# SIGNAL SPLITTING: Why are there so many peaks all in one area? This is called signal splitting. Example: (image from Illustrated Glossary, splitting)

Save this PDF as:

Size: px
Start display at page:

Download "SIGNAL SPLITTING: Why are there so many peaks all in one area? This is called signal splitting. Example: (image from Illustrated Glossary, splitting)"

## Transcription

1 Proton NMR Spectroscopy: Split the signals, not your brain! Before we can understand signal splitting, we have to understand what NMR is. This tutorial will first discuss a few concepts about NMR and then signal splitting. BACKGROUND ON NMR: So what exactly is NMR? -NMR is a technique that is useful for determining the structure of molecules based on the energy required for nuclear spin flip. What information can be derived from an NMR spectrum? *For review on these topics, reference the Lecture Supplement and/or other tutorials on the particular topics *This tutorial will be focused on signal splitting 1) the number of signals depends on the number of equivalent protons (hydrogens) 2) position of signals (chemical shift) -This deals with where the peaks appear on an NMR spectrum (are the photons shielded or deshielded?) 3) relative intensity of signals will give the ratio of equivalent proton types -This is known as integration -# of hydrogens in molecule divided by the sum of integration=# hydrogen per integration unit 4) signal splitting (spin-spin coupling) -This deals with how many lines/peaks a particular proton will split into +This depends on the proton neighbors of the proton of interest (this will make more sense later in this tutorial) Important concepts: -protons, electrons, and neutrons all have spin +a molecule can have a spin of l= +1/2 or l= -1/2 -we call l= +1/2 parallel to B 0 (external magnetic field) (HIGHER energy) -we call l= -1/2 antiparallel to B 0 (LOWER energy) -the difference between spin state energies (l= +1/2, -1/2) is denoted ΔE -ΔE corresponds to energy required for a spin flip (when a radio wave photon with energy is added) +if there is a small magnetic field there will be a small ΔE +if there is a large magnetic field there will be a large ΔE SIGNAL SPLITTING: Why are there so many peaks all in one area? This is called signal splitting. Example: (image from Illustrated Glossary, splitting)

2 We classify the number of peaks a signal has by certain names: Singlet 0 equivalent hydrogen neighbors=1 peak Doublet 1 equivalent hydrogen neighbors=2 peaks Triplet 2 equivalent hydrogen neighbors=3 peaks Quartet 3 equivalent hydrogen neighbors=4 peaks Quintet (Pentet) 4 equivalent hydrogen neighbors=5 peaks Sextet 5 equivalent hydrogen neighbors=6 peaks Septet 6 equivalent hydrogen neighbors=7 peaks Why does spin splitting happen? -Each line in a signal... (a) has a slightly different chemical shift (b) represents slightly different spin flip energy (c) represents nucleus with slightly different magnetic environment (taken from page 149 of Lecture Supplement) How can a nucleus feel more than one magnetic environment? -What is important to note is that NMR is done with many molecules of the same conformational structure, however the spin flip of a certain hydrogen may be altered. For instance, suppose we have a structure:

3 (image from 2dcopy.jpg) Letʼs examine the splitting of the hydrogen on the left... -Because the hydrogen on the right can either be spin up or spin down, the hydrogen on the left will experience two different magnetic environments. What does spin-spin coupling mean? -It involves the different magnetic environments that a specific proton feels due to the presence of other protons that are (generally) attached to adjacent carbons Example: (image taken from Lecture Supplement) (A) H a and H b can couple with H c but not H d (H d is not on an adjacent carbon to H a and H b ) (B) The three hydrogens on the methyl group (on the left hand side, looking at the 2-D structure of the molecule on paper) cannot couple because they are not attached to adjacent carbons * A hydrogen cannot couple with itself (or protons that are equivalent to it), meaning that the methyl group hydrogens cannot couple with each other as they all have the same magnetic environment *Review the general rules listed below to understand which protons can couple Are there any rules I should follow? Yes! So far in this tutorial, some of these rules have been introduced, but now they will all be written out explicitly (referenced from the Lecture Supplement). GENERAL RULE: If a proton has n neighbors (protons attached to adjacent carbons), it will split into n+1 lines (A) Only nonequivalent protons couple. *As discussed just before this section, the hydrogens in the CH 3 group cannot couple with each other because they are essentially the same (have the same magnetic environment) (B) Protons usually only couple with protons attached to adjacent carbons (protons separated by more than three single bonds usually do not couple) *Pi bonds do not count toward the limit of three bonds, but J (the spacing in between lines in a splitting pattern on a NMR spectrum) might be too small to observe *A benzene ring is a gated community +Hydrogens directly attached to a benzene ring can couple with each other, however hydrogens cannot go through the benzene ring to couple if attached to other carbons (see diagrams taken from Lecture Supplement)

