Force & Motion. Force & Mass. Friction


 Blanche Ramsey
 2 years ago
 Views:
Transcription
1 Next Force & Motion The motion of an object can be changed by an unbalanced force. The way that the movement changes depends on the strength of the force pushing or pulling and the mass of the object. Forces have both a direction and a magnitude (size). Force & Mass A force is a push or a pull that acts on an object and may change its motion. Forces are needed to start, stop, or change the direction of an object's motion. The more force that is applied to an object, the greater the change in the object's motion. In other words, the harder an object is pushed, the faster it will move. But, if the same amount of force is used to move two objects with different masses, the object with less mass will move faster. For instance, if the woman in the picture below pushed two different lawn mowers using the same amount of force, the lawn mower with less mass would move faster. Friction Friction is a force that opposes motion. If an object is already moving, friction can slow it down or make it stop. For example, when a box is slid across the ground, it will only travel a certain distance before it stops. Friction is the force that brings it to a stop.
2 Objects on rough surfaces require more force to move. Objects on smooth surfaces require less force. Gravity Gravity is the force of attraction that exists between any two objects that have mass. Gravity keeps the planets orbiting around the Sun, and it pulls objects on Earth toward the Earth's center. For example, gravity causes fruit on a tree to fall to the ground. Gravity depends on the mass of the objects and the distance between them. The gravity we feel from Earth is very strong because we are close to the Earth and the mass of the Earth is very large. Net Force
3 A net force is the total unbalanced force acting on an object. A net force has a certain strength, or magnitude, and a direction. If the net force is not zero, then it will cause the object to speed up, slow down or change direction. Balanced forces have equal magnitudes (sizes) but opposite directions. When the forces on an object are balanced, the object does not accelerate because the net force is zero. When this happens, the object can either be moving at a constant velocity or at rest. The apple on the desk below is pulled downward by the force of gravity. This force equals the weight of the apple. The table simultaneously exerts a normal force that is equal in magnitude but opposite in direction pushing up on the apple. Since these forces are balanced, the apple does not accelerate in either direction. And since the apple was not in motion to begin with, it remains at rest.
4 Unbalanced forces have unequal magnitudes and/or directions. Unbalanced forces result in net forces that are not zero. An unbalanced force will change an object's speed and/or direction. When forces are unbalanced, the change in movement will take place in the direction of the net force. Average Speed Average speed is the total distance traveled divided by the total time elapsed. The speed of an object along the path traveled can vary. If you have 10 hours to drive 500 miles, your average speed must be no less than 50 miles per hour. If you slow down under 50 miles per hour, you must compensate by traveling faster than 50 miles per hour later, in order to travel the 500 miles in 10 hours or less. An object's average speed can be calculated with the following equation: The average speed of an object can be calculated from a position vs time graph. Consider the graph below.
5 Using the formula for an object's average speed, the object's average speed between 0 and 5 seconds is: Force & Motion Applications Vehicles and their propulsion systems are designed by analyzing the forces that act on them. Airplanes Airplanes are acted on by four main forces while in flight: lift weight
6 thrust drag This diagram shows direction of each of the main forces acting on airplanes. The forward force is the thrust. The airplane in the picture has jet engines that provide the thrust. Other types of airplanes have propellers that provide thrust. As an airplane moves forward, the force of air resistance pushes backward on it. This force is known as the drag. The drag always points in the direction opposite the object's motion. Different planes are designed to withstand different amounts of drag. The faster a plane moves, the more drag it is subjected to. The lift is the buoyant, upward force. The lift is caused by the shape of the plane's wings and always acts against the force of gravity (or weight). The weight is the downward force. The weight is caused by the plane's mass, which is acted on by the force of gravity. Automobiles Automobiles are subjected to many different types of forces. Automobile tires, for example, are acted on by the weight of the car, the force of air pressure, the push of the tire on the pavement as it rotates, and the force of friction pushing back against the rotation.
7 This diagram shows direction of each of the main forces acting on airplanes. When engineers are designing car tires, they need to consider all of these forces. Tires must be strong enough and contain enough air pressure to balance the force of gravity pulling the weight of the car down onto the them. Tires must also generate enough frictional force with the pavement to move a car forward. Engineers must also make certain that this frictional force is at least as strong as the force needed to stop a moving car. Roller Coasters Roller coasters move in many different directions and at many different speeds. As a result, roller coasters are acted on by many different forces at once.
