# Worksheet on induction Calculus I Fall 2006 First, let us explain the use of for summation. The notation

Save this PDF as:

Size: px
Start display at page:

Download "Worksheet on induction Calculus I Fall 2006 First, let us explain the use of for summation. The notation"

## Transcription

1 Worksheet on induction MA113 Calculus I Fall 2006 First, let us explain the use of for summation. The notation f(k) means to evaluate the function f(k) at k = 1, 2,..., n and add up the results. In other words: f(k) = f(1) + f(2) f(n). For example: and 4 k 2 = , (2k 1) = n 1, 2 k=3 1 = 2n 2. The principle of mathematical induction is used to establish the truth of a sequence of statements or formula which depend on a natural number, n = 1, 2,.... We will use P k to stand for a statement which depends on k. For example, P k might stand for the statement The number 2k 1 is odd. These statements are true for k = 1, 2,... The principle of mathematical induction is: Principle of mathematical induction. Suppose that P n is a sequence of statements depending on a natural number n = 1, 2,.... If we show that: P 1 is true For N = 1, 2,...: If P N is true, then P N+1 is true. Then, we may conclude that all the statements P n are true for n = 1, 2,.... To see why this principle makes sense, suppose that we know P 1 is true, then the second step allows us to conclude P 2 is true. Now that we know P 2 is true, the second step allows us to conclude P 3 is true. If we repeat this n 1 times, we conclude that P n is true. This principle is useful because it allows us to prove an infinite number of statements are true in just two easy steps! We usually call the first step the base case and the second step is called the induction step.

2 Below are several examples to illustrate how to use this principle. The statement P N that we assume to hold is called the induction hypothesis. The key point in the induction step is to show how the truth of the induction hypothesis, P N, leads to the truth of P N+1. Example 1. Show that for n = 1, 2, 3,..., the number n 2 n is even. Solution. Base case. This is easy. If n = 1, then n 2 n = = 0 and 0 is even. Induction step. We suppose that N 2 N is even and we want to use this assumption to show that (N + 1) 2 (N + 1) is even. We write (N + 1) 2 (N + 1) = N 2 + 2N + 1 N 1 = N 2 N + 2N. Now 2N is even when N is a whole number and N 2 N is even by our induction hypothesis. As the sum of two even numbers is again even, we conclude that (N + 1) 2 + (N + 1) is even. Example 2. Show that for n = 1, 2,..., we have 2j = n(n + 1). Solution Base case. If n = 1, then n(n + 1) = 1 2 = 2. Also, 1 2j = 2. Thus both sides are equal if n = 1. Induction step. Now suppose that the formula N 2j = N(N + 1) is true and consider the sum N+1 N 2j = 2j + 2(N + 1). We use our induction hypothesis that N 2j = N(N + 1) to conclude that N+1 Simplifying this last expression gives 2j = N(N + 1) + 2(N + 1). N(N + 1) + 2(N + 1) = N 2 + N + 2N + 2 = N 2 + 3N + 2 = (N + 2)(N + 1). Since (N + 2)(N + 1) = (N )(N + 1), we have shown that the formula N+1 2j = (N )(N + 1) is true. This completes the induction step and thus the proof by induction. Example 3. All horses are the same color.

3 Solution. We will show by induction that any set of N horses consists of horses of the same color. The base case is easy. If we have a set with one horse, then all horses in the set are the same color. We assume as our induction hypothesis that any set of N horses consists of horses of the same color. We take a set of N + 1 horses, and put one of the horses in the barn for a moment. By our induction hypothesis, the remaining N horses are all of the same color. Now, we put a different horse in the barn. Again, the remaining N horses are all the same color. It follows that the set of N + 1 horses are all the same color. Below is a selection of problems related to mathematical induction. You should begin working on these problems in recitation. Write up your solutions carefully, elegantly, and in complete sentences. 1. (a) For n = 1, 2, 3, 4, compute (2k 1). Make a guess for the value of this sum for n = 1, 2,.... (b) Use mathematical induction to prove that your guess is correct. 2. Use the principle of mathematical induction to prove that k 2 = n(n + 1)(2n + 1) Define n! = n(n 1)! and 0! = 1. Thus, n! = n(n 1)... 1, if n = 1, 2, 3, 4,.... (a) Define A n,k = n!. Show that we have the formula (n k)!k! A n+1,k+1 = A n,k + A n,k+1. Hint: Obtain a common denominator on the right-hand side. Do not use the principle mathematical induction to prove this. (b) For n = 1, 2,..., show that there are numbers B n,k so that (x + y) n = B n,k x k y n k. k=0 You should be able to do this by induction on n. For the base case, write down B 1,0 and B 1,1. In the induction step, you should write (x + y) N+1 = (x + y)(x + y) N = (x + y)(b N,0 x 0 y N + B N,1 x 1 y N B N,N x N y 0 ) and discover a formula that expresses B N+1,k in terms of some of the numbers B N,j, j = 0,..., N which are known from the induction hypothesis.