4 (C) Alcohol hydrogens (OH) and amine hydrogens (NH) are usually singlets (image from ) Iʼve heard the term multiplet before. What does this mean? -Simply put, it is a splitting pattern that is so complex we do not classify it as a singlet, doublet, triplet, etc., but rather as a multiplet. *This is common for benzene rings The difference between first order and non-first order splitting: -First order splitting: If J (the spacing in between lines in a splitting pattern) is equal for all lines -Non-first order splitting: If J is not equal for all lines *For this class (Chemistry 14C), assume that first-order splitting will always be the case... although there are many exceptions

5 The benzene ring magic act: (image taken from Lecture Supplement) -Looking at the Characteristic Proton NMR Chemical Shifts (ppm) chart on the inside cover of the Thinkbook and Lecture Supplement (this information will be given on an exam), we can identify that the benzene-ch 3 will appear at around 2.3 ppm. -We can also identify that the hydrogens directly attached to the benzene ring (remember: these hydrogens can couple with each other but not the hydrogen in the CH 3 group) appear at ppm. -Looking at this spectrum, it looks like there is a singlet at 7.2 ppm. *This is not a singlet! Benzene ring protons are not equivalent because they are not all symmetric (review equivalency of protons if needed) *So why does it appear to be a singlet? +Because J is nearing 0, so the splitting pattern disappears *What do we learn from this? +Benzene ring splitting signals (and, in general, splitting signals of hydrogens that go through pi bonds, a free spacer in the counting of 3 bonds between hydrogens that can couple) may correspond with a J that is too small to observe PRACTICE PROBLEM: Predict the splitting patterns for this molecule (i.e. classify each proton as splitting into a singlet, doublet, triplet, etc.):

6 CH 3 (CH 2 ) 3 OH Answer: (image of the molecule from added information written by tutorial writer) REFERENCES: -Dr. Hardingerʼs Chemistry 14C Lecture Supplement, Fifth Edition -Dr. Hardingerʼs Chemistry 14C Thinkbook, Ninth Edition -Illustrated Glossary on Dr. Hardingerʼs website -Google images (exact websites of images are listed above or below the particular images used)

### Proton Nuclear Magnetic Resonance ( 1 H-NMR) Spectroscopy

Proton Nuclear Magnetic Resonance ( 1 H-NMR) Spectroscopy Theory behind NMR: In the late 1940 s, physical chemists originally developed NMR spectroscopy to study different properties of atomic nuclei,

### Proton Nuclear Magnetic Resonance Spectroscopy

Proton Nuclear Magnetic Resonance Spectroscopy Introduction: The NMR Spectrum serves as a great resource in determining the structure of an organic compound by revealing the hydrogen and carbon skeleton.

### PROTON NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY (H-NMR)

PROTON NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY (H-NMR) WHAT IS H-NMR SPECTROSCOPY? References: Bruice 14.1, 14.2 Introduction NMR or nuclear magnetic resonance spectroscopy is a technique used to determine

### Solving Spectroscopy Problems

Solving Spectroscopy Problems The following is a detailed summary on how to solve spectroscopy problems, key terms are highlighted in bold and the definitions are from the illustrated glossary on Dr. Hardinger

### Used to determine relative location of atoms within a molecule Most helpful spectroscopic technique in organic chemistry Related to MRI in medicine

Structure Determination: Nuclear Magnetic Resonance CHEM 241 UNIT 5C 1 The Use of NMR Spectroscopy Used to determine relative location of atoms within a molecule Most helpful spectroscopic technique in

### The Four Questions to Ask While Interpreting Spectra. 1. How many different environments are there?

1 H NMR Spectroscopy (#1c) The technique of 1 H NMR spectroscopy is central to organic chemistry and other fields involving analysis of organic chemicals, such as forensics and environmental science. It

### For example: (Example is from page 50 of the Thinkbook)

SOLVING COMBINED SPECTROSCOPY PROBLEMS: Lecture Supplement: page 50-53 in Thinkbook CFQ s and PP s: page 216 241 in Thinkbook Introduction: The structure of an unknown molecule can be determined using

