# most influential member(s) of a social network; key infrastructure nodes; in an urban network; super-spreaders of disease;...

Save this PDF as:

Size: px
Start display at page:

Download "most influential member(s) of a social network; key infrastructure nodes; in an urban network; super-spreaders of disease;..."

## Transcription

1 Ranking in Networks Question: Given a communication network N, how to discover important nodes? How to define the importance of members of the network? The answer may help in discovery of most influential member(s) of a social network; key infrastructure nodes; in an urban network; super-spreaders of disease;... Polling the members is not efficient and is not accurate. Examples of networks: The Web; The protein network; The network of scientific cooperation;... The answer is implemented via the notion of centrality which gives a real-valued function on the nodes of a graph. The values of the function provide a ranking which identifies the most important nodes. On the other hand, it is often meaningless for not most important nodes. 1

2 The word importance has a wide number of meanings, leading to many different definitions of centrality. What are the network features that characterize the importance of a node in a network? Degree centrality The degree can be interpreted as the chances of a node to catch whatever is flowing through the network (such as a virus, or some information). In the case of a directed network (where ties have direction), two separate measures of degree centrality, are defined: in-degree indeg(v), and out-degree, outdeg(v). in-degree is interpreted as a measure of popularity; out-degree is interpreted as a measure of social involvement. Graph Centralization. Let G be a connected graph; let X V(G), where G[X] is also conneted. Denote (X) the highest degree centrality in X. Define H = max { ( (X)) deg(x))}. X x X The degree centralization of the graph G as follows: C(G) = v V(G) [ (V) deg(v)] H ThevalueofHismaximizedwhenthegraphX containsonecentral node to which all other nodes are connected (a star graph), and in this case H = (n 1)(n 2). 2

3 Closeness centrality In connected graphs, dist(x, y) denotes the length of a shortest path from x to y. The farness of x is defined as farness(x) = y x dist(x,y). The closeness of x is defined as 1 cl(x) = farness(x). If G is disconnected and vertices x and y belong to different connectdd components, dist(x, y) =. When a graph is not strongly connected, and no path connects y with x, then we assume dist(y,x) =, and use the sum of reciprocal of distances, instead of the reciprocal of the sum of distances, with the convention 1/ = 0: H(x) = y x 1 dist(y,x). For undirected graphs, the notion is known as harmonic centrality. A variation of the notion is defined as D(x) = 1 2 dist(y,x). y x 3

4 Betweenness centrality. Betweenness is a centrality measure of a vertex within a graph. Betweenness centrality quantifies the number of times a node acts as a bridge along the shortest path between two other nodes. It was introduced as a measure for quantifying the control of a human on the communication between other humans in a social network. Vertices that have a high probability to occur on a randomly chosen shortest path between two randomly chosen vertices have a high betweenness. The betweenness of a vertex v in a graph G = (V,E) is computed as follows: 1. For each pair of vertices (x,y), compute the shortest paths between them. 2. For each pair of vertices (x,y), determine the fraction of shortest paths that pass through the vertex v. 3. Sum this fraction over all pairs of vertices (x,y). CB(v) = x v y V σ xy (v) σ xy where σ xy is the total number of shortest paths from node x to node y and σ xy (v) is the number of those paths that pass through v. The betweenness may be normalised by dividing through the number of pairs of vertices not including v which for directed graphs is (n 1)(n 2) and for undirected graphs is (n 1)(n 2)/2. 4

5 Computational complexity Both betweenness and closeness centralities of all vertices in a graph involve calculating the shortest paths between all pairs of vertices on a graph, which requires Θ(V 3 ) time with the Floyd- Warshall algorithm. However, on sparse graphs, Johnson s algorithm may be more efficient, taking O(V 2 logv +VE) time. In the case of unweighted graphs the calculations can be done with Brandes algorithm[19] which takes O(V E) time. 5

6 PageRank PageRank is a link analysis algorithm; It assigns a numerical weighting to each node of a hyperlinked set of documents, such as the World Wide Web, with the purpose of measuring its relative importance within the set. The numerical weight that it assigns to any given document E is referred to as the PageRank of E and denoted by PR(E). Other factors like Author Rank can contribute to the importance of a document. A hyperlink to a page counts as a vote of support. The PageRank of a page is defined recursively and depends on the number and PageRank metric of all pages that link to it ( incoming links ). The main idea of ranking: a page that is linked to by many pages with high PageRank receives a high rank itself. 6