4 (c) Is there a relation between the numbers A n,k and B n,k? (A proof is not expected.) Additional problems. Below are some additional exercises for you to consider. You will not be able to solve all of these problems at this time. These problems will not be collected. 1. Find the flaw in the proof that all horses are the same color. 2. Let f 1 (x) = x 2 and then define f n for n = 1, 2,... by f n+1 (x) = f 1 (f n (x)). (It is the principle of mathematical induction which tells us that these two statements suffice to define f n for all n = 1, 2, 3,....) Use mathematical induction to prove that f n (x) = x 2n. 3. Let P n be the statement: n 2 n is an odd integer. (a) Show that if P n is true, then P n+1 is true. (b) Is P 1 true? (c) Is P n true for any n? 4. Let f(x) = sin(2x). Prove that for n = 1, 2,..., d 2n dx 2n f(x) = ( 4)2n sin(2x). 5. Prove that d dx xn = nx n 1, n = 1, Hint: For the base case n = 1, use the definition of the derivative. For the induction step write x n+1 = x x n and use the product rule. 6. Prove that 7. Prove that 8. (a) Find a simple formula for d 1 dx x = n, n = 1, n xn+1 d n dx n xn = n!, n = 0, 1,... ((k + 1) 2 k 2 ) = ( ) n 2 (n 1) 2 + (n + 1) 2 n 2.

5 (b) Using your answer to part a), find a simple expression for (2k 1). To do this you should simplify each summand on the left. 9. Use mathematical induction to prove that [ ] 2 n(n + 1) j 3 =. 2 August 23, 2006

### 8.7 Mathematical Induction

8.7. MATHEMATICAL INDUCTION 8-135 8.7 Mathematical Induction Objective Prove a statement by mathematical induction Many mathematical facts are established by first observing a pattern, then making a conjecture

### DEFINITIONS: 1. FACTORIAL: n! = n (n 1) (n 2) ! = 1. n! = n (n 1)! = n (n 1) (n 2)! (n + 1)! = (n + 1) n! = (n + 1) n (n 1)!

MATH 2000 NOTES ON INDUCTION DEFINITIONS: 1. FACTORIAL: n! = n (n 1) (n 2)... 3 2 1 0! = 1 n! = n (n 1)! = n (n 1) (n 2)! (n + 1)! = (n + 1) n! = (n + 1) n (n 1)! 2. SUMMATION NOTATION: f(i) = f(1) + f(2)

### Sample Induction Proofs

Math 3 Worksheet: Induction Proofs III, Sample Proofs A.J. Hildebrand Sample Induction Proofs Below are model solutions to some of the practice problems on the induction worksheets. The solutions given

### Homework 6, Fri CS 2050, Intro Discrete Math for Computer Science Due Mon , Note: This homework has 2 pages and 5 problems.

Homework 6, Fri 0-8- CS 050, Intro Discrete Math for Computer Science Due Mon -7-, Note: This homework has pages and 5 problems. Problem : 0 Points What is wrong with this proof? Theorem: For every positive

### Second Project for Math 377, fall, 2003

Second Project for Math 377, fall, 003 You get to pick your own project. Several possible topics are described below or you can come up with your own topic (subject to my approval). At most two people

### Section 6-2 Mathematical Induction

6- Mathematical Induction 457 In calculus, it can be shown that e x k0 x k k! x x x3!! 3!... xn n! where the larger n is, the better the approximation. Problems 6 and 6 refer to this series. Note that