8 This diagram shows direction of each of the main forces acting on airplanes. The forces generated by a roller coaster are due to its mass and acceleration. The total mass of the roller coaster is the sum of the total mass of the people on the roller coaster and the mass of the roller coaster itself. The roller coaster and people aboard will experience acceleration due to gravity and due to changes in direction. These factors result in multiple forces acting on a roller coaster at the same time. The directions of some of these forces change as the roller coaster moves.
Newton s 3 rd Law Study Guide Chapter 7
1. The Big Idea is for every force there is an equal and opposite force 2. If you lean over and push on a wall, why don t you fall over? The wall pushes back on you 3. When you paddle a kayak, your paddle
More informationDescribe the relationship between gravitational force and distance as shown in the diagram.
Name Period Chapter 2 The Laws of Motion Review Describe the relationship between gravitational force and distance as shown in the diagram. Assess the information about gravity, mass, and weight. Read
More informationNewton s Laws of Motion
Section 3.2 Newton s Laws of Motion Objectives Analyze relationships between forces and motion Calculate the effects of forces on objects Identify force pairs between objects New Vocabulary Newton s first
More informationSection Review Answers. Chapter 12
Section Review Answers Chapter 12 Section 1 1. Answers may vary. Students should say in their own words that an object at rest remains at rest and an object in motion maintains its velocity unless it experiences
More information2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration.
2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration. Dynamics looks at the cause of acceleration: an unbalanced force. Isaac Newton was
More informationUnsaved Test, Version: 1 1
Name: Select the term that best completes the statement. A. force B. net force C. unbalanced force D. Newton's first law E. motion F. inertia 1. is the change of position over time. Date: 2. The overall
More informationName Date Class. The Nature of Force and Motion (pages ) 2. When one object pushes or pulls another object, the first object is
CHAPTER 4 MOTION AND FORCES SECTION 4 1 The Nature of Force and Motion (pages 116121) This section explains how balanced and unbalanced forces are related to the motion of an object. It also explains
More informationSTAAR Science Tutorial 25 TEK 8.6C: Newton s Laws
Name: Teacher: Pd. Date: STAAR Science Tutorial 25 TEK 8.6C: Newton s Laws TEK 8.6C: Investigate and describe applications of Newton's law of inertia, law of force and acceleration, and law of actionreaction
More informationHow Rockets Work Newton s Laws of Motion
How Rockets Work Whether flying a small model rocket or launching a giant cargo rocket to Mars, the principles of how rockets work are exactly the same. Understanding and applying these principles means
More informationFORCES AND MOTION UNIT TEST. Multiple Choice: Draw a Circle Completely around the ONE BEST answer.
FORCES AND MOTION UNIT TEST Multiple Choice: Draw a Circle Completely around the ONE BEST answer. 1. A force acting on an object does no work if a. a machine is used to move the object. b. the force is
More informationName Period Chapter 10 Study Guide
Name _ Period Chapter 10 Study Guide Modified True/False Indicate whether the statement is true or false. 1. Unbalanced forces do not change an object s motion. 2. Friction depends on the types of surfaces
More informationMass, energy, power and time are scalar quantities which do not have direction.
Dynamics Worksheet Answers (a) Answers: A vector quantity has direction while a scalar quantity does not have direction. Answers: (D) Velocity, weight and friction are vector quantities. Note: weight and
More information2. (P2.1 A) a) A car travels 150 km in 3 hours, what is the cars average speed?
Physics: Review for Final Exam 1 st Semester Name Hour P2.1A Calculate the average speed of an object using the change of position and elapsed time 1. (P2.1 A) What is your average speed if you run 140
More informationNewton s Laws of Motion. Chapter 4
Newton s Laws of Motion Chapter 4 Changes in Motion Section 4.1 Force is simply a push or pull It is an interaction between two or more objects Force is a vector so it has magnitude and direction In the
More informationPhysics I Honors: Chapter 4 Practice Exam
Physics I Honors: Chapter 4 Practice Exam Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Which of the following statements does not describe
More informationBig Science Idea. Forces. Name. When you ride a bike, your foot pushes against the pedal. The push makes the wheels of the bike move.