7 A B C D Initialization: PR(A) = PR(B) = PR(C) = PR(D) = 1; A better idea is to assume a probability distribution within [0,1]. PR(A) = PR(B)+PR(C)+PR(D). A B C D PR(A) = PR(B) 2 +PR(C)+ PR(D). 3 u v 1 v 2 v d PR(u) = v E in (u) PR(v) L(v) 7

8 The values of P R(v) approximate a probability distribution of the likelihood that a person randomly clicking on links will arrive at any particular page. The PageRank computations require several iterations through the collection to adjust approximate PageRank values to more closely reflect the theoretical true value. Damping factor The PageRank theory holds that an imaginary surfer who is randomly clicking on links will eventually stop clicking. The probability, at any step, that the person will continue is a damping factor d. Various studies have tested different damping factors, but it is generally assumed that the damping factor will be set around PR(p i ) = 1 d N +d p j M(p i ) PR(p j ) L(p j ) 8

9 Computation For t = 0, PR(p i ;0) = 1 N. PR(p i ;t+1) = 1 d N +d p j M(p i ) PR(p j ;t) L(p j ) The computataion ends when j p(j,t+1) p(j,t) < ǫ. 9

### Social Media Mining. Network Measures

Klout Measures and Metrics 22 Why Do We Need Measures? Who are the central figures (influential individuals) in the network? What interaction patterns are common in friends? Who are the like-minded users

V. Adamchik 1 Graph Theory Victor Adamchik Fall of 2005 Plan 1. Basic Vocabulary 2. Regular graph 3. Connectivity 4. Representing Graphs Introduction A.Aho and J.Ulman acknowledge that Fundamentally, computer

### Course on Social Network Analysis Graphs and Networks

Course on Social Network Analysis Graphs and Networks Vladimir Batagelj University of Ljubljana Slovenia V. Batagelj: Social Network Analysis / Graphs and Networks 1 Outline 1 Graph...............................

### Practical Graph Mining with R. 5. Link Analysis

Practical Graph Mining with R 5. Link Analysis Outline Link Analysis Concepts Metrics for Analyzing Networks PageRank HITS Link Prediction 2 Link Analysis Concepts Link A relationship between two entities

### Social Network Mining

Social Network Mining Data Mining November 11, 2013 Frank Takes (ftakes@liacs.nl) LIACS, Universiteit Leiden Overview Social Network Analysis Graph Mining Online Social Networks Friendship Graph Semantics

### Trust and Reputation Management

Trust and Reputation Management Omer Rana School of Computer Science and Welsh escience Centre, Cardiff University, UK Omer Rana (CS, Cardiff, UK) CM0356/CMT606 1 / 28 Outline 1 Context Defining Trust

### Graphs and Network Flows IE411 Lecture 1

Graphs and Network Flows IE411 Lecture 1 Dr. Ted Ralphs IE411 Lecture 1 1 References for Today s Lecture Required reading Sections 17.1, 19.1 References AMO Chapter 1 and Section 2.1 and 2.2 IE411 Lecture

### Enhancing the Ranking of a Web Page in the Ocean of Data

Database Systems Journal vol. IV, no. 3/2013 3 Enhancing the Ranking of a Web Page in the Ocean of Data Hitesh KUMAR SHARMA University of Petroleum and Energy Studies, India hkshitesh@gmail.com In today

### Social Media Mining. Graph Essentials

Graph Essentials Graph Basics Measures Graph and Essentials Metrics 2 2 Nodes and Edges A network is a graph nodes, actors, or vertices (plural of vertex) Connections, edges or ties Edge Node Measures

### Chapter 2 Paths and Searching

Chapter 2 Paths and Searching Section 2.1 Distance Almost every day you face a problem: You must leave your home and go to school. If you are like me, you are usually a little late, so you want to take

### Solutions to Final Exam Sample Questions

Solutions to Final Exam Sample Questions CSE 31 1. Show that the proposition p ((q (r s)) t) is a contingency WITHOUT constructing its full truth table. If p is false, then the proposition is true, because

