# Overview: The purpose of this experiment is to introduce diode rectifier circuits used in DC power supplies.

Save this PDF as:

Size: px
Start display at page:

Download "Overview: The purpose of this experiment is to introduce diode rectifier circuits used in DC power supplies."

## Transcription

1 UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering Experiment No. 3 Diodes and Bridge Rectifiers Overview: The purpose of this experiment is to introduce diode rectifier circuits used in DC power supplies. Almost all electronic systems require at least one DC power supply that converts AC line voltage (most often 60 Hz) to DC voltage (typically 5 to 20 VDC). To accomplish this, diodes are used to produce either positive or negative DC voltage from an alternating source in a process called rectification. The diode is, therefore, an essential element of every DC power supply. The purity of DC voltage delivered by the power supply is largely determined by the requirements of its load (i.e., electronic system). Rectified AC naturally pulsates, and is usually smoothed by filtering to produce a steady DC value. Perfect filtering would produce a DC output having no AC variation at all. In practice, some unwanted AC voltage, called ripple, appears at the output along with the desired DC voltage. The ratio of AC ripple voltage to DC voltage at the power supply output is called ripple factor. Ripple factor is defined as either V V RMS p p, or. The peaktopeak definition is used here, primarily for ease of measurement. V V DC DC Maximum allowable AC ripple factor and minimum DC current output are usually specified as part of a power supply s design requirements. A DC power supply block diagram is shown in Fig VAC Power Transformer Diode Rectifier Filter DC Output Fig. 1. DC Power Supply Block Diagram The AC input voltage is stepped down from 120 V to the appropriate level at the rectifier input by the power transformer. The rectifier converts the sinusoidal voltage to a pulsating, DC voltage, which is then filtered to produce a relatively low ripple DC voltage at the output. The type of filter selected depends on load current, ripple specifications, cost, size and other design requirements. To further reduce the ripple and stabilize the magnitude of the DC output voltage against variations caused by changing load, a voltage regulator is often employed as well.

2 When designing a power supply, two important parameters must be specified to assure that diodes are selected properly: 1) the maximum current capability, which is determined by the largest current that the diode is expected to conduct, and 2) the peak inverse voltage (PIV), which is determined by the largest reverse voltage that is expected to appear across it. Rectifier circuits used in DC power supplies are classified as either halfwave or fullwave types. The halfwave rectifier shown in Fig. 2 passes only the positive halfcycles of the sinusoid to the output, because the diode blocks current flow during the negative half cycles. D V in R L Fig. 2. Half Wave Rectifier and Voltage Waveforms The fullwave bridge rectifier circuit shown in Fig. 3 inverts the negative halfcycles of the sinusoidal input voltage and passes both halfcycles of each alternation to the output. During the positive halfcycles of the input voltage, current in the fullwave bridge rectifier is conducted from the positive terminal of the source, through D1, through the load (resistor) connected to the output, and then through D2 to return to the source. During the negative halfcycles of the input voltage, current is conducted from the negative terminal of the source, through D3, through the load, and then through D4 and back to the source. Note that the load current s direction is the same for both positive and negative halfcycles.

3 D 4 D 1 V in D 2 D1 D 3 R L Figure 3. FullWave Bridge Rectifier and Voltage Waveforms If a simple capacitor filter is connected to the rectifier output as in Fig. 4, the output voltage is smoothed and approaches its ideal DC value. The capacitor charges up while the diodes are conducting, and then discharges when the diodes are not conducting to maintain current flow through the load. When load current is small, ripple are low and the diodes conduct high current for a very short part of the cycle, transferring charge from the source to the capacitor by means of large current spikes.

4 D 4 D 1 V in D 2 D1 D 3 C R L Figure 4. Filtered FullWave Bridge Rectifier and Voltage Waveforms A capacitor filter at the output of a halfwave rectifier (Fig.5) also results in smoothing of the output, but it is less effective than in the fullwave bridge because the voltage peaks are twice as far apart in time, necessitating a deeper discharge of the filter capacitor between intervals of diode conduction.

5 D V in C R L Fig. 5. Filtered HalfWave Rectifier and Voltage Waveforms Fig. 6 is an expanded view of the output voltage ripple of Fig. 5, captured using AC oscilloscope coupling. diode on (charging) V pp diode off (discharging) Fig. 6. Filtered HalfWave Rectifier Ripple Voltage Peak voltage at the output is given byvp = 2VinRMS VD, where V D is the forward voltage drop

6 across the conducting diode. The filter capacitor discharges with time constant RCbetween L voltage peaks, which occur with period T. Peaktopeak ripple voltage ( V r ) for the filtered halfwave rectifier may, therefore, be approximated by is the ripple frequency. Vp 2VinRMS VD Vr= Vp p= T =, where f r RC frc L r L