### Organic Chemistry Tenth Edition

Organic Chemistry Tenth Edition T. W. Graham Solomons Craig B. Fryhle Welcome to CHM 22 Organic Chemisty II Chapters 2 (IR), 9, 3-20. Chapter 2 and Chapter 9 Spectroscopy (interaction of molecule with

### How to Quickly Solve Spectrometry Problems

How to Quickly Solve Spectrometry Problems You should be looking for: Mass Spectrometry (MS) Chemical Formula DBE Infrared Spectroscopy (IR) Important Functional Groups o Alcohol O-H o Carboxylic Acid

### Proton Nuclear Magnetic Resonance Spectroscopy

CHEM 334L Organic Chemistry Laboratory Revision 2.0 Proton Nuclear Magnetic Resonance Spectroscopy In this laboratory exercise we will learn how to use the Chemistry Department's Nuclear Magnetic Resonance

### Nuclear Magnetic Resonance Spectroscopy

Nuclear Magnetic Resonance Spectroscopy Introduction NMR is the most powerful tool available for organic structure determination. It is used to study a wide variety of nuclei: 1 H 13 C 15 N 19 F 31 P 2

### Nuclear Magnetic Resonance Spectroscopy

Nuclear Magnetic Resonance Spectroscopy Nuclear magnetic resonance spectroscopy is a powerful analytical technique used to characterize organic molecules by identifying carbonhydrogen frameworks within

### Chemistry 307 Chapter 10 Nuclear Magnetic Resonance

Chemistry 307 Chapter 10 Nuclear Magnetic Resonance Nuclear magnetic resonance (NMR) spectroscopy is one of three spectroscopic techniques that are useful tools for determining the structures of organic

### Chapter 11 Structure Determination: Nuclear Magnetic Resonance Spectroscopy. Nuclear Magnetic Resonance Spectroscopy. 11.1 Nuclear Magnetic Resonance

John E. McMurry http://www.cengage.com/chemistry/mcmurry Chapter 11 Structure Determination: Nuclear Magnetic Resonance Spectroscopy 11.1 Nuclear Magnetic Resonance Spectroscopy Many atomic nuclei behave

### Nuclear Magnetic Resonance notes

Reminder: These notes are meant to supplement, not replace, the laboratory manual. Nuclear Magnetic Resonance notes Nuclear Magnetic Resonance (NMR) is a spectrometric technique which provides information

### NMR Spectroscopy of Aromatic Compounds (#1e)

NMR Spectroscopy of Aromatic Compounds (#1e) 1 H NMR Spectroscopy of Aromatic Compounds Erich Hückel s study of aromaticity in the 1930s produced a set of rules for determining whether a compound is aromatic.

### Examination of Proton NMR Spectra

Examination of Proton NMR Spectra What to Look For 1) Number of Signals --- indicates how many "different kinds" of protons are present. 2) Positions of the Signals --- indicates something about magnetic

### NMR SPECTROSCOPY A N I N T R O D U C T I O N T O... Self-study booklet NUCLEAR MAGNETIC RESONANCE. 4 3 2 1 0 δ PUBLISHING

A N I N T R O D U T I O N T O... NMR SPETROSOPY NULEAR MAGNETI RESONANE 4 3 1 0 δ Self-study booklet PUBLISING NMR Spectroscopy NULEAR MAGNETI RESONANE SPETROSOPY Origin of Spectra Theory All nuclei possess

### Chapter 13 Spectroscopy NMR, IR, MS, UV-Vis

Chapter 13 Spectroscopy NMR, IR, MS, UV-Vis Main points of the chapter 1. Hydrogen Nuclear Magnetic Resonance a. Splitting or coupling (what s next to what) b. Chemical shifts (what type is it) c. Integration

### Nuclear Magnetic Resonance (NMR) Wade Textbook

Nuclear Magnetic Resonance (NMR) Wade Textbook Background Is a nondestructive structural analysis technique Has the same theoretical basis as magnetic resonance imaging (MRI) Referring to MRI as nuclear

### 13C NMR Spectroscopy

13 C NMR Spectroscopy Introduction Nuclear magnetic resonance spectroscopy (NMR) is the most powerful tool available for structural determination. A nucleus with an odd number of protons, an odd number

### Background A nucleus with an odd atomic number or an odd mass number has a nuclear spin that can be observed by NMR spectrometers.