Section 5.1 Climbing an Infinite Ladder Suppose we have an infinite ladder and the following capabilities: 1. We can reach the first rung of the ladder. 2. If we can reach a particular rung of the ladder,

### Introduction. Appendix D Mathematical Induction D1

Appendix D Mathematical Induction D D Mathematical Induction Use mathematical induction to prove a formula. Find a sum of powers of integers. Find a formula for a finite sum. Use finite differences to

### SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION

CHAPTER 5 SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION Alessandro Artale UniBZ - http://www.inf.unibz.it/ artale/ SECTION 5.2 Mathematical Induction I Copyright Cengage Learning. All rights reserved.

### Taylor and Maclaurin Series

Taylor and Maclaurin Series In the preceding section we were able to find power series representations for a certain restricted class of functions. Here we investigate more general problems: Which functions

### Course Notes for Math 320: Fundamentals of Mathematics Chapter 3: Induction.

Course Notes for Math 320: Fundamentals of Mathematics Chapter 3: Induction. February 21, 2006 1 Proof by Induction Definition 1.1. A subset S of the natural numbers is said to be inductive if n S we have

### 3. Mathematical Induction

3. MATHEMATICAL INDUCTION 83 3. Mathematical Induction 3.1. First Principle of Mathematical Induction. Let P (n) be a predicate with domain of discourse (over) the natural numbers N = {0, 1,,...}. If (1)

### 4. PRINCIPLE OF MATHEMATICAL INDUCTION

4 PRINCIPLE OF MATHEMATICAL INDUCTION Ex Prove the following by principle of mathematical induction 1 1 + 2 + 3 + + n 2 1 2 + 2 2 + 3 2 + + n 2 3 1 3 + 2 3 + 3 3 + + n 3 + 4 (1) + (1 + 3) + (1 + 3 + 5)

### Mathematical Induction

Chapter 4 Mathematical Induction 4.1 The Principle of Mathematical Induction Preview Activity 1 (Exploring Statements of the Form.8n N/.P.n//) One of the most fundamental sets in mathematics is the set

### p 2 1 (mod 6) Adding 2 to both sides gives p (mod 6)

.9. Problems P10 Try small prime numbers first. p p + 6 3 11 5 7 7 51 11 13 Among the primes in this table, only the prime 3 has the property that (p + ) is also a prime. We try to prove that no other

### SECTION 10-2 Mathematical Induction

73 0 Sequences and Series 6. Approximate e 0. using the first five terms of the series. Compare this approximation with your calculator evaluation of e 0.. 6. Approximate e 0.5 using the first five terms

### Direct Proofs. CS 19: Discrete Mathematics. Direct Proof: Example. Indirect Proof: Example. Proofs by Contradiction and by Mathematical Induction

Direct Proofs CS 19: Discrete Mathematics Amit Chakrabarti Proofs by Contradiction and by Mathematical Induction At this point, we have seen a few examples of mathematical proofs. These have the following

### Mathematical Induction

Mathematical Induction MAT30 Discrete Mathematics Fall 016 MAT30 (Discrete Math) Mathematical Induction Fall 016 1 / 19 Outline 1 Mathematical Induction Strong Mathematical Induction MAT30 (Discrete Math)

### Lecture 3. Mathematical Induction

Lecture 3 Mathematical Induction Induction is a fundamental reasoning process in which general conclusion is based on particular cases It contrasts with deduction, the reasoning process in which conclusion

### Math 55: Discrete Mathematics

Math 55: Discrete Mathematics UC Berkeley, Fall 2011 Homework # 5, due Wednesday, February 22 5.1.4 Let P (n) be the statement that 1 3 + 2 3 + + n 3 = (n(n + 1)/2) 2 for the positive integer n. a) What

### Introduction to Series and Sequences Math 121 Calculus II D Joyce, Spring 2013

Introduction to Series and Sequences Math Calculus II D Joyce, Spring 03 The goal. The main purpose of our study of series and sequences is to understand power series. A power series is like a polynomial

### CS 173: Discrete Structures, Fall 2010 Homework 6 Solutions

CS 173: Discrete Structures, Fall 010 Homework 6 Solutions This homework was worth a total of 5 points. 1. Recursive definition [13 points] Give a simple closed-form definition for each of the following