Forces Worksheet 1 Name Forces When you ride a bike, your foot pushes against the pedal. The push makes the wheels of the bike move. When you drop something, it is pulled to the ground by gravity. A PUSH
More informationChapter 7: Newton s Third Law of Motion Action and Reaction 1
Chapter 7: Newton s Third Law of Motion Action and Reaction 1 Forces and Interactions Force: a push or a pull A force is always part of a mutual action that involves another force. o mutual action: Interaction
More informationReview Vocabulary force: a push or a pull. Vocabulary Newton s third law of motion
Standard 7.3.17: Investigate that an unbalanced force, acting on an object, changes its speed or path of motion or both, and know that if the force always acts toward the same center as the object moves,
More informationNewton s 3 rd Law Study Guide Chapter 7
1. The Big Idea is 2. If you lean over and push on a wall, why don t you fall over? 3. When you paddle a kayak, your paddle pushes on the water. What makes the kayak move forward? Section 7.1 Forces and
More informationDescribed by Isaac Newton
Described by Isaac Newton States observed relationships between motion and forces 3 statements cover aspects of motion for single objects and for objects interacting with another object An object at rest
More informationNewton's First Law. Newton s Laws. Page 1 of 6
Newton's First Law Newton s Laws In previous units, the variety of ways by which motion can be described (words, graphs, diagrams, numbers, etc.) was discussed. In this unit (Newton's Laws of Motion),
More informationChapter 4: Newton s Laws: Explaining Motion
Chapter 4: Newton s Laws: Explaining Motion 1. All except one of the following require the application of a net force. Which one is the exception? A. to change an object from a state of rest to a state
More informationForces. When an object is pushed or pulled, we say that a force is exerted on it.
Forces When an object is pushed or pulled, we say that a force is exerted on it. Forces can Cause an object to start moving Change the speed of a moving object Cause a moving object to stop moving Change
More informationACTIVITY 1: Gravitational Force and Acceleration
CHAPTER 3 ACTIVITY 1: Gravitational Force and Acceleration LEARNING TARGET: You will determine the relationship between mass, acceleration, and gravitational force. PURPOSE: So far in the course, you ve
More informationName: Partners: Period: Coaster Option: 1. In the space below, make a sketch of your roller coaster.
1. In the space below, make a sketch of your roller coaster. 2. On your sketch, label different areas of acceleration. Put a next to an area of negative acceleration, a + next to an area of positive acceleration,
More informationForces. Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy
Forces Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy Definition of Force Force = a push or pull that causes a change
More informationRocketry for Kids. Science Level 4. Newton s Laws
Rocketry for Kids Science Level 4 Newton s Laws Victorian Space Science Education Centre 400 Pascoe Vale Road Strathmore, Vic 3041 www.vssec.vic.edu.au Some material for this program has been derived from
More informationChapter 4 Dynamics: Newton s Laws of Motion. Copyright 2009 Pearson Education, Inc.
Chapter 4 Dynamics: Newton s Laws of Motion Force Units of Chapter 4 Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal
More informationForce. A force is a push or a pull. Pushing on a stalled car is an example. The force of friction between your feet and the ground is yet another.
Force A force is a push or a pull. Pushing on a stalled car is an example. The force of friction between your feet and the ground is yet another. Force Weight is the force of the earth's gravity exerted
More informationNewton s Laws of Motion
Kari Eloranta 2015 Jyväskylän Lyseon lukio November 30, 2015 Kari Eloranta 2015 2.2.4 Newton s First Law of Motion Definition of Newton s First Law of Motion (Law of Inertia) An object at rest remains
More informationMotion Lesson 1: Review of Basic Motion
Motion in one and two dimensions: Lesson 1 Seminotes Motion Lesson 1: Review of Basic Motion Note. For these semi notes we will use the bold italics convention to represent vectors. Complete the following
More informationUnit 4: Force and Motion Test
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. Unit 4: Force and Motion Test 1. 3. In Science class, a student has been given a small ball
More informationSince force cause changes in the speed or direction of an object, we can say that forces cause changes in velocity
Understanding Force Background When you ride a bike, your foot pushes against the pedal. The push makes the wheels of the bike move. When you drop something, it is pulled to the ground by gravity. A push
More informationConceptual Physics 11 th Edition. Forces and Interactions. Newton s Third Law of Motion. This lecture will help you understand:
This lecture will help you understand: Conceptual Physics 11 th Edition Chapter 5: NEWTON S THIRD LAW OF MOTION Forces and Interactions Summary of Newton s Laws Vectors Forces and Interactions Interaction
More informationSection 3 Newton s Laws of Motion
Section 3 Newton s Laws of Motion Key Concept Newton s laws of motion describe the relationship between forces and the motion of an object. What You Will Learn Newton s first law of motion states that
More informationSupplemental Questions
Supplemental Questions The fastest of all fishes is the sailfish. If a sailfish accelerates at a rate of 14 (km/hr)/sec [fwd] for 4.7 s from its initial velocity of 42 km/h [fwd], what is its final velocity?