### Big Data Analytics. Lucas Rego Drumond

Big Data Analytics Lucas Rego Drumond Information Systems and Machine Learning Lab (ISMLL) Institute of Computer Science University of Hildesheim, Germany MapReduce II MapReduce II 1 / 33 Outline 1. Introduction

### Graph theory and network analysis. Devika Subramanian Comp 140 Fall 2008

Graph theory and network analysis Devika Subramanian Comp 140 Fall 2008 1 The bridges of Konigsburg Source: Wikipedia The city of Königsberg in Prussia was set on both sides of the Pregel River, and included

### Analysis of Algorithms, I

Analysis of Algorithms, I CSOR W4231.002 Eleni Drinea Computer Science Department Columbia University Thursday, February 26, 2015 Outline 1 Recap 2 Representing graphs 3 Breadth-first search (BFS) 4 Applications

### Warshall s Algorithm: Transitive Closure

CS 0 Theory of Algorithms / CS 68 Algorithms in Bioinformaticsi Dynamic Programming Part II. Warshall s Algorithm: Transitive Closure Computes the transitive closure of a relation (Alternatively: all paths

### 6.042/18.062J Mathematics for Computer Science October 3, 2006 Tom Leighton and Ronitt Rubinfeld. Graph Theory III

6.04/8.06J Mathematics for Computer Science October 3, 006 Tom Leighton and Ronitt Rubinfeld Lecture Notes Graph Theory III Draft: please check back in a couple of days for a modified version of these

### Graph Algorithms using Map-Reduce

Graph Algorithms using Map-Reduce Graphs are ubiquitous in modern society. Some examples: The hyperlink structure of the web 1/7 Graph Algorithms using Map-Reduce Graphs are ubiquitous in modern society.

### The origins of graph theory are humble, even frivolous. Biggs, E. K. Lloyd, and R. J. Wilson)

Chapter 11 Graph Theory The origins of graph theory are humble, even frivolous. Biggs, E. K. Lloyd, and R. J. Wilson) (N. Let us start with a formal definition of what is a graph. Definition 72. A graph

### Sociology and CS. Small World. Sociology Problems. Degree of Separation. Milgram s Experiment. How close are people connected? (Problem Understanding)

Sociology Problems Sociology and CS Problem 1 How close are people connected? Small World Philip Chan Problem 2 Connector How close are people connected? (Problem Understanding) Small World Are people

### Graph Theory and Complex Networks: An Introduction. Chapter 08: Computer networks

Graph Theory and Complex Networks: An Introduction Maarten van Steen VU Amsterdam, Dept. Computer Science Room R4.20, steen@cs.vu.nl Chapter 08: Computer networks Version: March 3, 2011 2 / 53 Contents

### GRAPH THEORY and APPLICATIONS. Trees

GRAPH THEORY and APPLICATIONS Trees Properties Tree: a connected graph with no cycle (acyclic) Forest: a graph with no cycle Paths are trees. Star: A tree consisting of one vertex adjacent to all the others.

### 1 Digraphs. Definition 1

1 Digraphs Definition 1 Adigraphordirected graphgisatriplecomprisedofavertex set V(G), edge set E(G), and a function assigning each edge an ordered pair of vertices (tail, head); these vertices together

### COT5405 Analysis of Algorithms Homework 3 Solutions

COT0 Analysis of Algorithms Homework 3 Solutions. Prove or give a counter example: (a) In the textbook, we have two routines for graph traversal - DFS(G) and BFS(G,s) - where G is a graph and s is any

### Graph. Consider a graph, G in Fig Then the vertex V and edge E can be represented as:

Graph A graph G consist of 1. Set of vertices V (called nodes), (V = {v1, v2, v3, v4...}) and 2. Set of edges E (i.e., E {e1, e2, e3...cm} A graph can be represents as G = (V, E), where V is a finite and

### Lesson 3. Algebraic graph theory. Sergio Barbarossa. Rome - February 2010

Lesson 3 Algebraic graph theory Sergio Barbarossa Basic notions Definition: A directed graph (or digraph) composed by a set of vertices and a set of edges We adopt the convention that the information flows

### Network Analysis and Visualization of Staphylococcus aureus. by Russ Gibson

Network Analysis and Visualization of Staphylococcus aureus by Russ Gibson Network analysis Based on graph theory Probabilistic models (random graphs) developed by Erdős and Rényi in 1959 Theory and tools

### Solutions to Exercises 8

Discrete Mathematics Lent 2009 MA210 Solutions to Exercises 8 (1) Suppose that G is a graph in which every vertex has degree at least k, where k 1, and in which every cycle contains at least 4 vertices.