### CSE373: Data Structures and Algorithms Lecture 2: Proof by Induction. Linda Shapiro Winter 2015

CSE373: Data Structures and Algorithms Lecture 2: Proof by Induction Linda Shapiro Winter 2015 Background on Induction Type of mathematical proof Typically used to establish a given statement for all natural

### 2.4 Mathematical Induction

2.4 Mathematical Induction What Is (Weak) Induction? The Principle of Mathematical Induction works like this: What Is (Weak) Induction? The Principle of Mathematical Induction works like this: We want

### MATH 105: PRACTICE PROBLEMS FOR SERIES: SPRING Problems

MATH 05: PRACTICE PROBLEMS FOR SERIES: SPRING 20 INSTRUCTOR: STEVEN MILLER (SJM@WILLIAMS.EDU).. Sequences and Series.. Problems Question : Let a n =. Does the series +n+n 2 n= a n converge or diverge?

### MITES Physics III Summer Introduction 1. 3 Π = Product 2. 4 Proofs by Induction 3. 5 Problems 5

MITES Physics III Summer 010 Sums Products and Proofs Contents 1 Introduction 1 Sum 1 3 Π Product 4 Proofs by Induction 3 5 Problems 5 1 Introduction These notes will introduce two topics: A notation which

### PRINCIPLE OF MATHEMATICAL INDUCTION

Chapter 4 PRINCIPLE OF MATHEMATICAL INDUCTION 4.1 Overview Mathematical induction is one of the techniques which can be used to prove variety of mathematical statements which are formulated in terms of

### MATH 289 PROBLEM SET 1: INDUCTION. 1. The induction Principle The following property of the natural numbers is intuitively clear:

MATH 89 PROBLEM SET : INDUCTION The induction Principle The following property of the natural numbers is intuitively clear: Axiom Every nonempty subset of the set of nonnegative integers Z 0 = {0,,, 3,

### Taylor Polynomials and Taylor Series Math 126

Taylor Polynomials and Taylor Series Math 26 In many problems in science and engineering we have a function f(x) which is too complicated to answer the questions we d like to ask. In this chapter, we will

### COMP232 - Mathematics for Computer Science

COMP3 - Mathematics for Computer Science Tutorial 10 Ali Moallemi moa ali@encs.concordia.ca Iraj Hedayati h iraj@encs.concordia.ca Concordia University, Winter 016 Ali Moallemi, Iraj Hedayati COMP3 - Mathematics

### 3.3 MATHEMATICAL INDUCTION

Section 3.3 Mathematical Induction 3.3.1 3.3 MATHEMATICAL INDUCTION From modus ponens: p p q q basis assertion conditional assertion conclusion we can easily derive double modus ponens : p 0 p 0 p 1 p

### Appendix F: Mathematical Induction

Appendix F: Mathematical Induction Introduction In this appendix, you will study a form of mathematical proof called mathematical induction. To see the logical need for mathematical induction, take another

### PRINCIPLE OF MATHEMATICAL INDUCTION

Chapter 4 PRINCIPLE OF MATHEMATICAL INDUCTION Analysis and natural philosophy owe their most important discoveries to this fruitful means, which is called induction Newton was indebted to it for his theorem

### (3n 2) = (3n 2) = 1(3 1) 2 1 = (3k 2) =

Question 1 Prove using mathematical induction that for all n 1, Solution 1 + + 7 + + (n ) = n(n 1) For any integer n 1, let P n be the statement that 1 + + 7 + + (n ) = n(n 1) Base Case The statement P

### Mathematical Induction. Mary Barnes Sue Gordon

Mathematics Learning Centre Mathematical Induction Mary Barnes Sue Gordon c 1987 University of Sydney Contents 1 Mathematical Induction 1 1.1 Why do we need proof by induction?.... 1 1. What is proof by

### The Fibonacci Numbers

The Fibonacci Numbers The numbers are: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, Each Fibonacci number is the sum of the previous two Fibonacci numbers! Let n any positive integer If F n is

### 0 ( x) 2 = ( x)( x) = (( 1)x)(( 1)x) = ((( 1)x))( 1))x = ((( 1)(x( 1)))x = ((( 1)( 1))x)x = (1x)x = xx = x 2.

SOLUTION SET FOR THE HOMEWORK PROBLEMS Page 5. Problem 8. Prove that if x and y are real numbers, then xy x + y. Proof. First we prove that if x is a real number, then x 0. The product of two positive

### 3.1. Sequences and Their Limits Definition (3.1.1). A sequence of real numbers (or a sequence in R) is a function from N into R.