More informationSummary Notes. to avoid confusion it is better to write this formula in words. time
National 4/5 Physics Dynamics and Space Summary Notes The coloured boxes contain National 5 material. Section 1 Mechanics Average Speed Average speed is the distance travelled per unit time. distance (m)
More informationWarm up. Forces. Sir Issac Newton. Questions to think about
Warm up Have you ever tried to pull something that just wouldn t budge? Describe a situation in which you pulled or tried to pull something. What made the job easier? Forces Sir Issac Newton Newton said
More informationVectors and the Inclined Plane
Vectors and the Inclined Plane Introduction: This experiment is designed to familiarize you with the concept of force as a vector quantity. The inclined plane will be used to demonstrate how one force
More informationb. Velocity tells you both speed and direction of an object s movement. Velocity is the change in position divided by the change in time.
I. What is Motion? a. Motion  is when an object changes place or position. To properly describe motion, you need to use the following: 1. Start and end position? 2. Movement relative to what? 3. How far
More informationRocket Principles. Rockets: A Teacher's Guide with Activities in Science, Mathematics, and Technology EG108 February Outside Air Pressure
Rocket Principles Outside ir Pressure Inside ir Pressure ir Moves Balloon Moves rocket in its simplest form is a chamber enclosing a gas under pressure. small opening at one end of the chamber allows the
More informationChapter 12  Forces and Motion
Chapter 12  Forces and Motion A. What is a force? 1. It is a push or pull. 2. Force can cause resting objects to move. 3. Force can cause acceleration by changing the object s speed or direction. 4. Newtons
More informationNewton's laws of motion
Newton's laws of motion Forces Forces as vectors Resolving vectors Explaining motion  Aristotle vs Newton Newton s first law Newton s second law Weight Calculating acceleration Newton s third law Moving
More informationIsaac Newton was a British scientist whose accomplishments included
80 Newton s Laws of Motion R EA D I N G Isaac Newton was a British scientist whose accomplishments included important discoveries about light, motion, and gravity. You may have heard the legend about how
More informationHere is a list of concepts that you will need to include in your observations and explanations:
NEWTON S LAWS Sir Isaac Newton (16421727) is probably one of the most remarkable men in the history of science. He graduated from Cambridge University in England at the age of 23. Records indicate that
More informationPhysics 2A, Sec B00: Mechanics  Winter 2011 Instructor: B. Grinstein Final Exam
Physics 2A, Sec B00: Mechanics  Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry
More information8th Grade Motion, Forces and Energy
Read and answer each question carefully. 1) The amount of matter in an object is known as its A) mass. B) force. C) weight. D) size. 2) An object is in motion if it is moving relative to A) the object's
More informationResistance in the Mechanical System. Overview
Overview 1. What is resistance? A force that opposes motion 2. In the mechanical system, what are two common forms of resistance? friction and drag 3. What is friction? resistance that is produced when
More information1) A 2) B 3) C 4) A and B 5) A and C 6) B and C 7) All of the movies A B C. PHYS 11: Chap. 2, Pg 2
1) A 2) B 3) C 4) A and B 5) A and C 6) B and C 7) All of the movies A B C PHYS 11: Chap. 2, Pg 2 1 1) A 2) B 3) C 4) A and B 5) A and C 6) B and C 7) All three A B PHYS 11: Chap. 2, Pg 3 C 1) more than
More informationUnderstanding the motion of the Universe. Motion, Force, and Gravity
Understanding the motion of the Universe Motion, Force, and Gravity Laws of Motion Stationary objects do not begin moving on their own. In the same way, moving objects don t change their movement spontaneously.