7 PreLab Diodes and Bridge Rectifiers Name Section PreLab Diode Rectifier 1) For the fullwave bridge rectifier of Fig. 4 with: C = 330 µf R L = 510 Ω V in =12V Hz Calculate: a) Ripple frequency, f r b) Peak output voltage V p (This is not the sinusoidal input voltage s peak.) c) Peaktopeak ripple voltage, V r d) Load current, I L (A good approximation is obtained by neglecting ripple.) e) Average diode current, I Dav f) Maximum diode current, I Dmax Assume each diode s forward voltage drop to be 0.7 volts. 2) Repeat Question 1), but for a fullwave bridge rectifier when one of the diodes is blown (open). This is equivalent to a halfwave rectifier but with two diodes in series. (It may be helpful to redraw the circuit in order to visualize this.) 3) This question illustrates why regulators are essential for low output ripple voltages. For the fullwave rectifier of 1) with R L = 510 Ω, Choose: a) C to result in V r = 100 mv and V r = 10 mv. b) Calculate I Dav and I Dmax in each case. Show all work and staple work sheets to this page. NOTE: You will need a compact flash card or other means of saving waveforms measured with the digital oscilloscope to memory in order to perform the experiment and answer the postlab questions. (INSTRUCTOR S SIGNATURE DATE )

8 Lab Session Diodes and Bridge Rectifiers Fullwave Bridge Rectifier: 1) Obtain precise values of output filter components for use in postlab calculations. Refer to Fig. 7. Measure and record precise values for R L and R s using a laboratory grade benchtop digital multimeter. (Use at least a ½ watt resistor for R L and a 3 watt resistor for R s.) Measure C using a laboratory grade benchtop capacitance meter and record its value. The purpose of the 0.5 Ω current sensing resistor is to facilitate measurement V1 of capacitor current ( IC = ). R s 2) Construct the fullwave bridge rectifier shown in Fig.7. Use 1N400X series diodes. (The last digit (X) indicates the diode s PIV rating. Find and review the data sheet for the selected diode to confirm that its PIV rating is adequate for this experiment.) Do not connect the transformer s primary to 120VAC at this time. Use the transformer provided in the lab to supply AC input to the rectifier circuit. Do not use the multifunction signal generator as an AC supply: It cannot source the required current. Make certain that the diode and capacitor are installed with correct polarities. C D4 D1 AC 120V RMS 10:1 D V in B D2 D3 A C=330uF RL = 510 Ω Rs= 0.5 Ω V 1 Fig. 7. Filtered Full Wave Bridge Rectifier Circuit with Current Sensing Resistor 3) After carefully checking the circuit, plug the transformer s line cord into the 120 VAC bench outlet.

9 4) Measure input voltage. Using the oscilloscope and a single probe, measure V in by connecting the probe tip to node C and the probe ground clip to node D. Record both peaktopeak and RMS values for V in. (The RMS value should be approximately 1011 volts.) 5) Verify circuit operation Move the oscilloscope probe s ground to node B, the reference point for measuring output voltage. Remove the filter capacitor C. Observe the output voltage waveform and verify that it is correct for fullwave rectification. Remove D2. Observe the output voltage waveform and verify that it is correct for halfwave rectification. Measure and record the peak value of. Determine the forward voltage drop per diode. 6) Measure output and ripple voltages Replace D2 and C to return the circuit to the configuration of Fig. 7. Measure and record peak and average values for. Measure peaktopeak ripple voltage. (Hint:This is accomplished more easily by selecting AC coupling mode on the oscilloscope and observing the AC component of without the DC offset.) Record the frequency of output voltage ripple. 7) Estimate load current From the output voltage waveform, measure and record: a) capacitor charge V and discharge times, and b) slope out of the discharge portion of the T waveform. See Fig. 8.

10 charge time discharge time V T Fig. 8. Filter Capacitor Parameters The capacitor discharge current (which is also the load current during discharge) is described mathematically as dv I = C out. This may be approximated dt by T. Return the oscilloscope to DC coupling mode. Oscilloscope vertical position and triggering may have to be adjusted in order to view the waveform properly. Save this waveform (with DC offset) in tabular format to memory. 8) Measure capacitor charge and discharge currents Observe the voltage waveform across R s, the 0.5 Ω current sensing resistor. This waveform shows how the capacitor charges during the diode ontime and discharges to the load during the diode offtime. The purpose of the sensing resistor is to allow measurement of current with a voltage probe. The capacitor current waveform is identical to the voltage waveform, except for scaling. Calculate and record the scaling factor. DC offset) in tabular format to memory. Save the voltage waveform (with the 9) Measure load Current Connect the oscilloscope probe across R L to display the load voltage waveform. Note that the load current waveform is identical to the load voltage waveform Vout except for scaling determined by the load resistance ( I L = ). As before, save RL the load voltage waveform (with the DC offset) in tabular format to memory, and record the scaling factor.

