chapter 5 Force and motion (Newton, vectors and causing commotion)
Physics 101 Prof. Ekey Chapter 5 Force and motion (Newton, vectors and causing commotion) Goal of chapter 5 is to establish a connection between force and motion This should feel like chapter 1 Questions
More informationPhysics I Honors: Chapter 4 Practice Exam
Physics I Honors: Chapter 4 Practice Exam Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Which of the following statements does not describe
More information5 Newton s Third Law of Motion
5 Newton s Third Law of Motion The heavy weight champion can hit the massive bag with considerable force. But with the same punch he can only exert a tiny force on the tissue paper in midair. Why is this?
More informationphysics 111N forces & Newton s laws of motion
physics 111N forces & Newton s laws of motion forces (examples) a push is a force a pull is a force gravity exerts a force between all massive objects (without contact) (the force of attraction from the
More informationSTUDY GUIDE UNIT 10Newton s Third Law
Name ANSWERS STUDY GUIDE UNIT 10Newton s Third Law Date Agenda HW Tues, Jan 5 Wed., Jan 6 Review Video Read Section 6.16.3 Fill in Reading Notes (p. 2) Worksheet  ActionReaction Pairs (p. 3) Go over
More informationCHAPTER 2 Scientists Ideas NEWTON S LAWS
CHAPTER 2 Scientists Ideas NEWTON S LAWS When scientists study the interactions between objects they sometimes find it convenient to analyze and explain them in terms of the forces the objects exert on
More informationNewton s 3 rd Law Study Guide Chapter 7
1. The Big Idea is 2. If you lean over and push on a wall, why don t you fall over? 3. When you paddle a kayak, your paddle pushes on the water. What makes the kayak move forward? Section 7.1 Forces and
More informationNewton s Third Law. Newton s Third Law of Motion. ActionReaction Pairs
Section 4 Newton s Third Law Reading Preview Key Concepts What is Newton s third law of motion? How can you determine the momentum of an object? What is the law of conservation of momentum? Key Terms momentum
More informationExplaining Motion:Forces
Explaining Motion:Forces Chapter Overview (Fall 2002) A. Newton s Laws of Motion B. Free Body Diagrams C. Analyzing the Forces and Resulting Motion D. Fundamental Forces E. Macroscopic Forces F. Application
More informationPhysics Classroom Website Webquest Lisa Peck
Physics Classroom Website Webquest Lisa Peck http://www.physicsclassroom.com/class/newtlaws/newtltoc.html Lesson 1: Newton s 1st Law 1. There are many applications of Newton's first law of motion. Several
More informationForce & Motion. Force & Mass. Friction
1 2 3 4 Next Force & Motion The motion of an object can be changed by an unbalanced force. The way that the movement changes depends on the strength of the force pushing or pulling and the mass of the
More informationPhysics 11 Assignment KEY Dynamics Chapters 4 & 5
Physics Assignment KEY Dynamics Chapters 4 & 5 ote: for all dynamics problemsolving questions, draw appropriate free body diagrams and use the aforementioned problemsolving method.. Define the following
More informationMass, energy, power and time are scalar quantities which do not have direction.
Dynamics Worksheet Answers (a) Answers: A vector quantity has direction while a scalar quantity does not have direction. Answers: (D) Velocity, weight and friction are vector quantities. Note: weight and
More informationMeasurements of Speed. Speed. v = d t. PowerPoint Lectures to accompany Physical Science, 6e
PowerPoint Lectures to accompany Physical Science, 6e Chapter 2 Motion Homework: All the multiple choice questions in Applying the Concepts and Group A questions in Parallel Exercises. Motion is.. A change
More informationPHYSICS 149: Lecture 4
PHYSICS 149: Lecture 4 Chapter 2 2.3 Inertia and Equilibrium: Newton s First Law of Motion 2.4 Vector Addition Using Components 2.5 Newton s Third Law 1 Net Force The net force is the vector sum of all
More informationUnit 4: Force and Motion Test
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. Unit 4: Force and Motion Test 1. 3. In Science class, a student has been given a small ball
More informationChapter 4 Dynamics: Newton s Laws of Motion. Copyright 2009 Pearson Education, Inc.
Chapter 4 Dynamics: Newton s Laws of Motion Force Units of Chapter 4 Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal
More informationLecture 9. Friction in a viscous medium Drag Force Quantified
Lecture 9 Goals Describe Friction in Air (Ch. 6) Differentiate between Newton s 1 st, 2 nd and 3 rd Laws Use Newton s 3 rd Law in problem solving Assignment: HW4, (Chap. 6 & 7, due 10/5) 1 st Exam Thurs.,
More information1. The unit of force, a Newton, is equal to a. The amount of mass in an object c. kg m/s b. Mass X Velocity d. kg m/s 2
Forces in Motion Test FORM B Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The unit of force, a Newton, is equal to a. The amount of mass in an object
More informationSummary Notes. to avoid confusion it is better to write this formula in words. time
National 4/5 Physics Dynamics and Space Summary Notes The coloured boxes contain National 5 material. Section 1 Mechanics Average Speed Average speed is the distance travelled per unit time. distance (m)
More informationDescribed by Isaac Newton
Described by Isaac Newton States observed relationships between motion and forces 3 statements cover aspects of motion for single objects and for objects interacting with another object An object at rest
More informationNewton s Third Law. object 1 on object 2 is equal in magnitude and opposite in direction to the force exerted by object 2 on object 1
Newton s Third Law! If two objects interact, the force exerted by object 1 on object 2 is equal in magnitude and opposite in direction to the force exerted by object 2 on object 1!! Note on notation: is
More informationNewton s Laws of Motion
Chapter 4 Newton s Laws of Motion PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Modified by P. Lam 7_8_2016 Goals for Chapter 4
More information2. (P2.1 A) a) A car travels 150 km in 3 hours, what is the cars average speed?