More informationChapter 4  Forces and Newton s Laws of Motion w./ QuickCheck Questions
Chapter 4  Forces and Newton s Laws of Motion w./ QuickCheck Questions 2015 Pearson Education, Inc. Anastasia Ierides Department of Physics and Astronomy University of New Mexico September 8, 2015 Review
More informationNewton s Third Law of Motion: Symmetry in Forces
Newton s Third Law of Motion: Symmetry in Forces By: OpenStax College Online: This module is copyrig hted by Rice University. It is licensed under the Creative Commons
More informationFree Fall: Observing and Analyzing the Free Fall Motion of a Bouncing PingPong Ball and Calculating the Free Fall Acceleration (Teacher s Guide)
Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing PingPong Ball and Calculating the Free Fall Acceleration (Teacher s Guide) 2012 WARD S Science v.11/12 OVERVIEW Students will measure
More information4 Gravity: A Force of Attraction
CHAPTER 1 SECTION Matter in Motion 4 Gravity: A Force of Attraction BEFORE YOU READ After you read this section, you should be able to answer these questions: What is gravity? How are weight and mass different?
More informationPhysics 11 Chapter 4 HW Solutions
Physics 11 Chapter 4 HW Solutions Chapter 4 Conceptual Question: 5, 8, 10, 18 Problems: 3, 3, 35, 48, 50, 54, 61, 65, 66, 68 Q4.5. Reason: No. If you know all of the forces than you know the direction
More informationEnergy security, Global warming and Engineering
Energy security, Global warming and Engineering Introduction 2 Energy, fossil fuel, renewable energy 3 Force 4 Use of stationary force 7 Conclusion 12 1 Introduction: Energy security and global warming
More informationProjectBased Inquiry Science: Vehicles in Motion Storyline
ProjectBased Inquiry Science: Vehicles in Motion Storyline Targeted Performance Expectations: MSPS21 MSPS22 MSPS32 MSETS11 MSETS12 MSETS13 MSETS14 Unit Goals: Plan and carry out investigations
More informationExample (1): Motion of a block on a frictionless incline plane
Firm knowledge of vector analysis and kinematics is essential to describe the dynamics of physical systems chosen for analysis through ewton s second law. Following problem solving strategy will allow
More informationPhysics Notes Class 11 CHAPTER 5 LAWS OF MOTION
1 P a g e Inertia Physics Notes Class 11 CHAPTER 5 LAWS OF MOTION The property of an object by virtue of which it cannot change its state of rest or of uniform motion along a straight line its own, is
More informationSTUDY GUIDE UNIT 10Newton s Third Law
Name ANSWERS STUDY GUIDE UNIT 10Newton s Third Law Date Agenda HW Tues, Jan 5 Wed., Jan 6 Review Video Read Section 6.16.3 Fill in Reading Notes (p. 2) Worksheet  ActionReaction Pairs (p. 3) Go over
More informationTHE NATURE OF FORCES Forces can be divided into two categories: contact forces and noncontact forces.
SESSION 2: NEWTON S LAWS Key Concepts In this session we Examine different types of forces Review and apply Newton's Laws of motion Use Newton's Law of Universal Gravitation to solve problems Xplanation
More informationMidterm 1. C The speed of the cart is constant. For this to happen the forces acting on it must be balanced.
Midterm 1 1. Shown below is a speedtime graph for a cart moving in front of the motion sensor. For convenience it has been divided into four sections (A,B,C,D). During each of the four separate periods
More informationRecap. A force is the product of an object s mass and acceleration. Forces are the reason why objects change their velocity. Newton s second law:
Recap A force is the product of an object s mass and acceleration. Forces are the reason why objects change their velocity. Newton s second law: Unit: 1 N = 1 kg m/s 2 Forces are vector quantities, since
More informationChapter 3.8 & 6 Solutions
Chapter 3.8 & 6 Solutions P3.37. Prepare: We are asked to find period, speed and acceleration. Period and frequency are inverses according to Equation 3.26. To find speed we need to know the distance traveled
More informationAerodynamics Overview
Aerodynamics Overview Aerodynamics a branch of physics concerned with the study of air as it moves around objects. Answer question 1 on the worksheet. Many things we take for granted are the result of
More informationQuiz 10 Motion. Name: Group:
Quiz 10 Motion Name: Group: 1. Two balls are released at the same time on the two tracks shown below. Which ball wins? a. The ball on the low road b. The ball on the high road c. They tie 2. What will
More informationPhysics 101 Prof. Ekey. Chapter 5 Force and motion (Newton, vectors and causing commotion)
Physics 101 Prof. Ekey Chapter 5 Force and motion (Newton, vectors and causing commotion) Goal of chapter 5 is to establish a connection between force and motion This should feel like chapter 1 Questions
More informationWorksheet #1 Free Body or Force diagrams
Worksheet #1 Free Body or Force diagrams Drawing FreeBody Diagrams Freebody diagrams are diagrams used to show the relative magnitude and direction of all forces acting upon an object in a given situation.