NMR Spectroscopy I Reading: Wade chapter, sections -- -7 Study Problems: -, -7 Key oncepts and Skills: Given an structure, determine which protons are equivalent and which are nonequivalent, predict the

### Signal Manipulation. time domain NMR signal in MHz range is converted to khz (audio) range by mixing with the reference ( carrier ) frequency

NMR Spectroscopy: 3 Signal Manipulation time domain NMR signal in MHz range is converted to khz (audio) range by mixing with the reference ( carrier ) frequency Ref in (MHz) mixer Signal in (MHz) Signal

### Shielding vs. Deshielding:

Shielding vs. Deshielding: Pre-tutorial: Things we need to know before we start the topic: What does the NMR Chemical shift do? The chemical shift is telling us the strength of the magnetic field that

### SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Exam Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 1) Calculate the magnetic field that corresponds to the proton resonance frequency of 300.00

### 4. It is possible to excite, or flip the nuclear magnetic vector from the α-state to the β-state by bridging the energy gap between the two. This is a

BASIC PRINCIPLES INTRODUCTION TO NUCLEAR MAGNETIC RESONANCE (NMR) 1. The nuclei of certain atoms with odd atomic number, and/or odd mass behave as spinning charges. The nucleus is the center of positive

### Nuclear Shielding and 1. H Chemical Shifts. 1 H NMR Spectroscopy Nuclear Magnetic Resonance

NMR Spectroscopy Nuclear Magnetic Resonance Nuclear Shielding and hemical Shifts What do we mean by "shielding?" What do we mean by "chemical shift?" The electrons surrounding a nucleus affect the effective

### Proton NMR. One Dimensional H-NMR. Cl S. Common types of NMR experiments: 1-H NMR

Common types of NMR experiments: 1- NMR Proton NMR ne Dimensional -NMR a. Experiment igh field proton NMR (400Mz). single-pulse experiment. b. Spectral nterpretation i. Number of multiplets gives the different

### Nuclear Magnetic Resonance Spectroscopy

Most spinning nuclei behave like magnets. Nuclear Magnetic Resonance Spectroscopy asics owever, as opposed to the behavior of a classical magnet the nuclear spin magnetic moment does not always align with

### 1 Introduction to NMR Spectroscopy

Introduction to NMR Spectroscopy Tremendous progress has been made in NMR spectroscopy with the introduction of multidimensional NMR spectroscopy and pulse Fourier transform NMR spectroscopy. For a deeper

### Introduction to Nuclear Magnetic Resonance Spectroscopy

Introduction to Nuclear Magnetic Resonance Spectroscopy Dr. Dean L. Olson, NMR Lab Director School of Chemical Sciences University of Illinois Called figures, equations, and tables are from Principles

### Symmetric Stretch: allows molecule to move through space

BACKGROUND INFORMATION Infrared Spectroscopy Before introducing the subject of IR spectroscopy, we must first review some aspects of the electromagnetic spectrum. The electromagnetic spectrum is composed

### Determination of Equilibrium Constants using NMR Spectrscopy

CHEM 331L Physical Chemistry Laboratory Revision 1.0 Determination of Equilibrium Constants using NMR Spectrscopy In this laboratory exercise we will measure a chemical equilibrium constant using key proton

### Nuclear Magnetic Resonance

Nuclear Magnetic Resonance NMR is probably the most useful and powerful technique for identifying and characterizing organic compounds. Felix Bloch and Edward Mills Purcell were awarded the 1952 Nobel

### Nuclear Magnetic Resonance Spectroscopy

Chapter 8 Nuclear Magnetic Resonance Spectroscopy http://www.yteach.co.uk/page.php/resources/view_all?id=nuclear_magnetic _resonance_nmr_spectroscopy_spin_spectrometer_spectrum_proton_t_pag e_5&from=search

### The Hydrogen Atom Is a Magnet. http://www.seed.slb.com/en/scictr/watch/gashydrates/detecting.htm

The Hydrogen Atom Is a Magnet Nuclear Magnetic Resonance Spectroscopy (NMR) Proton NMR A hydrogen nucleus can be viewed as a proton, which can be viewed as a spinning charge. As with any spinning charge,

### NMR - Basic principles

NMR - Basic principles Subatomic particles like electrons, protons and neutrons are associated with spin - a fundamental property like charge or mass. In the case of nuclei with even number of protons

### NMR and other Instrumental Techniques in Chemistry and the proposed National Curriculum.

NMR and other Instrumental Techniques in Chemistry and the proposed National Curriculum. Dr. John Jackowski Chair of Science, Head of Chemistry Scotch College Melbourne john.jackowski@scotch.vic.edu.au