### Gephi Network Statistics

Gephi Network Statistics Google Summer of Code 2009 Project Proposal Patrick J. McSweeney pjmcswee@syr.edu 1 Introduction My name is Patrick J. McSweeney and I am a fourth year PhD candidate in computer

### Social and Technological Network Analysis. Lecture 3: Centrality Measures. Dr. Cecilia Mascolo (some material from Lada Adamic s lectures)

Social and Technological Network Analysis Lecture 3: Centrality Measures Dr. Cecilia Mascolo (some material from Lada Adamic s lectures) In This Lecture We will introduce the concept of centrality and

### Graph Processing and Social Networks

Graph Processing and Social Networks Presented by Shu Jiayu, Yang Ji Department of Computer Science and Engineering The Hong Kong University of Science and Technology 2015/4/20 1 Outline Background Graph

### Graph Theory and Complex Networks: An Introduction. Chapter 06: Network analysis

Graph Theory and Complex Networks: An Introduction Maarten van Steen VU Amsterdam, Dept. Computer Science Room R4.0, steen@cs.vu.nl Chapter 06: Network analysis Version: April 8, 04 / 3 Contents Chapter

### Asking Hard Graph Questions. Paul Burkhardt. February 3, 2014

Beyond Watson: Predictive Analytics and Big Data U.S. National Security Agency Research Directorate - R6 Technical Report February 3, 2014 300 years before Watson there was Euler! The first (Jeopardy!)

### Theorem A graph T is a tree if, and only if, every two distinct vertices of T are joined by a unique path.

Chapter 3 Trees Section 3. Fundamental Properties of Trees Suppose your city is planning to construct a rapid rail system. They want to construct the most economical system possible that will meet the

### Mining Social Network Graphs

Mining Social Network Graphs Debapriyo Majumdar Data Mining Fall 2014 Indian Statistical Institute Kolkata November 13, 17, 2014 Social Network No introduc+on required Really? We s7ll need to understand

### Graph Theory and Complex Networks: An Introduction. Chapter 06: Network analysis. Contents. Introduction. Maarten van Steen. Version: April 28, 2014

Graph Theory and Complex Networks: An Introduction Maarten van Steen VU Amsterdam, Dept. Computer Science Room R.0, steen@cs.vu.nl Chapter 0: Version: April 8, 0 / Contents Chapter Description 0: Introduction

### Predicting Influentials in Online Social Networks

Predicting Influentials in Online Social Networks Rumi Ghosh Kristina Lerman USC Information Sciences Institute WHO is IMPORTANT? Characteristics Topology Dynamic Processes /Nature of flow What are the

### Fast Algorithms for Connectivity Problems in Networks

Fast Algorithms for Connectivity Problems in Networks Steiner Cuts, Gomory-Hu Trees, and Edge Splitting Strand Life Sciences 29 May 2008/ MCDES The Setting A network G of n nodes and m edges. Many nodes,

### DATA ANALYSIS II. Matrix Algorithms

DATA ANALYSIS II Matrix Algorithms Similarity Matrix Given a dataset D = {x i }, i=1,..,n consisting of n points in R d, let A denote the n n symmetric similarity matrix between the points, given as where

### NodeXL for Network analysis Demo/hands-on at NICAR 2012, St Louis, Feb 24. Peter Aldhous, San Francisco Bureau Chief. peter@peteraldhous.