11 HalfWave Rectifier 1) Repeat the experiment for the halfwave rectifier configuration Remove D2 from the circuit to make the circuit function as a halfwave rectifier. Note that there are two diode forward voltage drops, rather than one as with the halfwave rectifier circuit of Figs. 2 and 5. Repeat steps 69 above.

12 Lab Session Diodes and Bridge Rectifiers (Data Sheet) INSTRUCTOR'S INITIALS DATE:

13 Post Lab Diodes and Bridge Rectifiers 1) Using the measured values for V in,r L, R S, C and diode forward voltage drop, repeat the prelab calculations for: a) Ripple frequency, f r b) Peak output voltage V p c) Peaktopeak ripple voltage, V pp d) Load (resistor) current, I L e) Diode average current, I D(av) f) Diode maximum current, I D(max) Perform these calculations for both the fullwave bridge rectifier, and the halfwave rectifier (blown diode) configuration. Present and compare the calculated results alongside measured results in a table of values. Comment on the differences between calculated and measured results. 2) Use three different methods to determine load currents for both cases: Vout( average) I L( average) = RL Vout IL = C during capacitor discharge T V1 I L = at the midpoint of the capacitor discharge period R s Using measured values, apply the above methods to determine load current, I L, and comment on the differing results. Explain why the slope method is the least accurate. 3) Using your recorded waveforms and scaling factors for the fullwave bridge rectifier circuit, first determine the load current waveform il () t and capacitor current waveform ic () t, and then apply Kirchoff s Current Law to find the diode current waveform id () t. Include the three current waveforms in your report and comment on their relationships to each other.

### The full wave rectifier consists of two diodes and a resister as shown in Figure

The Full-Wave Rectifier The full wave rectifier consists of two diodes and a resister as shown in Figure The transformer has a centre-tapped secondary winding. This secondary winding has a lead attached

### ANADOLU UNIVERSITY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

ANADOLU UNIVERSITY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EEM 102 INTRODUCTION TO ELECTRICAL ENGINEERING EXPERIMENT 9: DIODES AND DC POWER SUPPLY OBJECTIVE: To observe how a diode functions

### ECE 2201 PRELAB 2 DIODE APPLICATIONS

ECE 2201 PRELAB 2 DIODE APPLICATIONS P1. Review this experiment IN ADVANCE and prepare Circuit Diagrams, Tables, and Graphs in your notebook, prior to coming to lab. P2. Hand Analysis: (1) For the zener

### EXPERIMENT 2 HALF-WAVE & FULL- WAVE RECTIFICATION

EASTERN MEDITERRANEAN UNIVERSITY DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING EEE 341 LAB ELECTRONIC I EXPERIMENT 2 HALF-WAVE & FULL- WAVE RECTIFICATION Std. No. Name &Surname: 1 2 3 Group No : Submitted

### The D.C Power Supply

The D.C Power Supply Voltage Step Down Electrical Isolation Converts Bipolar signal to Unipolar Half or Full wave Smoothes the voltage variation Still has some ripples Reduce ripples Stabilize the output

### Experiment No. 5 FULL-WAVE RECTIFIERS AND POWER SUPPLIES

Experiment No. 5 FULL-WAVE RECTIFIERS AND POWER SUPPLIES Objective: The objective of this experiment is to study the performance and characteristic of full-wave rectifiers and DC power supplies utilizing

### Properties of electrical signals

DC Voltage Component (Average voltage) Properties of electrical signals v(t) = V DC + v ac (t) V DC is the voltage value displayed on a DC voltmeter Triangular waveform DC component Half-wave rectifier

### ELEC 435 ELECTRONICS I. Rectifier Circuits

ELEC 435 ELECTRONICS I Rectifier Circuits Common types of Transformers The Rectifier Rectification is the conversion of an alternating current to a pulsating direct current. Rectification occurs in both

### Rectifier: It is a circuit which employs one or more diodes to convert ac voltage into pulsating dc voltage. We will consider the following circuits:

Rectifier: It is a circuit which employs one or more diodes to convert ac voltage into pulsating dc voltage. We will consider the following circuits: (i) Half wave rectifier. (ii) Full wave rectifier.

### Experiment 2 Diode Applications: Rectifiers

ECE 3550 - Practicum Fall 2007 Experiment 2 Diode Applications: Rectifiers Objectives 1. To investigate the characteristics of half-wave and full-wave rectifier circuits. 2. To recognize the usefulness

### Chapter 3. Diodes and Applications. Introduction [5], [6]

Chapter 3 Diodes and Applications Introduction [5], [6] Diode is the most basic of semiconductor device. It should be noted that the term of diode refers to the basic p-n junction diode. All other diode

### CHAPTER 2B: DIODE AND APPLICATIONS. D.Wilcher

CHAPTER 2B: DIODE AND APPLICATIONS D.Wilcher 1 CHAPTER 2B: OBJECTIVES Analyze the operation of 3 basic types of rectifiers Describe the operation of rectifier filters and IC regulators Analyze the operation

### See Horenstein 4.3 and 4.4

EE 462: Laboratory # 4 DC Power Supply Circuits Using Diodes by Drs. A.V. Radun and K.D. Donohue (2/14/07) Department of Electrical and Computer Engineering University of Kentucky Lexington, KY 40506 Updated

### LABORATORY 10 TIME AVERAGES, RMS VALUES AND THE BRIDGE RECTIFIER. Bridge Rectifier

LABORATORY 10 TIME AVERAGES, RMS VALUES AND THE BRIDGE RECTIFIER Full-wave Rectification: Bridge Rectifier For many electronic circuits, DC supply voltages are required but only AC voltages are available.