### Nuclear Magnetic Resonance (NMR) Spectroscopy cont... Recommended Reading:

Applied Spectroscopy Nuclear Magnetic Resonance (NMR) Spectroscopy cont... Recommended Reading: Banwell and McCash Chapter 7 Skoog, Holler Nieman Chapter 19 Atkins, Chapter 18 Relaxation processes We need

### CHE334 Identification of an Unknown Compound By NMR/IR/MS

CHE334 Identification of an Unknown Compound By NMR/IR/MS Purpose The object of this experiment is to determine the structure of an unknown compound using IR, 1 H-NMR, 13 C-NMR and Mass spectroscopy. Infrared

### Determination of Equilibrium Constants using NMR Spectroscopy

CHEM 331L Physical Chemistry Laboratory Revision 2.1 Determination of Equilibrium Constants using NMR Spectroscopy In this laboratory exercise we will measure the equilibrium constant for the cis-trans

### E35 SPECTROSCOPIC TECHNIQUES IN ORGANIC CHEMISTRY

E35 SPECTRSCPIC TECNIQUES IN RGANIC CEMISTRY TE TASK To use mass spectrometry and IR, UV/vis and NMR spectroscopy to identify organic compounds. TE SKILLS By the end of the experiment you should be able

### Organic Spectroscopy: a Primer

EM 03 rganic Spectroscopy: a Primer INDEX A. Introduction B. Infrared (IR) Spectroscopy 3. Proton Nuclear Magnetic Resonance ( NMR) Spectroscopy A. Introduction The problem of determining the structure

### Determining the Structure of an Organic Compound

Determining the Structure of an Organic Compound The analysis of the outcome of a reaction requires that we know the full structure of the products as well as the reactants In the 19 th and early 20 th

### Nuclear Structure. particle relative charge relative mass proton +1 1 atomic mass unit neutron 0 1 atomic mass unit electron -1 negligible mass

Protons, neutrons and electrons Nuclear Structure particle relative charge relative mass proton 1 1 atomic mass unit neutron 0 1 atomic mass unit electron -1 negligible mass Protons and neutrons make up

### NMR Nuclear Magnetic Resonance

NMR Nuclear Magnetic Resonance Nuclear magnetic resonance (NMR) is an effect whereby magnetic nuclei in a magnetic field absorb and re-emit electromagnetic (EM) energy. This energy is at a specific resonance

### Determination of Molecular Structure by MOLECULAR SPECTROSCOPY

Determination of Molecular Structure by MOLEULAR SPETROSOPY hemistry 3 B.Z. Shakhashiri Fall 29 Much of what we know about molecular structure has been learned by observing and analyzing how electromagnetic

### NMR and IR spectra & vibrational analysis

Lab 5: NMR and IR spectra & vibrational analysis A brief theoretical background 1 Some of the available chemical quantum methods for calculating NMR chemical shifts are based on the Hartree-Fock self-consistent

### Atomic Theory Part 1

Atomic Theory Part 1 Reading: Ch 2 sections 1 6, 8 Homework: Chapter 2: 39, 47, 43, 49, 51*, 53, 55, 57, 71, 73, 77, 99, 103 (optional) * = important homework question The Atomic Theory (John Dalton, 1803)

### Using Nuclear Magnetic Resonance Spectroscopy to Identify an Unknown Compound prepared by Joseph W. LeFevre, SUNY Oswego

m o d u l a r l a b o r a t o r y p r o g r a m i n c h e m i s t r y publisher:. A. Neidig organic editor: Joe Jeffers TE 711 Using Nuclear Magnetic Resonance Spectroscopy to Identify an Unknown ompound

### NMR SPECTROSCOPY. Basic Principles, Concepts, and Applications in Chemistry. Harald Günther University of Siegen, Siegen, Germany.