CHAPTER 3 Sequences and Series 3.. Sequences and Their Limits Definition (3..). A sequence of real numbers (or a sequence in R) is a function from N into R. Notation. () The values of X : N! R are denoted

### 3. Recurrence Recursive Definitions. To construct a recursively defined function:

3. RECURRENCE 10 3. Recurrence 3.1. Recursive Definitions. To construct a recursively defined function: 1. Initial Condition(s) (or basis): Prescribe initial value(s) of the function.. Recursion: Use a

### Chapter 6 Finite sets and infinite sets. Copyright 2013, 2005, 2001 Pearson Education, Inc. Section 3.1, Slide 1

Chapter 6 Finite sets and infinite sets Copyright 013, 005, 001 Pearson Education, Inc. Section 3.1, Slide 1 Section 6. PROPERTIES OF THE NATURE NUMBERS 013 Pearson Education, Inc.1 Slide Recall that denotes

### Course Notes for Math 162: Mathematical Statistics Approximation Methods in Statistics

Course Notes for Math 16: Mathematical Statistics Approximation Methods in Statistics Adam Merberg and Steven J. Miller August 18, 6 Abstract We introduce some of the approximation methods commonly used

### Mathematical Induction

Mathematical Induction Victor Adamchik Fall of 2005 Lecture 1 (out of three) Plan 1. The Principle of Mathematical Induction 2. Induction Examples The Principle of Mathematical Induction Suppose we have

### Mathematical Induction. Rosen Chapter 4.1 (6 th edition) Rosen Ch. 5.1 (7 th edition)

Mathematical Induction Rosen Chapter 4.1 (6 th edition) Rosen Ch. 5.1 (7 th edition) Mathmatical Induction Mathmatical induction can be used to prove statements that assert that P(n) is true for all positive

### MATHEMATICAL INDUCTION. Mathematical Induction. This is a powerful method to prove properties of positive integers.

MATHEMATICAL INDUCTION MIGUEL A LERMA (Last updated: February 8, 003) Mathematical Induction This is a powerful method to prove properties of positive integers Principle of Mathematical Induction Let P

### Project: The Harmonic Series, the Integral Test

. Let s start with the sequence a n = n. Does this sequence converge or diverge? Explain. To determine if a sequence converges, we just take a limit: lim n n sequence converges to 0. = 0. The. Now consider

### INTRODUCTION TO PROOFS: HOMEWORK SOLUTIONS

INTRODUCTION TO PROOFS: HOMEWORK SOLUTIONS STEVEN HEILMAN Contents 1. Homework 1 1 2. Homework 2 6 3. Homework 3 10 4. Homework 4 16 5. Homework 5 19 6. Homework 6 21 7. Homework 7 25 8. Homework 8 28

### CS 2336 Discrete Mathematics

CS 2336 Discrete Mathematics Lecture 5 Proofs: Mathematical Induction 1 Outline What is a Mathematical Induction? Strong Induction Common Mistakes 2 Introduction What is the formula of the sum of the first

### The Fibonacci Sequence and Recursion

The Fibonacci Sequence and Recursion (Handout April 6, 0) The Fibonacci sequence,,,3,,8,3,,34,,89,44,... is defined recursively by {, for n {0,}; F n = F n + F n, for n. Note that the first two terms in

### k=1 k2, and therefore f(m + 1) = f(m) + (m + 1) 2 =

Math 104: Introduction to Analysis SOLUTIONS Alexander Givental HOMEWORK 1 1.1. Prove that 1 2 +2 2 + +n 2 = 1 n(n+1)(2n+1) for all n N. 6 Put f(n) = n(n + 1)(2n + 1)/6. Then f(1) = 1, i.e the theorem