NodeXL for Network analysis Demo/hands-on at NICAR 2012, St Louis, Feb 24 Peter Aldhous, San Francisco Bureau Chief peter@peteraldhous.com NodeXL is a template for Microsoft Excel 2007 and 2010, which

### The PageRank Citation Ranking: Bring Order to the Web

The PageRank Citation Ranking: Bring Order to the Web presented by: Xiaoxi Pang 25.Nov 2010 1 / 20 Outline Introduction A ranking for every page on the Web Implementation Convergence Properties Personalized

### Scientific Collaboration Networks in China s System Engineering Subject

, pp.31-40 http://dx.doi.org/10.14257/ijunesst.2013.6.6.04 Scientific Collaboration Networks in China s System Engineering Subject Sen Wu 1, Jiaye Wang 1,*, Xiaodong Feng 1 and Dan Lu 1 1 Dongling School

### Strong and Weak Ties

Strong and Weak Ties Web Science (VU) (707.000) Elisabeth Lex KTI, TU Graz April 11, 2016 Elisabeth Lex (KTI, TU Graz) Networks April 11, 2016 1 / 66 Outline 1 Repetition 2 Strong and Weak Ties 3 General

### LARGE-SCALE GRAPH PROCESSING IN THE BIG DATA WORLD. Dr. Buğra Gedik, Ph.D.

LARGE-SCALE GRAPH PROCESSING IN THE BIG DATA WORLD Dr. Buğra Gedik, Ph.D. MOTIVATION Graph data is everywhere Relationships between people, systems, and the nature Interactions between people, systems,

### Minimum Spanning Trees

Minimum Spanning Trees Algorithms and 18.304 Presentation Outline 1 Graph Terminology Minimum Spanning Trees 2 3 Outline Graph Terminology Minimum Spanning Trees 1 Graph Terminology Minimum Spanning Trees

### 1 o Semestre 2007/2008

Departamento de Engenharia Informática Instituto Superior Técnico 1 o Semestre 2007/2008 Outline 1 2 3 4 5 Outline 1 2 3 4 5 Exploiting Text How is text exploited? Two main directions Extraction Extraction

### Walk-Based Centrality and Communicability Measures for Network Analysis

Walk-Based Centrality and Communicability Measures for Network Analysis Michele Benzi Department of Mathematics and Computer Science Emory University Atlanta, Georgia, USA Workshop on Innovative Clustering

### Social Network Analysis

Social Network Analysis Challenges in Computer Science April 1, 2014 Frank Takes (ftakes@liacs.nl) LIACS, Leiden University Overview Context Social Network Analysis Online Social Networks Friendship Graph

### N.CN.7, A.CED.1, 2, 3, N.Q.2, A.SSE.1,

Learning Targets: I can solve interpret key features of quadratic functions from different form. I can choose a method to solve, and then, solve a quadratic equation and explain my reasoning. #1 4 For

### Class One: Degree Sequences

Class One: Degree Sequences For our purposes a graph is a just a bunch of points, called vertices, together with lines or curves, called edges, joining certain pairs of vertices. Three small examples of

### IE 680 Special Topics in Production Systems: Networks, Routing and Logistics*

IE 680 Special Topics in Production Systems: Networks, Routing and Logistics* Rakesh Nagi Department of Industrial Engineering University at Buffalo (SUNY) *Lecture notes from Network Flows by Ahuja, Magnanti

About the Tutorial This tutorial offers a brief introduction to the fundamentals of graph theory. Written in a reader-friendly style, it covers the types of graphs, their properties, trees, graph traversability,

### Network (Tree) Topology Inference Based on Prüfer Sequence

Network (Tree) Topology Inference Based on Prüfer Sequence C. Vanniarajan and Kamala Krithivasan Department of Computer Science and Engineering Indian Institute of Technology Madras Chennai 600036 vanniarajanc@hcl.in,

### Simplified External memory Algorithms for Planar DAGs. July 2004

Simplified External Memory Algorithms for Planar DAGs Lars Arge Duke University Laura Toma Bowdoin College July 2004 Graph Problems Graph G = (V, E) with V vertices and E edges DAG: directed acyclic graph

### 8.1 Min Degree Spanning Tree

CS880: Approximations Algorithms Scribe: Siddharth Barman Lecturer: Shuchi Chawla Topic: Min Degree Spanning Tree Date: 02/15/07 In this lecture we give a local search based algorithm for the Min Degree