NMR SPECTROSCOPY Basic Principles, Concepts, and Applications in Chemistry Harald Günther University of Siegen, Siegen, Germany Second Edition Translated by Harald Günther JOHN WILEY & SONS Chichester

### Prof.M.Perucca CORSO DI APPROFONDIMENTO DI FISICA ATOMICA: (III-INCONTRO) RISONANZA MAGNETICA NUCLEARE

Prof.M.Perucca CORSO DI APPROFONDIMENTO DI FISICA ATOMICA: (III-INCONTRO) RISONANZA MAGNETICA NUCLEARE SUMMARY (I/II) Angular momentum and the spinning gyroscope stationary state equation Magnetic dipole

### The Experiment Some nuclei have nuclear magnetic moments; just as importantly, some do not

Chemistry 2600 Lecture Notes Chapter 15 Nuclear Magnetic Resonance Spectroscopy Page 1 of 23 Structure Determination in Organic Chemistry: NMR Spectroscopy Three main techniques are used to determine the

### 2 NMR and energy levels

NMR and energy levels The picture that we use to understand most kinds of spectroscopy is that molecules have a set of energy levels and that the lines we see in spectra are due to transitions between

### Electrophilic Aromatic Substitution Reactions

Electrophilic Aromatic Substitution Reactions, Course Notes Archive, 1 Electrophilic Aromatic Substitution Reactions An organic reaction in which an electrophile substitutes a hydrogen atom in an aromatic

### Infrared Spectroscopy 紅 外 線 光 譜 儀

Infrared Spectroscopy 紅 外 線 光 譜 儀 Introduction Spectroscopy is an analytical technique which helps determine structure. It destroys little or no sample (nondestructive method). The amount of light absorbed

### Molecular-Orbital Theory

Molecular-Orbital Theory 1 Introduction Orbitals in molecules are not necessarily localized on atoms or between atoms as suggested in the valence bond theory. Molecular orbitals can also be formed the

### Test Bank - Chapter 4 Multiple Choice

Test Bank - Chapter 4 The questions in the test bank cover the concepts from the lessons in Chapter 4. Select questions from any of the categories that match the content you covered with students. The

### Chapter 19 Nuclear Magnetic Resonance Spectroscopy (NMR)

Chapter 19 Nuclear Magnetic Resonance Spectroscopy (NMR) 23 pages 2 weeks worth! Problems : 1, 2, 3, 4, 7, 10, 11, 19, 20, 22, 24, 27, 30, 34, 35 Absorption of radio-frequency E from 4-900 MHz (wavelengths

### IR Summary - All numerical values in the tables below are given in wavenumbers, cm -1

Spectroscopy Data Tables Infrared Tables (short summary of common absorption frequencies) The values given in the tables that follow are typical values. Specific bands may fall over a range of wavenumbers,

### INTRODUCTION TO CHEMICAL EXCHANGE WITH THE MEXICO PROGRAM

ITRODUCTIO TO CEMICAL EXCAGE WIT TE MEXICO PROGRAM TE PEOMEO May, 2001 C 3 C 3 C 3 C 3 C 3 C 3 Figure 1 Consider the molecule in figure 1: 3-dimethylamino-7-methyl-1,2,4- benzotriazine. As it is drawn,

### Chapter 2: The Chemical Context of Life

Chapter 2: The Chemical Context of Life Name Period This chapter covers the basics that you may have learned in your chemistry class. Whether your teacher goes over this chapter, or assigns it for you

### Question: Do all electrons in the same level have the same energy?

Question: Do all electrons in the same level have the same energy? From the Shells Activity, one important conclusion we reached based on the first ionization energy experimental data is that electrons

### Introduction to Nuclear Magnetic Resonance (NMR) And. NMR Metabolomics

Introduction to Nuclear Magnetic Resonance (NMR) And NMR Metabolomics Acknowledgment: Some slides from talks by Natalia Serkova, Wimal Pathmasiri, and from many internet sources (e.g., U of Oxford, Florida

### NMR-the basic principles and its use in studies of water/ethanol/mixture

NMR-the basic principles and its use in studies of water/ethanol/mixture Ayhan DEMİR, Bachelor Degree Project in Chemistry, 15 ECTS, April 2012, Sweden. Supervisor: Prof. Per Olof WESTLUND, Dr.Tobias SPARRMAN

### Molecular Models Experiment #1

Molecular Models Experiment #1 Objective: To become familiar with the 3-dimensional structure of organic molecules, especially the tetrahedral structure of alkyl carbon atoms and the planar structure of

### Nuclear Magnetic Resonance (NMR) Spectroscopy

April 28, 2016 Exam #3: Graded exams on Tuesday! Final Exam Tuesday, May 10 th, 10:30 a.m. Room: Votey 207 (tentative) Review Session: Sunday, May 8 th, 4 pm, Kalkin 325 (tentative) Office Hours Next week:

### IR Applied to Isomer Analysis

DiscovIR-LC TM Application Note 025 April 2008 Deposition and Detection System IR Applied to Isomer Analysis Infrared spectra provide valuable information about local configurations of atoms in molecules.