### electronics fundamentals

electronics fundamentals circuits, devices, and applications THOMAS L. FLOYD DAVID M. BUCHLA Lesson 1: Diodes and Applications Center-Tapped Full-wave Rectifier The center-tapped (CT) full-wave rectifier

### Microelectronics Circuit Analysis and Design. Rectifier Circuits. Donald A. Neamen. Chapter 2. Diode Circuits. In this chapter, we will:

icroelectronics Circuit Analysis and Design Donald A. Neamen Chapter 2 Diode Circuits n this chapter, we will: Determine the operation and characteristics of diode rectifier circuits, which is the first

### Faculty of Engineering and Information Technology. Lab 2 Diode Circuits

Faculty of Engineering and Information Technology Subject: 48521 Fundamentals of Electrical Engineering Assessment Number: 2 Assessment Title: Lab 2 Diode Circuits Tutorial Group: Students Name(s) and

### = V peak 2 = 0.707V peak

BASIC ELECTRONICS - RECTIFICATION AND FILTERING PURPOSE Suppose that you wanted to build a simple DC electronic power supply, which operated off of an AC input (e.g., something you might plug into a standard

### EXPERIMENT 6 CLIPPING AND CLAMPING DIODE CIRCUITS

EXPERIMENT 6 CLIPPING AND CLAMPING DIODE CIRCUITS OBJECTIVES To understand the theory of operation of the clipping and clamping diode circuits. To design wave shapes that meet different circuits needs.

### Electric Circuit Fall 2015 Pingqiang Zhou. ShanghaiTech University. School of Information Science and Technology. Professor Pingqiang Zhou

ShanghaiTech University School of Information Science and Technology Professor Pingqiang Zhou LABORATORY 3 Diode Guide Diodes Overview Diodes are mostly used in practice for emitting light (as Light Emitting

### HALF WAVE AND FULL WAVE RECTIFIER CIRCUITS

FAKULTI KEJURUTERAAN MEKANIKAL UNIVERSITI TEKNOLOGI MALAYSIA KAMPUS SKUDAI JOHOR SKMM 2921 ELECTRIC LABORATORY EXPERIMENT-2 HALF WAVE AND FULL WAVE RECTIFIER CIRCUITS Prepared by: 1. Dr. Bambang Supriyo

### University of Alberta Department of Electrical and Computer Engineering. EE 250 Laboratory Experiment #5 Diodes

University of Alberta Department of Electrical and Computer Engineering EE 250 Laboratory Experiment #5 Diodes Objective: To introduce basic diode concepts. Introduction: The diode is the most fundamental

### EXPERIMENT 3 DIODE AS RECTIFIER

EXPERIMENT 3 DIODE AS RECTIFIER 1. OBJECTIVES 1.1 To understand the application of diode. 1.2 To demonstrate the characteristics of three different diode rectifier circuits: halfwave rectifier, center-tapped

### Robert L. Boylestad Electronic Devices and Circuit Theory, 9e

Fig. 2.44 Half-wave rectifier. Fig. 2.45 Conduction region (0 T/2). Fig. 2.46 Nonconduction region (T/2 T). Fig. 2.47 Half-wave rectified signal. Fig. 2.48 Effect of V K on half-wave rectified signal.

### DIODE CIRCUITS LABORATORY. Fig. 8.1a Fig 8.1b

DIODE CIRCUITS LABORATORY A solid state diode consists of a junction of either dissimilar semiconductors (pn junction diode) or a metal and a semiconductor (Schottky barrier diode). Regardless of the type,

### ELEC 2020 EXPERIMENT 6 Zener Diodes and LED's

ELEC 2020 EXPERIMENT 6 Zener Diodes and LED's Objectives: The experiments in this laboratory exercise will provide an introduction to diodes. You will use the Bit Bucket breadboarding system to build and

### BME 3512 Biomedical Electronics Laboratory Three - Diode (1N4001)

BME 3512 Biomedical Electronics Laboratory Three Diode () Learning Objectives: Understand the concept of PN junction diodes, their application as rectifiers, the nature and application of halfwave and

### Lecture - 4 Diode Rectifier Circuits

Basic Electronics (Module 1 Semiconductor Diodes) Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Lecture - 4 Diode Rectifier Circuits

### Diode Applications. As we have already seen the diode can act as a switch Forward biased or reverse biased - On or Off.