### CMPSCI611: Approximating MAX-CUT Lecture 20

CMPSCI611: Approximating MAX-CUT Lecture 20 For the next two lectures we ll be seeing examples of approximation algorithms for interesting NP-hard problems. Today we consider MAX-CUT, which we proved to

### Extracting Information from Social Networks

Extracting Information from Social Networks Aggregating site information to get trends 1 Not limited to social networks Examples Google search logs: flu outbreaks We Feel Fine Bullying 2 Bullying Xu, Jun,

### Protein Protein Interaction Networks

Functional Pattern Mining from Genome Scale Protein Protein Interaction Networks Young-Rae Cho, Ph.D. Assistant Professor Department of Computer Science Baylor University it My Definition of Bioinformatics

### Cluster detection algorithm in neural networks

Cluster detection algorithm in neural networks David Meunier and Hélène Paugam-Moisy Institute for Cognitive Science, UMR CNRS 5015 67, boulevard Pinel F-69675 BRON - France E-mail: {dmeunier,hpaugam}@isc.cnrs.fr

### CS5314 Randomized Algorithms. Lecture 16: Balls, Bins, Random Graphs (Random Graphs, Hamiltonian Cycles)

CS5314 Randomized Algorithms Lecture 16: Balls, Bins, Random Graphs (Random Graphs, Hamiltonian Cycles) 1 Objectives Introduce Random Graph Model used to define a probability space for all graphs with

### Lecture Notes on Spanning Trees

Lecture Notes on Spanning Trees 15-122: Principles of Imperative Computation Frank Pfenning Lecture 26 April 26, 2011 1 Introduction In this lecture we introduce graphs. Graphs provide a uniform model

### 2.3 Convex Constrained Optimization Problems

42 CHAPTER 2. FUNDAMENTAL CONCEPTS IN CONVEX OPTIMIZATION Theorem 15 Let f : R n R and h : R R. Consider g(x) = h(f(x)) for all x R n. The function g is convex if either of the following two conditions

### SEMITOTAL AND TOTAL BLOCK-CUTVERTEX GRAPH

CHAPTER 3 SEMITOTAL AND TOTAL BLOCK-CUTVERTEX GRAPH ABSTRACT This chapter begins with the notion of block distances in graphs. Using block distance we defined the central tendencies of a block, like B-radius

### Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010. Chapter 7: Digraphs

MCS-236: Graph Theory Handout #Ch7 San Skulrattanakulchai Gustavus Adolphus College Dec 6, 2010 Chapter 7: Digraphs Strong Digraphs Definitions. A digraph is an ordered pair (V, E), where V is the set

### Social network analysis with R sna package

Social network analysis with R sna package George Zhang iresearch Consulting Group (China) bird@iresearch.com.cn birdzhangxiang@gmail.com Social network (graph) definition G = (V,E) Max edges = N All possible

### General Network Analysis: Graph-theoretic. COMP572 Fall 2009

General Network Analysis: Graph-theoretic Techniques COMP572 Fall 2009 Networks (aka Graphs) A network is a set of vertices, or nodes, and edges that connect pairs of vertices Example: a network with 5

### Graph definition Degree, in, out degree, oriented graph. Complete, regular, bipartite graph. Graph representation, connectivity, adjacency.

Mária Markošová Graph definition Degree, in, out degree, oriented graph. Complete, regular, bipartite graph. Graph representation, connectivity, adjacency. Isomorphism of graphs. Paths, cycles, trials.

### Algorithms for representing network centrality, groups and density and clustered graph representation

COSIN IST 2001 33555 COevolution and Self-organization In dynamical Networks Algorithms for representing network centrality, groups and density and clustered graph representation Deliverable Number: D06

### princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 6: Provable Approximation via Linear Programming Lecturer: Sanjeev Arora

princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 6: Provable Approximation via Linear Programming Lecturer: Sanjeev Arora Scribe: One of the running themes in this course is the notion of

### arxiv: v2 [math.co] 30 Nov 2015

PLANAR GRAPH IS ON FIRE PRZEMYSŁAW GORDINOWICZ arxiv:1311.1158v [math.co] 30 Nov 015 Abstract. Let G be any connected graph on n vertices, n. Let k be any positive integer. Suppose that a fire breaks out

### WAN Wide Area Networks. Packet Switch Operation. Packet Switches. COMP476 Networked Computer Systems. WANs are made of store and forward switches.