### Experiment #2 NUCLEAR MAGNETIC RESONANCE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Chemistry 5.311 Introductory Chemical Experimentation Experiment #2 NUCLEAR MAGNETIC RESONANCE I. Purpose This experiment is designed to introduce the

### Use the Force! Noncovalent Molecular Forces

Use the Force! Noncovalent Molecular Forces Not quite the type of Force we re talking about Before we talk about noncovalent molecular forces, let s talk very briefly about covalent bonds. The Illustrated

2814 hains, Rings and Spectroscopy June 2003 Mark Scheme 2814 Mark Scheme June 2003 The following annotations may be used when marking: X = incorrect response (errors may also be underlined) ^ = omission

### NMR 13 13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8 13.9 13.10 13.11 13.12 1H NMR

A P T E R 13 Spectroscopy A P T E R U T L I N E 13.1 Principles of Molecular Spectroscopy: Electromagnetic Radiation......... 518 13.2 Principles of Molecular Spectroscopy: Quantized Energy States..........

### HOMEWORK PROBLEMS: IR SPECTROSCOPY AND 13C NMR. The peak at 1720 indicates a C=O bond (carbonyl). One possibility is acetone:

HMEWRK PRBLEMS: IR SPECTRSCPY AND 13C NMR 1. You find a bottle on the shelf only labeled C 3 H 6. You take an IR spectrum of the compound and find major peaks at 2950, 1720, and 1400 cm -1. Draw a molecule

### INFRARED SPECTROSCOPY (IR)

INFRARED SPECTROSCOPY (IR) Theory and Interpretation of IR spectra ASSIGNED READINGS Introduction to technique 25 (p. 833-834 in lab textbook) Uses of the Infrared Spectrum (p. 847-853) Look over pages

### 0 10 20 30 40 50 60 70 m/z

Mass spectrum for the ionization of acetone MS of Acetone + Relative Abundance CH 3 H 3 C O + M 15 (loss of methyl) + O H 3 C CH 3 43 58 0 10 20 30 40 50 60 70 m/z It is difficult to identify the ions

### Chapter 6. NMR Spectroscopy (Chapter 6 Campbell & White).

hapter 6. NMR Spectroscopy (hapter 6 ampbell & White). http://www.shu.ac.uk/schools/sci/chem/tutorials/molspec/nmr1.htm http://www.informatik.uni-frankfurt.de/~garrit/biowelt/nmr.html http://www-wilson.ucsd.edu/education/spectroscopy/nmr.html

### EXPERIMENT Aspirin: Synthesis and NMR Analysis

EXPERIMENT Aspirin: Synthesis and NMR Analysis Introduction: When salicylic acid reacts with acetic anhydride in the presence of an acid catalyst, acetylsalicylic acid, or aspirin, is produced according

### Mass Spectrometry. Overview

Mass Spectrometry Overview Mass Spectrometry is an analytic technique that utilizes the degree of deflection of charged particles by a magnetic field to find the relative masses of molecular ions and fragments.2

### Practical guide for quantitative 1D NMR integration Eugenio Alvarado, University of Michigan, 05/10/10

Practical guide for quantitative 1D NMR integration Eugenio Alvarado, University of Michigan, 05/10/10 The purpose of this manuscript is not to present a discussion about quantitative NMR, but to offer

### Trans Fats. What is a trans fat? Trans fatty acids, or trans fats as they are known, are certain

Trans Fats What is a trans fat? Trans fatty acids, or trans fats as they are known, are certain fats found in such foodstuffs as vegetable shortenings, margarines, crackers, candies baked goods and many

### Experiment 3: Dynamic NMR spectroscopy (Dated: July 7, 2010)

Experiment 3: Dynamic NMR spectroscopy (Dated: July 7, 2010) I. INTRODUCTION In general spectroscopic experiments are divided into two categories: optical spectroscopy and magnetic spectroscopy. In previous

### 2 The Structure of Atoms

CHAPTER 4 2 The Structure of Atoms SECTION Atoms KEY IDEAS As you read this section, keep these questions in mind: What do atoms of the same element have in common? What are isotopes? How is an element

### Worked solutions to student book questions Chapter 7 Spectroscopy

Q1. Potassium chloride can be used instead of salt by people suffering from high blood pressure. Suppose, while cooking, someone spilt some potassium chloride in the flame of a gas stove. a What colour