Diode Applications Diode Switching As we have already seen the diode can act as a switch Forward biased or reverse biased - On or Off. Voltage Rectifier A voltage rectifier is a circuit that converts an

### Lab 3 Rectifier Circuits

ECET 242 Electronic Circuits Lab 3 Rectifier Circuits Page 1 of 5 Name: Objective: Students successfully completing this lab exercise will accomplish the following objectives: 1. Learn how to construct

### Lab Report. Signature. Name. Experiment No Experiment Name. Group Number Group Members. 2. Faisal Ahmed Shamima Akter

Lab Report Course Name Course Code Experiment No Experiment Name : Electronic Circuit-I : EEE102 :02 : Study of Diode Rectifier Circuits Group Number Group Members : 02 : Name ID 1. Md. Solayman Khan 2013-1-80-022

### Rectifier circuits & DC power supplies

Rectifier circuits & DC power supplies Goal: Generate the DC voltages needed for most electronics starting with the AC power that comes through the power line? 120 V RMS f = 60 Hz T = 1667 ms) = )sin How

### Electricity Rectifier circuits. Electrodynamics. What you need: Complete Equipment Set, Manual on CD-ROM included. What you can learn about

Electricity Electrodynamics What you can learn about Half-wave rectifier Full-wave rectifier Graetz rectifier Diode and Zener diode Avalanche effect Charging capacitor Ripple r.m.s. value Internal resistance

### 2 Rectifier Circuits Half-Wave Rectifier Circuits Full-Wave Rectifier Circuits Linear Small-Signal Equivalent Circuits 7

Lecture Notes: 2304154 Physics and Electronics Lecture 5 (2 nd Half), Year: 2007 Physics Department, Faculty of Science, Chulalongkorn University 25/10/2007 Contents 1 Ideal-Diode Model 1 2 Rectifier Circuits

### Rectifier Circuits. A. Half-wave (HW) Rectifier. By: Al Christman Grove City College 100 Campus Drive Grove City, PA

Rectifier Circuits By: Al Christman Grove City College 100 Campus Drive Grove City, PA Rectifiers are used to convert AC to pulsating DC, and can be combined with various types of filters to form power

### Rectifiers and filters

Page 1 of 7 Rectifiers and filters Aim : - To construct a DC power supply and to find the percentage of ripple-factor and percentage of regulation. Apparatus :- Transformer 230/15 ( step-down), four IN

### CIRCUITS LABORATORY. Experiment 8. DC Power Supplies

CIRCUITS LABORATORY Experiment 8 DC Power Supplies 8.1 INTRODUCTION This exercise constitutes a study of circuits that approximate an ideal constantvoltage source. Recall that the ideal constant-voltage

### EE/CE 3111 Electronic Circuits Laboratory Spring 2015

Lab 2: Rectifiers Objectives The objective of this lab is for you to become familiar with the functionality of a diode in circuits. We will experiment the use of diodes in limiting and rectifying circuits.

### Diode Applications. by Kenneth A. Kuhn Sept. 1, 2008. This note illustrates some common applications of diodes.

by Kenneth A. Kuhn Sept. 1, 2008 This note illustrates some common applications of diodes. Power supply applications A common application for diodes is converting AC to DC. Although half-wave rectification

### EXPERIMENT 4:- MEASUREMENT OF REACTANCE OFFERED BY CAPACITOR IN DIFFERENT FREQUENCY FOR R-C CIRCUIT

Kathmandu University Department of Electrical and Electronics Engineering BASIC ELECTRICAL LAB (ENGG 103) EXPERIMENT 4:- MEASUREMENT OF REACTANCE OFFERED BY CAPACITOR IN DIFFERENT FREQUENCY FOR R-C CIRCUIT

### DEALING WITH AC MAINS

ARTICLE DEALING WITH AC MAINS D.MOHAN KUMAR One of the major problem that is to be solved in an electronic circuit design is the production of low voltage DC power supply from AC mains to power the circuit.

### Lab Report No.1 // Diodes: A Regulated DC Power Supply Omar X. Avelar Omar de la Mora Diego I. Romero

Instituto Tecnológico y de Estudios Superiores de Occidente (ITESO) Periférico Sur Manuel Gómez Morín 8585, Tlaquepaque, Jalisco, México, C.P. 45090 Analog Electronic Devices (ESI038 / SE047) Dr. Esteban

### 13/02/2016. Diode Applications

Diode Applications Introduction to diode circuits DC and AC diode circuits Diode applications Clippers Clampers Limiters Peak rectifiers Voltage multipliers Voltage regulators (with Zener diodes) Rectifiers

### An application is the use of diodes to create a regulated voltage.

8. Use of the Diode Forward Drop in Voltage Regulation: An application is the use of diodes to create a regulated voltage. o A voltage regulator is a circuit whose purpose is to provide a constant dc voltage