More information5Minute Refresher: FRICTION
5Minute Refresher: FRICTION Friction Key Ideas Friction is a force that occurs when two surfaces slide past one another. The force of friction opposes the motion of an object, causing moving objects to
More informationGravitation. Gravitation
1 Gravitation Newton s observations A constant center seeking force is required to keep an object moving along a circular path. You know that the moon orbits the earth and hence there should be a force
More informationCHAPTER 6 WORK AND ENERGY
CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From
More informationTEACHER ANSWER KEY November 12, 2003. Phys  Vectors 11132003
Phys  Vectors 11132003 TEACHER ANSWER KEY November 12, 2003 5 1. A 1.5kilogram lab cart is accelerated uniformly from rest to a speed of 2.0 meters per second in 0.50 second. What is the magnitude
More information25 N to the right. F gravity
Have you heard the story about Isaac Newton sitting under an apple tree? According to the story, an apple fell from a tree and hit him on the head. From that event, it is said that Newton discovered the
More informationPhysics 11 Assignment KEY Dynamics Chapters 4 & 5
Physics Assignment KEY Dynamics Chapters 4 & 5 ote: for all dynamics problemsolving questions, draw appropriate free body diagrams and use the aforementioned problemsolving method.. Define the following
More information350 CHAPTER 12 Force and Newton s Laws (l)globus Brothers Studios, NYC, (r)stock Boston. Figure 1 A force is a push or a pull.
Standard 7.3.17: Investigate that an unbalanced force, acting on an object, changes its speed or path of motion or both, and know that if the force always acts toward the same center as the object moves,
More informationConceptual Physics 11 th Edition
Conceptual Physics 11 th Edition Chapter 5: NEWTON S THIRD LAW OF MOTION This lecture will help you understand: Forces and Interactions Newton s Third Law of Motion Summary of Newton s Laws Vectors Forces
More informationStudent Exploration: Gravitational Force
5. Drag STUDENT PACKET # 7 Name: Date: Student Exploration: Gravitational Force Big Idea 13: Forces and Changes in Motion Benchmark: SC.6.P.13.1 Investigate and describe types of forces including contact
More informationPhysics Midterm Review. MultipleChoice Questions
Physics Midterm Review MultipleChoice Questions 1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B. 22.5 km C. 25 km D. 45 km E. 50 km 2. A bicyclist moves
More informationTO GO TO ANY OF THE PAGES LISTED BELOW, CLICK ON ITS TITLE
TO GO TO ANY OF THE PAGES LISTED BELOW, CLICK ON ITS TITLE CHAPTER 12 Force 1 121 What is a force? 2 Forces and Force Diagrams Enrichment Activity for Lesson 121 3 122 What is gravity? 4 Gravitational
More informationName: Date: 7. A child is riding a bike and skids to a stop. What happens to their kinetic energy? Page 1
Name: Date: 1. Driving down the road, you hit an insect. How does the force your car exerts on the insect compare to the force the insect exerts on the car? A) The insect exerts no force on the car B)
More informationPHYSICS MIDTERM REVIEW
1. The acceleration due to gravity on the surface of planet X is 19.6 m/s 2. If an object on the surface of this planet weighs 980. newtons, the mass of the object is 50.0 kg 490. N 100. kg 908 N 2. If
More informationì<(sk$m)=bdjfcb< +^ÄUÄU
Physical Science Genre Comprehension Skill Text Features Science Content Nonfiction Cause and Effect Labels Captions Tables Glossary Forces and Motion Scott Foresman Science 5.13 by Martin E. Lee ì
More information2.5 Newton s Third Law of Motion. SUMMARY Newton s Second Law of Motion. Section 2.4 Questions
SUMMARY Newton s Second Law of Motion Newton s second law of motion relates the acceleration of an object to the mass of the object and the net force acting on it. The equation is a = F net or F m net
More informationPhysical Science Chapter 2. Forces
Physical Science Chapter 2 Forces The Nature of Force By definition, a Force is a push or a pull. A Push Or A Pull Just like Velocity & Acceleration Forces have both magnitude and direction components
More informationPHY1 Review for Exam 5
Topics 1. Uniform circular Motion a. Centripetal acceleration b. Centripetal force c. Horizontal motion d. ertical motion e. Circular motion with an angle 2. Universal gravitation a. Gravitational force
More informationElements of Physics Motion, Force, and Gravity Teacher s Guide
Teacher s Guide Grade Level: 9 12 Curriculum Focus: Physical Science Lesson Duration: Three class periods Program Description Examine Isaac Newton's laws of motion, the four fundamental forces of the universe,
More informationNote: Thrust from the rocket s engines acts downward producing an upward reaction on the rocket
Water Rocket Physics Principles Forces and Motion Newton s First Law An object at rest remains at rest, and an object in motion remains in motion at constant speed and in a straight line unless acted on
More informationNewton s Laws of Motion. I. Law of Inertia II. F=ma III. ActionReaction
Newton s Laws of Motion I. Law of Inertia II. F=ma III. ActionReaction While most people know what Newton's laws say, many people do not know what they mean (or simply do not believe what they mean).