Routing WAN Wide Area Networks WANs are made of store and forward switches. To there and back again COMP476 Networked Computer Systems A packet switch with two types of I/O connectors: one type is used

### Long questions answer Advanced Mathematics for Computer Application If P= , find BT. 19. If B = 1 0, find 2B and -3B.

Unit-1: Matrix Algebra Short questions answer 1. What is Matrix? 2. Define the following terms : a) Elements matrix b) Row matrix c) Column matrix d) Diagonal matrix e) Scalar matrix f) Unit matrix OR

### Why graph clustering is useful?

Graph Clustering Why graph clustering is useful? Distance matrices are graphs as useful as any other clustering Identification of communities in social networks Webpage clustering for better data management

### Network Analysis Basics and applications to online data

Network Analysis Basics and applications to online data Katherine Ognyanova University of Southern California Prepared for the Annenberg Program for Online Communities, 2010. Relational data Node (actor,

### Lecture 1: Course overview, circuits, and formulas

Lecture 1: Course overview, circuits, and formulas Topics in Complexity Theory and Pseudorandomness (Spring 2013) Rutgers University Swastik Kopparty Scribes: John Kim, Ben Lund 1 Course Information Swastik

### The Mathematics of Internet Search Engines

The Mathematics of Internet Search Engines David Marshall Department of Mathematics Monmouth University April 4, 2007 Introduction Search Engines, Then and Now Then... Now... Pagerank Outline Introduction

### Degree Hypergroupoids Associated with Hypergraphs

Filomat 8:1 (014), 119 19 DOI 10.98/FIL1401119F Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Degree Hypergroupoids Associated

### Midterm Practice Problems

6.042/8.062J Mathematics for Computer Science October 2, 200 Tom Leighton, Marten van Dijk, and Brooke Cowan Midterm Practice Problems Problem. [0 points] In problem set you showed that the nand operator

### The world s largest matrix computation. (This chapter is out of date and needs a major overhaul.)

Chapter 7 Google PageRank The world s largest matrix computation. (This chapter is out of date and needs a major overhaul.) One of the reasons why Google TM is such an effective search engine is the PageRank

### Network Algorithms for Homeland Security

Network Algorithms for Homeland Security Mark Goldberg and Malik Magdon-Ismail Rensselaer Polytechnic Institute September 27, 2004. Collaborators J. Baumes, M. Krishmamoorthy, N. Preston, W. Wallace. Partially

### Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs

Discrete Mathematics & Mathematical Reasoning Chapter 10: Graphs Kousha Etessami U. of Edinburgh, UK Kousha Etessami (U. of Edinburgh, UK) Discrete Mathematics (Chapter 6) 1 / 13 Overview Graphs and Graph

### CSE 20: Discrete Mathematics for Computer Science. Prof. Miles Jones. Today s Topics: Graphs. The Internet graph

Today s Topics: CSE 0: Discrete Mathematics for Computer Science Prof. Miles Jones. Graphs. Some theorems on graphs. Eulerian graphs Graphs! Model relations between pairs of objects The Internet graph!

### Chapter 8: The Mathematics of Scheduling

Discrete Math A, Chapter 8: Scheduling 2 Chapter 8: The Mathematics of Scheduling House Building See pages 280 & 281 8.1 Basic Elements of Scheduling: PROCESSOR: Whomever or whatever is working on a task

### TU e. Advanced Algorithms: experimentation project. The problem: load balancing with bounded look-ahead. Input: integer m 2: number of machines

The problem: load balancing with bounded look-ahead Input: integer m 2: number of machines integer k 0: the look-ahead numbers t 1,..., t n : the job sizes Problem: assign jobs to machines machine to which

### Minimum Caterpillar Trees and Ring-Stars: a branch-and-cut algorithm

Minimum Caterpillar Trees and Ring-Stars: a branch-and-cut algorithm Luidi G. Simonetti Yuri A. M. Frota Cid C. de Souza Institute of Computing University of Campinas Brazil Aussois, January 2010 Cid de