### Diode Application. WED DK2 9-10am THURS DK6 2-4pm

Diode Application WED DK2 9-10am THURS DK6 2-4pm Simple Diode circuit Series diode configuration Circuit From Kirchoff s Voltage Law From previous lecture E = V I D D + IDR / = I V D nv T S e ( 1) Characteristics

### EET221 Worksheet #3: Diode Circuits and Specialty Diodes

EET221 Worksheet #3: Diode Circuits and Specialty Diodes Help for this worksheet may be found in Chapters 4 and 5 of the textbook. This is not the only place to find help. Don t be afraid to explore. Much

### Analog Electronics. Module 1: Semiconductor Diodes

Analog Electronics s PREPARED BY Academic Services Unit August 2011 Applied Technology High Schools, 2011 s Module Objectives Upon successful completion of this module, students should be able to: 1. Identify

### AC Direct Off-Line Power Supplies

AC Direct Off-Line Power Supplies r Introduction Many DC power supplies found in electronic systems, including those in this Tech School, rectify the 120 volts available at an electric outlet. The initial

### EE 1202 Experiment #7 Signal Amplification

EE 1202 Experiment #7 Signal Amplification 1. Introduction and Goal: s increase the power (amplitude) of an electrical signal. They are used in audio and video systems and appliances. s are designed to

### Laboratory 5: Half- and Full-wave Rectifier Circuits

Laboratory 5: Half- and Full-wave Rectifier Circuits Laboratory 4 Laboratory 5 Laboratory 6 Aims and Objectives The aim of this laboratory is to investigate the effect of a non-linear device on ac signals.

### Lab #2: Capacitors and the 555 Timer

1 Introduction Lab #2: Capacitors and the 555 Timer The goal of this lab is to introduce capacitors in their role as elements of timing circuits and to convert an analog oscillation into a digital oscillation

### Diodes (non-linear devices)

C H A P T E R 4 Diodes (non-linear devices) Diode structure Ideal Diode Figure 4.2 The two modes of operation of ideal diodes and the use of an external circuit to limit (a) the forward current and (b)

### ENGR 210 Lab 11 Frequency Response of Passive RC Filters

ENGR 210 Lab 11 Response of Passive RC Filters The objective of this lab is to introduce you to the frequency-dependent nature of the impedance of a capacitor and the impact of that frequency dependence

### LEP 4.4.07. Rectifier circuits

Related topics Half-wave rectifier, full-wave rectifier, Graetz rectifier, diode, Zener diode, avalanche effect, charging capacitor, ripple, r.m.s. value, internal resistance, smoothing factor, ripple

### ENGR-4300 Electronic Instrumentation Quiz 4 Spring 2011 Name Section

ENGR-4300 Electronic Instrumentation Quiz 4 Spring 2011 Name Section Question I (20 points) Question II (20 points) Question III (20 points) Question IV (20 points) Question V (20 points) Total (100 points)

### Operating Manual Ver.1.1

Rectifier Circuit Operating Manual Ver.1.1 An ISO 9001 : 2000 company 94-101, Electronic Complex Pardesipura, Indore- 452010, India Tel : 91-731- 2570301/02, 4211100 Fax: 91-731- 2555643 e mail : info@scientech.bz

### Technical University of Gdańsk Department of Medical and Ecological Electronics. Laboratory of Basic Electronics Exercise 2

Technical University of Gdańsk Department of Medical and Ecological Electronics Laboratory of Basic Electronics Exercise 2 prepeared by : Krzysztof Suchocki Gdańsk 1999 Exercise 2 Detection diodes, Zener

### Designing a Poor Man s Square Wave Signal Generator. EE-100 Lab: Designing a Poor Man s Square Wave Signal Generator - Theory

EE-100 Lab: - Theory 1. Objective The purpose of this laboratory is to introduce nonlinear circuit measurement and analysis. Your measurements will focus mainly on limiters and clamping amplifiers. During

### ANALOG ELECTRONICS EE-202-F IMPORTANT QUESTIONS

ANALOG ELECTRONICS EE-202-F IMPORTANT QUESTIONS 1].Explain the working of PN junction diode. 2].How the PN junction diode acts as a rectifier. 3].Explain the switching characteristics of diode 4].Derive

### Power supply circuits

Power supply circuits Abstract In this lab some different power supply circuits should be characterized. 1 Introduction he four basic constituents of a power supply circuit are the transformer, the rectifier

### EE 320L Electronics I Laboratory. Laboratory Exercise #4 Diode and Power Supply Circuit

EE 320L Electronics I Laboratory Laboratory Exercise #4 Diode and Power Supply Circuit Department of Electrical and Computer Engineering University of Nevada, at Las Vegas Objective: The purpose of this