More informationUnification of the laws of the Earth and the Universe Why do planets appear to wander slowly across the sky?
October 19, 2015 Unification of the laws of the Earth and the Universe Why do planets appear to wander slowly across the sky? Key Words Newton s Laws of motion, and Newton s law of universal gravitation:
More informationCh.4 Forces. Conceptual questions #1, 2, 12 Problem 1, 2, 5, 6, 7, 10, 12, 15, 16, 19, 20, 21, 23, 24, 26, 27, 30, 38, 39, 41, 42, 47, 50, 56, 66
Ch.4 Forces Conceptual questions #1, 2, 12 Problem 1, 2, 5, 6, 7, 10, 12, 15, 16, 19, 20, 21, 23, 24, 26, 27, 30, 38, 39, 41, 42, 47, 50, 56, 66 Forces Forces  vector quantity that changes the velocity
More informationChapter 3: Force and Motion
Force and Motion Cause and Effect Chapter 3 Chapter 3: Force and Motion Homework: All questions on the Multiple Choice and the oddnumbered questions on Exercises sections at the end of the chapter. In
More informationPhysics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion
Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckleup? A) the first law
More informationEducational Innovations
Educational Innovations NA100/95S Newton s Apple grav i ty (gravitē) noun 1. The force that attracts a body toward the center of the earth, or toward any other physical body having mass. For most purposes
More informationSection 4: The Basics of Satellite Orbits
Section 4: The Basics of Satellite Orbits MOTION IN SPACE VS. MOTION IN THE ATMOSPHERE The motion of objects in the atmosphere differs in three important ways from the motion of objects in space. First,
More informationPhysics 101. Chapter 5: Newton s Third Law
Physics 101 Today Chapter 5: Newton s Third Law First, let s clarify notion of a force: Previously defined force as a push or pull. Better to think of force as an interaction between two objects. You can
More information356 CHAPTER 12 Bob Daemmrich
Standard 7.3.17: Investigate that an unbalanced force, acting on an object, changes its speed or path of motion or both, and know that if the force always acts toward the same center as the object moves,
More informationChapter 7 WORK, ENERGY, AND Power Work Done by a Constant Force Kinetic Energy and the WorkEnergy Theorem Work Done by a Variable Force Power
Chapter 7 WORK, ENERGY, AND Power Work Done by a Constant Force Kinetic Energy and the WorkEnergy Theorem Work Done by a Variable Force Power Examples of work. (a) The work done by the force F on this
More informationSection 3 Friction: A Force That Opposes Motion
Section 3 Friction: A Force That Opposes Motion Key Concept Friction is a force that can balance other forces to prevent motion. Friction is also a force that, when unbalanced, can change the velocity
More informationNewton s Laws of Motion (Ch 5)
Newton s Laws of Motion (Ch 5) Force Isaac Newton 16421727 English physicist & mathematician By the age of 31, discovered: laws of motion universal gravitation calculus Eccentric read Coming of Age in
More informationSerway_ISM_V1 1 Chapter 4
Serway_ISM_V1 1 Chapter 4 ANSWERS TO MULTIPLE CHOICE QUESTIONS 1. Newton s second law gives the net force acting on the crate as This gives the kinetic friction force as, so choice (a) is correct. 2. As
More information