Physics: Review for Final Exam 1 st Semester Name Hour P2.1A Calculate the average speed of an object using the change of position and elapsed time 1. (P2.1 A) What is your average speed if you run 140
More informationPhysics Exam Q1 Exam, Part A Samples
Physics Exam Q1 Exam, Part A Samples 1. An object starts from rest and accelerates uniformly down an incline. If the object reaches a speed of 40 meters per second in 5 seconds, its average speed is (A)
More informationChapter 7: Newton s Third Law of Motion Action and Reaction 1
Chapter 7: Newton s Third Law of Motion Action and Reaction 1 Forces and Interactions Force: a push or a pull A force is always part of a mutual action that involves another force. o mutual action: Interaction
More informationUNIT 2D. Laws of Motion
Name: Regents Physics Date: Mr. Morgante UNIT 2D Laws of Motion Laws of Motion Science of Describing Motion is Kinematics. Dynamics the study of forces that act on bodies in motion. First Law of Motion
More informationPHYSICS MIDTERM REVIEW
1. The acceleration due to gravity on the surface of planet X is 19.6 m/s 2. If an object on the surface of this planet weighs 980. newtons, the mass of the object is 50.0 kg 490. N 100. kg 908 N 2. If
More information5. Forces and MotionI. Force is an interaction that causes the acceleration of a body. A vector quantity.
5. Forces and MotionI 1 Force is an interaction that causes the acceleration of a body. A vector quantity. Newton's First Law: Consider a body on which no net force acts. If the body is at rest, it will
More information1206EL  Concepts in Physics. Friday, September 18th
1206EL  Concepts in Physics Friday, September 18th Notes There is a WebCT course for students on September 21st More information on library webpage Newton s second law Newton's first law of motion predicts
More informationUnderstanding the motion of the Universe. Motion, Force, and Gravity
Understanding the motion of the Universe Motion, Force, and Gravity Laws of Motion Stationary objects do not begin moving on their own. In the same way, moving objects don t change their movement spontaneously.
More information2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration.
2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration. Dynamics looks at the cause of acceleration: an unbalanced force. Isaac Newton was
More informationRecap. A force is the product of an object s mass and acceleration. Forces are the reason why objects change their velocity. Newton s second law:
Recap A force is the product of an object s mass and acceleration. Forces are the reason why objects change their velocity. Newton s second law: Unit: 1 N = 1 kg m/s 2 Forces are vector quantities, since
More informationPhysics 160 Biomechanics. Newton s Laws
Physics 160 Biomechanics Newton s Laws Questions to Think About Why does it take more force to cause an object to start sliding than it does to keep it sliding? Why is a ligament more likely to tear during
More informationSerway_ISM_V1 1 Chapter 4
Serway_ISM_V1 1 Chapter 4 ANSWERS TO MULTIPLE CHOICE QUESTIONS 1. Newton s second law gives the net force acting on the crate as This gives the kinetic friction force as, so choice (a) is correct. 2. As
More informationNewton s Laws PreTest
Newton s Laws PreTest 1.) Consider the following two statements and then select the option below that is correct. (i) It is possible for an object move in the absence of forces acting on the object. (ii)
More informationTEACHER ANSWER KEY November 12, 2003. Phys  Vectors 11132003
Phys  Vectors 11132003 TEACHER ANSWER KEY November 12, 2003 5 1. A 1.5kilogram lab cart is accelerated uniformly from rest to a speed of 2.0 meters per second in 0.50 second. What is the magnitude
More informationNewton s Laws are empirical laws, deduced from experiment; they cannot be derived from anything more fundamental!
NEWTON S LAWS O OTION Newton s Laws are the foundation of Classical (Newtonian) echanics. They were published by Isaac Newton in 1687 along with the law of gravitation in the Principia. They have far reaching
More informationWarm up. Forces. Sir Issac Newton. Questions to think about
Warm up Have you ever tried to pull something that just wouldn t budge? Describe a situation in which you pulled or tried to pull something. What made the job easier? Forces Sir Issac Newton Newton said
More informationIsaac Newton was a British scientist whose accomplishments included
80 Newton s Laws of Motion R EA D I N G Isaac Newton was a British scientist whose accomplishments included important discoveries about light, motion, and gravity. You may have heard the legend about how
More informationBig Science Idea. Forces. Name. When you ride a bike, your foot pushes against the pedal. The push makes the wheels of the bike move.
Forces Worksheet 1 Name Forces When you ride a bike, your foot pushes against the pedal. The push makes the wheels of the bike move. When you drop something, it is pulled to the ground by gravity. A PUSH
More information