### An Empirical Study of Two MIS Algorithms

An Empirical Study of Two MIS Algorithms Email: Tushar Bisht and Kishore Kothapalli International Institute of Information Technology, Hyderabad Hyderabad, Andhra Pradesh, India 32. tushar.bisht@research.iiit.ac.in,

### Lecture 11: All-Pairs Shortest Paths

Lecture 11: All-Pairs Shortest Paths Introduction Different types of algorithms can be used to solve the all-pairs shortest paths problem: Dynamic programming Matrix multiplication Floyd-Warshall algorithm

### Introduction to Graph Mining

Introduction to Graph Mining What is a graph? A graph G = (V,E) is a set of vertices V and a set (possibly empty) E of pairs of vertices e 1 = (v 1, v 2 ), where e 1 E and v 1, v 2 V. Edges may contain

### A SOCIAL NETWORK ANALYSIS APPROACH TO ANALYZE ROAD NETWORKS INTRODUCTION

A SOCIAL NETWORK ANALYSIS APPROACH TO ANALYZE ROAD NETWORKS Kyoungjin Park Alper Yilmaz Photogrammetric and Computer Vision Lab Ohio State University park.764@osu.edu yilmaz.15@osu.edu ABSTRACT Depending

### Graph Theory. Introduction. Distance in Graphs. Trees. Isabela Drămnesc UVT. Computer Science Department, West University of Timişoara, Romania

Graph Theory Introduction. Distance in Graphs. Trees Isabela Drămnesc UVT Computer Science Department, West University of Timişoara, Romania November 2016 Isabela Drămnesc UVT Graph Theory and Combinatorics

### Available online at ScienceDirect. Procedia Computer Science 74 (2015 ) 47 52

Available online at www.sciencedirect.com ScienceDirect Procedia Computer Science 74 (05 ) 47 5 International Conference on Graph Theory and Information Security Fractional Metric Dimension of Tree and

### Data Structures and Algorithms Written Examination

Data Structures and Algorithms Written Examination 22 February 2013 FIRST NAME STUDENT NUMBER LAST NAME SIGNATURE Instructions for students: Write First Name, Last Name, Student Number and Signature where

### 1. Write the number of the left-hand item next to the item on the right that corresponds to it.

1. Write the number of the left-hand item next to the item on the right that corresponds to it. 1. Stanford prison experiment 2. Friendster 3. neuron 4. router 5. tipping 6. small worlds 7. job-hunting

### Triangle deletion. Ernie Croot. February 3, 2010

Triangle deletion Ernie Croot February 3, 2010 1 Introduction The purpose of this note is to give an intuitive outline of the triangle deletion theorem of Ruzsa and Szemerédi, which says that if G = (V,

### Network/Graph Theory. What is a Network? What is network theory? Graph-based representations. Friendship Network. What makes a problem graph-like?

What is a Network? Network/Graph Theory Network = graph Informally a graph is a set of nodes joined by a set of lines or arrows. 1 1 2 3 2 3 4 5 6 4 5 6 Graph-based representations Representing a problem

### The TSP is a special case of VRP, which means VRP is NP-hard.

49 6. ROUTING PROBLEMS 6.1. VEHICLE ROUTING PROBLEMS Vehicle Routing Problem, VRP: Customers i=1,...,n with demands of a product must be served using a fleet of vehicles for the deliveries. The vehicles,

### SGL: Stata graph library for network analysis

SGL: Stata graph library for network analysis Hirotaka Miura Federal Reserve Bank of San Francisco Stata Conference Chicago 2011 The views presented here are my own and do not necessarily represent the

### Approximation Algorithms

Approximation Algorithms or: How I Learned to Stop Worrying and Deal with NP-Completeness Ong Jit Sheng, Jonathan (A0073924B) March, 2012 Overview Key Results (I) General techniques: Greedy algorithms

### Systems and Algorithms for Big Data Analytics

Systems and Algorithms for Big Data Analytics YAN, Da Email: yanda@cse.cuhk.edu.hk My Research Graph Data Distributed Graph Processing Spatial Data Spatial Query Processing Uncertain Data Querying & Mining