### Physics 1104 Midterm 2 Review: Solutions

Physics 114 Midterm 2 Review: Solutions These review sheets cover only selected topics from the chemical and nuclear energy chapters and are not meant to be a comprehensive review. Topics covered in these

### Elements in the periodic table are indicated by SYMBOLS. To the left of the symbol we find the atomic mass (A) at the upper corner, and the atomic num

. ATOMIC STRUCTURE FUNDAMENTALS LEARNING OBJECTIVES To review the basics concepts of atomic structure that have direct relevance to the fundamental concepts of organic chemistry. This material is essential

### EXPERIMENT 1: Survival Organic Chemistry: Molecular Models

EXPERIMENT 1: Survival Organic Chemistry: Molecular Models Introduction: The goal in this laboratory experience is for you to easily and quickly move between empirical formulas, molecular formulas, condensed

### CORK INSTITUTE OF TECHNOLOGY INSTITIÚID TEICNEOLAÍOCHTA CHORCAÍ

CORK INSTITUTE OF TECHNOLOGY INSTITIÚID TEICNEOLAÍOCHTA CHORCAÍ Module Title: Topics in Organic Chemistry Module Code: CHEO 7003 School : Science Programme Title: Bachelor of Science in Analytical & Pharmaceutical

### Lesson 3. Chemical Bonding. Molecular Orbital Theory

Lesson 3 Chemical Bonding Molecular Orbital Theory 1 Why Do Bonds Form? An energy diagram shows that a bond forms between two atoms if the overall energy of the system is lowered when the two atoms approach

### Suggested solutions for Chapter 3

s for Chapter PRBLEM Assuming that the molecular ion is the base peak (00% abundance) what peaks would appear in the mass spectrum of each of these molecules: (a) C5Br (b) C60 (c) C64Br In cases (a) and

### List the 3 main types of subatomic particles and indicate the mass and electrical charge of each.

Basic Chemistry Why do we study chemistry in a biology course? All living organisms are composed of chemicals. To understand life, we must understand the structure, function, and properties of the chemicals

### Chapter 9 - Covalent Bonding: Orbitals

Chapter 9 - Covalent Bonding: Orbitals 9.1 Hybridization and the Localized Electron Model A. Hybridization 1. The mixing of two or more atomic orbitals of similar energies on the same atom to produce new

### THEORY and INTERPRETATION of ORGANIC SPECTRA. H. D. Roth Nuclear Magnetic Resonance

Organic Spectra NMR Spectroscopy. D. Roth TEORY and INTERPRETATION of ORGANIC SPECTRA Nuclei differ in mass number (A). D. Roth Nuclear Magnetic Resonance Classes of Nuclei atomic number (number of protons,

### Synthesis and Analysis of Acetyl Salicylic Acid

Chan 0 Synthesis and Analysis of Acetyl Salicylic Acid Amy Chan CHEM 290 - Section 1 November 25, 2002 Chan 1 Introduction Acetyl salicylic acid, commonly known as aspirin, is one of the most common synthetic

### C-13 NMR 69. falls down. "relaxes"

C-13 NMR 69 Chem 355 Jasperse C-13 NMR I. Introduction to Spectroscopy Spectroscopy involves gaining information from the absorption, emission, or reflection of light from a sample. There are many other

### NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities

7512 J. Org. Chem. 1997, 62, 7512-7515 NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities Hugo E. Gottlieb,* Vadim Kotlyar, and Abraham Nudelman* Department of Chemistry, Bar-Ilan University,

### Chapter 5 Organic Spectrometry

Chapter 5 Organic Spectrometry from Organic Chemistry by Robert C. Neuman, Jr. Professor of Chemistry, emeritus University of California, Riverside orgchembyneuman@yahoo.com

### Nuclear Magnetic Resonance Spectroscopy Notes adapted by Audrey Dell Hammerich, October 3, 2013

Nuclear Magnetic Resonance Spectroscopy Notes adapted by Audrey Dell Hammerich, October 3, 2013 Nuclear magnetic resonance (NMR), as all spectroscopic methods, relies upon the interaction of the sample

### CHEM 51LB EXP 1 SPECTROSCOPIC METHODS: INFRARED AND NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

CHEM 51LB EXP 1 SPECTRSCPIC METHDS: INFRARED AND NUCLEAR MAGNETIC RESNANCE SPECTRSCPY REACTINS: None TECHNIQUES: IR Spectroscopy, NMR Spectroscopy Infrared (IR) and nuclear magnetic resonance (NMR) spectroscopy