### Sequences and Mathematical Induction. CSE 215, Foundations of Computer Science Stony Brook University

Sequences and Mathematical Induction CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.edu/~cse215 Sequences A sequence is a function whose domain is all the integers

### Principle of (Weak) Mathematical Induction. P(1) ( n 1)(P(n) P(n + 1)) ( n 1)(P(n))

Outline We will cover (over the next few weeks) Mathematical Induction (or Weak Induction) Strong (Mathematical) Induction Constructive Induction Structural Induction Principle of (Weak) Mathematical Induction

### Chapter 5: Mathematical Induction

108 Chapter 5: Mathematical Induction So far in this course, we have seen some techniques for dealing with stochastic processes: first-step analysis for hitting probabilities(chapter ), and first-step

### Math 201 Lecture 23: Power Series Method for Equations with Polynomial

Math 201 Lecture 23: Power Series Method for Equations with Polynomial Coefficients Mar. 07, 2012 Many examples here are taken from the textbook. The first number in () refers to the problem number in

### Manipulating Power Series

LECTURE 24 Manipulating Power Series Our technique for solving di erential equations by power series will essentially be to substitute a generic power series expression y(x) a n (x x o ) n into a di erential

### Mathematical induction. Niloufar Shafiei

Mathematical induction Niloufar Shafiei Mathematical induction Mathematical induction is an extremely important proof technique. Mathematical induction can be used to prove results about complexity of

### 9.2 Summation Notation

9. Summation Notation 66 9. Summation Notation In the previous section, we introduced sequences and now we shall present notation and theorems concerning the sum of terms of a sequence. We begin with a

### Calculus for Middle School Teachers. Problems and Notes for MTHT 466

Calculus for Middle School Teachers Problems and Notes for MTHT 466 Bonnie Saunders Fall 2010 1 I Infinity Week 1 How big is Infinity? Problem of the Week: The Chess Board Problem There once was a humble

### MATH 4330/5330, Fourier Analysis Section 11, The Discrete Fourier Transform

MATH 433/533, Fourier Analysis Section 11, The Discrete Fourier Transform Now, instead of considering functions defined on a continuous domain, like the interval [, 1) or the whole real line R, we wish

### For the purposes of this course, the natural numbers are the positive integers. We denote by N, the set of natural numbers.

Lecture 1: Induction and the Natural numbers Math 1a is a somewhat unusual course. It is a proof-based treatment of Calculus, for all of you who have already demonstrated a strong grounding in Calculus

### 1 Mathematical Induction

Extra Credit Homework Problems Note: these problems are of varying difficulty, so you might want to assign different point values for the different problems. I have suggested the point values each problem

### Cardinality. The set of all finite strings over the alphabet of lowercase letters is countable. The set of real numbers R is an uncountable set.

Section 2.5 Cardinality (another) Definition: The cardinality of a set A is equal to the cardinality of a set B, denoted A = B, if and only if there is a bijection from A to B. If there is an injection

### Jacobi s four squares identity Martin Klazar

Jacobi s four squares identity Martin Klazar (lecture on the 7-th PhD conference) Ostrava, September 10, 013 C. Jacobi [] in 189 proved that for any integer n 1, r (n) = #{(x 1, x, x 3, x ) Z ( i=1 x i

### Generating Functions

Generating Functions If you take f(x =/( x x 2 and expand it as a power series by long division, say, then you get f(x =/( x x 2 =+x+2x 2 +x +5x 4 +8x 5 +x 6 +. It certainly seems as though the coefficient

### Basic Proof Techniques

Basic Proof Techniques David Ferry dsf43@truman.edu September 13, 010 1 Four Fundamental Proof Techniques When one wishes to prove the statement P Q there are four fundamental approaches. This document

### Oh Yeah? Well, Prove It.

Oh Yeah? Well, Prove It. MT 43A - Abstract Algebra Fall 009 A large part of mathematics consists of building up a theoretical framework that allows us to solve problems. This theoretical framework is built

### Mathematical Induction

Mathematical Induction Victor Adamchik Fall of 2005 Lecture 2 (out of three) Plan 1. Strong Induction 2. Faulty Inductions 3. Induction and the Least Element Principal Strong Induction Fibonacci Numbers

### Foundations of Computing Discrete Mathematics Solutions to exercises for week 2

Foundations of Computing Discrete Mathematics Solutions to exercises for week 2 Agata Murawska (agmu@itu.dk) September 16, 2013 Note. The solutions presented here are usually one of many possiblities.

### HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)!

Math 7 Fall 205 HOMEWORK 5 SOLUTIONS Problem. 2008 B2 Let F 0 x = ln x. For n 0 and x > 0, let F n+ x = 0 F ntdt. Evaluate n!f n lim n ln n. By directly computing F n x for small n s, we obtain the following

### Sequences and Series

Sequences and Series Consider the following sum: 2 + 4 + 8 + 6 + + 2 i + The dots at the end indicate that the sum goes on forever. Does this make sense? Can we assign a numerical value to an infinite

### 1.3 Induction and Other Proof Techniques

4CHAPTER 1. INTRODUCTORY MATERIAL: SETS, FUNCTIONS AND MATHEMATICAL INDU 1.3 Induction and Other Proof Techniques The purpose of this section is to study the proof technique known as mathematical induction.

### Sequences and Summations. Niloufar Shafiei

Sequences and Summations Niloufar Shafiei Sequences A sequence is a discrete structure used to represent an ordered list. 1 Sequences A sequence is a function from a subset of the set integers (usually

### Mathematical Induction. Lecture 10-11

Mathematical Induction Lecture 10-11 Menu Mathematical Induction Strong Induction Recursive Definitions Structural Induction Climbing an Infinite Ladder Suppose we have an infinite ladder: 1. We can reach

### Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics

Undergraduate Notes in Mathematics Arkansas Tech University Department of Mathematics An Introductory Single Variable Real Analysis: A Learning Approach through Problem Solving Marcel B. Finan c All Rights

### 1 Algebra - Partial Fractions

1 Algebra - Partial Fractions Definition 1.1 A polynomial P (x) in x is a function that may be written in the form P (x) a n x n + a n 1 x n 1 +... + a 1 x + a 0. a n 0 and n is the degree of the polynomial,

### Mathematical Induction. Part Three

Mathematical Induction Part Three Announcements Problem Set Two due Friday, October 4 at 2:5PM (just before class) Stop by office hours with questions! Email us at cs03@cs.stanford.edu with questions!

### Section 1. Statements and Truth Tables. Definition 1.1: A mathematical statement is a declarative sentence that is true or false, but not both.

M3210 Supplemental Notes: Basic Logic Concepts In this course we will examine statements about mathematical concepts and relationships between these concepts (definitions, theorems). We will also consider

### Exam #5 Sequences and Series

College of the Redwoods Mathematics Department Math 30 College Algebra Exam #5 Sequences and Series David Arnold Don Hickethier Copyright c 000 Don-Hickethier@Eureka.redwoods.cc.ca.us Last Revision Date:

### Math 115 Spring 2011 Written Homework 5 Solutions

. Evaluate each series. a) 4 7 0... 55 Math 5 Spring 0 Written Homework 5 Solutions Solution: We note that the associated sequence, 4, 7, 0,..., 55 appears to be an arithmetic sequence. If the sequence

### Mathematical Induction

Chapter 2 Mathematical Induction 2.1 First Examples Suppose we want to find a simple formula for the sum of the first n odd numbers: 1 + 3 + 5 +... + (2n 1) = n (2k 1). How might we proceed? The most natural

### Chapter 6 SEQUENCES. sn 1+1,s 1 =1 is again an abbreviation for the sequence { 1, 1 2, 1 } n N ε,d (s n,s) <ε.

Chapter 6 SEQUENCES 6.1 Sequences A sequence is a function whose domain is the set of natural numbers N. If s is a sequence, we usually denote its value at n by s n instead of s (n). We may refer to the

### In a triangle with a right angle, there are 2 legs and the hypotenuse of a triangle.

PROBLEM STATEMENT In a triangle with a right angle, there are legs and the hypotenuse of a triangle. The hypotenuse of a triangle is the side of a right triangle that is opposite the 90 angle. The legs

### Chapter 2 Limits Functions and Sequences sequence sequence Example

Chapter Limits In the net few chapters we shall investigate several concepts from calculus, all of which are based on the notion of a limit. In the normal sequence of mathematics courses that students