### Chapter 2 MENJANA MINDA KREATIF DAN INOVATIF

Chapter 2 DIODE part 2 MENJANA MINDA KREATIF DAN INOATIF objectives Diode with DC supply circuit analysis serial & parallel Diode d applications the DC power supply & Clipper Analysis & Design of rectifier

### ECEN 1400, Introduction to Analog and Digital Electronics

ECEN 1400, Introduction to Analog and Digital Electronics Lab 4: Power supply 1 INTRODUCTION This lab will span two lab periods. In this lab, you will create the power supply that transforms the AC wall

### UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE. Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering Experiment No. 9 - Resonance in Series and parallel RLC Networks Overview: An important consideration in the

### The George Washington University School of Engineering and Applied Science Department of Electrical and Computer Engineering

The George Washington University School of Engineering and Applied Science Department of Electrical and Computer Engineering Final Design Report Dual Channel Stereo Amplifier By: Kristen Gunia Prepared

### 1A. Half wave rectifier design

CARLETON UNIVERSITY Department of Systems and Computer Engineering SYSC 3203 Project Title: EMG-Controlled Mouse Milestone #3B: EMG rectifier and integrator Since an EMG signal is not rhythmic in nature,

### EXPERIMENT 1 PSPICE Simulation of Diode Circuits

İzmir University of Economics EEE 206 Introduction to Electronics Circuits Lab A. Background EXPERIMENT 1 PSPICE Simulation of Diode Circuits Download, print and read the tutorial on the usage of ORCAD/PSPICE

### Half-Wave Rectifiers

Half-Wave Rectifiers Important Points of This Lecture Calculation of output voltage using appropriate piecewise models for diode for simple (unfiltered) half-wave rectifier Differences between calculations

### APPLICATION NOTE 29 Testing Capacitors with High DC Bias

APPLICATION NOTE 29 Testing Capacitors with High DC Bias This application note will describe the process of analysing the impedance of a capacitor when subjected to high DC bias voltages. This particular

### Charge and Discharge of a Capacitor

Charge and Discharge of a Capacitor INTRODUCTION Capacitors 1 are devices that can store electric charge and energy. Capacitors have several uses, such as filters in DC power supplies and as energy storage

### Analog Electronics I. Laboratory

Analog Electronics I Laboratory Exercise 1 DC Power Supply Circuits Aim of the exercise The aim of this laboratory exercise is to become familiar with rectifying circuits and voltage stabilization techniques

### Physics. Teacher s notes 56 Diodes: A.C. diode rectification. Electricity and Heat

Sensors: Loggers: An EASYSENSE capable of fast logging Physics Logging : 500 ms Teacher s notes 56 Diodes: A.C. diode rectification Read In investigation 55, students will have found out that diodes only

### Lecture 8 Diode Applications in Microelectronic Circuits

ECE 3040 - Microelectronic Circuits Lecture 8 iode Applications in Microelectronic Circuits Instructor: r. Shyh-Chiang Shen Study: Jaeger 3.9, 3.10, 3.13.1, 3.13.2, 3.13.3, 3.14, 3.15, 3.16, Lecture Outline

### Homework Assignment 03

Question 1 (2 points each unless noted otherwise) Homework Assignment 03 1. A 9-V dc power supply generates 10 W in a resistor. What peak-to-peak amplitude should an ac source have to generate the same

### H BRIDGE INVERTER. Vdc. Corresponding values of Va and Vb A+ closed, Va = Vdc A closed, Va = 0 B+ closed, Vb = Vdc B closed, Vb = 0 A+ B+ A B

1. Introduction How do we make AC from DC? Answer the H-Bridge Inverter. H BRIDGE INVERTER Vdc A+ B+ Switching rules Either A+ or A is always closed, but never at the same time * Either B+ or B is always

### Project: Half Wave Rectifier

Project: Half Wave Rectifier Notes for Semiconductor Diode Rectification Preferably (in general) electronic circuitry is energized from a voltage source, i.e., a source for which ideally no current flows

### EE 1202 Experiment #2 Resistor Circuits

EE 1202 Experiment #2 Resistor Circuits 1. ntroduction and Goals: Demonstrates the voltage-current relationships in DC and AC resistor circuits. Providing experience in using DC power supply, digital multimeter,

### UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE. Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering Experiment No. 6 Precision Resistance Measurements Introduction: It is sometimes necessary to make resistance

### LRC Circuits. Purpose. Principles PHYS 2211L LAB 7

Purpose This experiment is an introduction to alternating current (AC) circuits. Using the oscilloscope, we will examine the voltage response of inductors, resistors and capacitors in series circuits driven

### Single phase, uncontrolled rectification (conversion)

Single phase, uncontrolled rectification (conversion) J Charles Lee Doyle C12763425 29 October 2015 Abstract An experiment investigating full wave rectification, for the purposes of producing a steady

### Precision Diode Rectifiers

by Kenneth A. Kuhn March 21, 2013 Precision half-wave rectifiers An operational amplifier can be used to linearize a non-linear function such as the transfer function of a semiconductor diode. The classic

### UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE. Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering Experiment No. 5 - Gain-Bandwidth Product and Slew Rate Overview: In this laboratory the student will explore

### Develop the basic principle of operation of a diode. Classify the different types of diodes and analyze their applications.