### Some Notes on Taylor Polynomials and Taylor Series

Some Notes on Taylor Polynomials and Taylor Series Mark MacLean October 3, 27 UBC s courses MATH /8 and MATH introduce students to the ideas of Taylor polynomials and Taylor series in a fairly limited

### COMPUTER SCIENCE 123. Foundations of Computer Science. 20. Mathematical induction

COMPUTER SCIENCE 123 Foundations of Computer Science 20. Mathematical induction Summary: This lecture introduces mathematical induction as a technique for proving the equivalence of two functions, or for

### Fourier Series Expansion

Fourier Series Expansion Deepesh K P There are many types of series expansions for functions. The Maclaurin series, Taylor series, Laurent series are some such expansions. But these expansions become valid

Mathematics 0N1 Solutions 1 1. Write the following sets in list form. 1(i) The set of letters in the word banana. {a, b, n}. 1(ii) {x : x 2 + 3x 10 = 0}. 3(iv) C A. True 3(v) B = {e, e, f, c}. True 3(vi)

### Mathematical Induction

Mathematical Induction (Handout March 8, 01) The Principle of Mathematical Induction provides a means to prove infinitely many statements all at once The principle is logical rather than strictly mathematical,

### Real Numbers and Monotone Sequences

Real Numbers and Monotone Sequences. Introduction. Real numbers. Mathematical analysis depends on the properties of the set R of real numbers, so we should begin by saying something about it. There are

### The Geometric Series

The Geometric Series Professor Jeff Stuart Pacific Lutheran University c 8 The Geometric Series Finite Number of Summands The geometric series is a sum in which each summand is obtained as a common multiple

### MAT2400 Analysis I. A brief introduction to proofs, sets, and functions

MAT2400 Analysis I A brief introduction to proofs, sets, and functions In Analysis I there is a lot of manipulations with sets and functions. It is probably also the first course where you have to take

### MISS. INDUCTION SEQUENCES and SERIES. J J O'Connor MT1002 2009/10

MISS MATHEMATICAL INDUCTION SEQUENCES and SERIES J J O'Connor MT002 2009/0 Contents This booklet contains eleven lectures on the topics: Mathematical Induction 2 Sequences 9 Series 3 Power Series 22 Taylor

### The Limit of a Sequence of Numbers: Infinite Series

Connexions module: m36135 1 The Limit of a Sequence of Numbers: Infinite Series Lawrence Baggett This work is produced by The Connexions Project and licensed under the Creative Commons Attribution License

### Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand Note 3

CS 70 Discrete Mathematics and Probability Theory Fall 06 Seshia and Walrand Note 3 Mathematical Induction Introduction. In this note, we introduce the proof technique of mathematical induction. Induction

### Problems on Discrete Mathematics 1

Problems on Discrete Mathematics 1 Chung-Chih Li Kishan Mehrotra 3 L A TEX at July 18, 007 1 No part of this book can be reproduced without permission from the authors Illinois State University, Normal,

### 1. R In this and the next section we are going to study the properties of sequences of real numbers.

+a 1. R In this and the next section we are going to study the properties of sequences of real numbers. Definition 1.1. (Sequence) A sequence is a function with domain N. Example 1.2. A sequence of real

### Discrete Mathematics, Chapter 5: Induction and Recursion

Discrete Mathematics, Chapter 5: Induction and Recursion Richard Mayr University of Edinburgh, UK Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 5 1 / 20 Outline 1 Well-founded

### MATHEMATICAL INDUCTION AND DIFFERENCE EQUATIONS

1 CHAPTER 6. MATHEMATICAL INDUCTION AND DIFFERENCE EQUATIONS 1 INSTITIÚID TEICNEOLAÍOCHTA CHEATHARLACH INSTITUTE OF TECHNOLOGY CARLOW MATHEMATICAL INDUCTION AND DIFFERENCE EQUATIONS 1 Introduction Recurrence

### If f is a 1-1 correspondence between A and B then it has an inverse, and f 1 isa 1-1 correspondence between B and A.

Chapter 5 Cardinality of sets 51 1-1 Correspondences A 1-1 correspondence between sets A and B is another name for a function f : A B that is 1-1 and onto If f is a 1-1 correspondence between A and B,