Key educational goals: Develop the basic principle of operation of a diode. Classify the different types of diodes and analyze their applications. Reading/Preparatory activities for class i)textbook: Chapter

### Solution Tutorial 1. Diode Basics, Application and Special Diodes

Solution Tutorial 1 Diode Basics, Application and Special Diodes 1. What is the maximum number of electrons that can exist in the 3 rd shell of an atom? 2. A certain atom has four valence electrons. What

### Part 2: Receiver and Demodulator

University of Pennsylvania Department of Electrical and Systems Engineering ESE06: Electrical Circuits and Systems II Lab Amplitude Modulated Radio Frequency Transmission System Mini-Project Part : Receiver

### Name Date Day/Time of Lab Partner(s) Lab TA

Name Date Day/Time of Lab Partner(s) Lab TA Objectives LAB 7: AC CIRCUITS To understand the behavior of resistors, capacitors, and inductors in AC Circuits To understand the physical basis of frequency-dependent

### Laboratory #2: AC Circuits, Impedance and Phasors Electrical and Computer Engineering EE University of Saskatchewan

Authors: Denard Lynch Date: Aug 30 - Sep 28, 2012 Sep 23, 2013: revisions-djl Description: This laboratory explores the behaviour of resistive, capacitive and inductive elements in alternating current

### COURSE NOTES Techniques for Measuring Drain Voltage and Current

COURSE NOTES Techniques for Measuring Drain Voltage and Current Introduction These course notes are to be read in association with the PI University video course, Techniques for Measuring Drain Voltage

### Experiment No. 3. Power Supplies and Linear Regulators

Experiment No. 3. Power Supplies and Linear Regulators By: Prof. Gabriel M. Rebeiz The University of Michigan EES Dept. Ann Arbor, Michigan All electronic systems which operate on D voltages (5 V, 12 V,

### EE320L Electronics I. Laboratory. Laboratory Exercise #5. Clipping and Clamping Circuits. Angsuman Roy

EE320L Electronics I Laboratory Laboratory Exercise #5 Clipping and Clamping Circuits By Angsuman Roy Department of Electrical and Computer Engineering University of Nevada, Las Vegas Objective: The purpose

### Week 3: Diode Application Circuits

ELE 2110A Electronic Circuits Week 3: Diode Application Circuits Lecture 03-1 opics to cover oltage Regulation - Zener Diode Rectifiers DC-to-DC converters Wave shaping circuits Photodiode and LED Reading

### Zener Diodes. Zener Diode Symbols

Zener Diodes A Zener diode is a special purpose diode that is designed to operate in the reverse breakdown region of the diode s characteristic curve. Regular diodes will be destroyed if they are used

### Rectifiers V OAV " V ODC = 1 T. The simplest version of rectifier circuits is the half wave rectifier

Rectifiers The simplest version of rectifier circuits is the half wave rectifier The circuit is made by a single diode (the transformer is used both to decouple the load from the mains and to change the

### Semiconductor Diode. It has already been discussed in the previous chapter that a pn junction conducts current easily. Principles of Electronics

76 6 Principles of Electronics Semiconductor Diode 6.1 Semiconductor Diode 6.3 Resistance of Crystal Diode 6.5 Crystal Diode Equivalent Circuits 6.7 Crystal Diode Rectifiers 6.9 Output Frequency of Half-Wave

### Chapter 22 Further Electronics

hapter 22 Further Electronics washing machine has a delay on the door opening after a cycle of washing. Part of this circuit is shown below. s the cycle ends, switch S closes. t this stage the capacitor

### Knowledge Domain: Power Supply Unit: Regulator Skill: Diagnosing Regulator Problems

Knowledge Domain: Power Supply Unit: Regulator Skill: Diagnosing Regulator Problems Tools and Parts Required: 1) Digital multimeter (DMM) 2) Screwdriver set 3) Calculator Introduction A voltage regulator

### EXPERIMENT 1 SINGLE-PHASE FULL-WAVE RECTIFIER AND LINEAR REGULATOR

YEDITEPE UNIERSITY ENGINEERING & RCHITECTURE FCULTY INDUSTRIL ELECTRONICS LBORTORY EE 432 INDUSTRIL ELECTRONICS EXPERIMENT 1 SINGLEPHSE FULLWE RECTIFIER ND LINER REGULTOR Introduction: In this experiment

### Analog Electronics I Laboratory Exercise 1 DC Power Supply Circuits

Analog Electronics I Laboratory Exercise 1 DC Power Supply Circuits Aim of the exercise The aim of this laboratory exercise is to become familiar with rectifying circuits and voltage stabilization techniques