Fingerprint Recognition

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Fingerprint Recognition"

Transcription

1 IIT Kanpur Fingerprint Recognition CS676: Image Processing and Computer Vision Written By- Vinay Gupta Y6534, & Rohit Singh Y6400

2 Fingerprint recognition Introduction Fingerprint recognition or fingerprint authentication refers to the automated method of verifying a match between two human fingerprints. Fingerprints are one of many forms of biometrics used to identify an individual and verify their identity. Because of their uniqueness and consistency over time, fingerprints have been used for over a century, more recently becoming automated (i.e. a biometric) due to advancement in computing capabilities. Fingerprint identification is popular because of the inherent ease in acquisition, the numerous sources (ten fingers) available for collection, and their established use and collections by law enforcement and immigration. Background What is fingerprint? A fingerprint is an impression of the friction ridges on all parts of the finger. A friction ridge is a raised portion of the epidermis on the palmar (palm) or digits (fingers and toes) or plantar (sole) skin, consisting of one or more connected ridge units of friction ridge skin. These are sometimes known as "epidermal ridges" which are caused by the underlying interface between the dermal papillae of the dermis and the interpapillary (rete) pegs of the epidermis. These epidermal ridges serve to amplify vibrations triggered when fingertips brush across an uneven surface, better transmitting the signals to sensory nerves involved in fine texture perception. The ridges do not assist in gripping objects, sometimes in fact reducing grip to as much as 30% compared to completely smooth finger pads. Fingerprints may be deposited in natural secretions from the eccrine glands present in friction ridge skin (secretions consisting primarily of water) or they may be made by ink or other contaminants transferred from the peaks of friction skin ridges to a relatively smooth surface such as a fingerprint card. The term fingerprint normally refers to impressions transferred from the pad on the last joint of fingers and thumbs, though fingerprint cards also typically record portions of lower joint areas of the fingers (which are also used to make identifications)

3 Fingerprint Recognition Fingerprint recognition (sometimes referred to as dactyloscopy) or palm print identification is the process of comparing questioned and known friction skin ridge impressions from fingers or palms or even toes to determine if the impressions are from the same finger or palm. The flexibility of friction ridge skin means that no two finger or palm prints are ever exactly alike (never identical in every detail), even two impressions recorded immediately after each other. Fingerprint identification (also referred to as individualization) occurs when an expert (or an expert computer system operating under threshold scoring rules) determines that two friction ridge impressions originated from the same finger or palm (or toe, sole) to the exclusion of all others. A known print is the intentional recording of the friction ridges, usually with black printers ink rolled across a contrasting white background, typically a white card. Friction ridges can also be recorded digitally using a technique called Live-Scan. A latent print is the chance reproduction of the friction ridges deposited on the surface of an item. Latent prints are often fragmentary and may require chemical methods, powder, or alternative light sources in order to be visualized. When friction ridges come in contact with a surface that is receptive to a print, material on the ridges, such as perspiration, oil, grease, ink, etc. can be transferred to the item. The factors which affect friction ridge impressions are numerous, thereby requiring examiners to undergo extensive and objective study in order to be trained to competency. Pliability of the skin, deposition pressure, slippage, the matrix, the surface, and the development medium are just some of the various factors which can cause a latent print to appear differently from the known recording of the same friction ridges. Indeed, the conditions of friction ridge deposition are unique and never duplicated. This is another reason why extensive and objective study is necessary for examiners to achieve competency. Fingerprint Patterns The analysis of fingerprints for matching purposes generally requires the comparison of several features of the print pattern. These include patterns, which are aggregate characteristics of ridges, and minutia points, which are unique features found within the patterns. It is also necessary to know the structure and properties of human skin in order to successfully employ some of the imaging technologies.

4 Patterns The three basic patterns of fingerprint ridges are the arch, loop, and whorl. An arch is a pattern where the ridges enter from one side of the finger, rise in the center forming an arc, and then exit the other side of the finger. The loop is a pattern where the ridges enter from one side of a finger, form a curve, and tend to exit from the same side they enter. In the whorl pattern, ridges form circularly around a central point on the finger. Scientists have found that family members often share the same general fingerprint patterns, leading to the belief that these patterns are inherited Arch Loop (Right Loop) Whorl Minutia features Minutiae are major features of a fingerprint, using which comparisons of one print with another can be made. Minutiae include: Ridge ending - the abrupt end of a ridge Ridge bifurcation - a single ridge that divides into two ridges Short ridge, or independent ridge - a ridge that commences, travels a short distance and then ends Island - a single small ridge inside a short ridge or ridge ending that is not connected to all other ridges Ridge enclosure - a single ridge that bifurcates and reunites shortly afterward to continue as a single ridge Spur - a bifurcation with a short ridge branching off a longer ridge Crossover or bridge - a short ridge that runs between two parallel ridges Delta - a Y-shaped ridge meeting Core - a U-turn in the ridge pattern

5 Techniques for Fingerprint matching The large number of approaches to fingerprint matching can be coarsely classified into three families. Correlation-based matching: Two fingerprint images are superimposed and the correlation between corresponding pixels is computed for different alignments (e.g., various displacements and rotations). Minutiae-based matching: This is the most popular and widely used technique, being the basis of the fingerprint comparison made by fingerprint examiners. Minutiae are extracted from the two fingerprints and stored as sets of points in the two- dimensional plane. Minutiae-based matching essentially consists of finding the alignment between the template and the input minutiae sets that results in the maximum number of minutiae pairings Ridge feature-based matching: Minutiae extraction is difficult in very low-quality fingerprint images. However, whereas other features of the fingerprint ridge pattern (e.g., local orientation and frequency, ridge shape, texture information) may be extracted more reliably than minutiae, their distinctiveness is generally lower. The approaches belonging to this family compare fingerprints in term of features extracted from the ridge pattern. In principle, correlation- and minutiae-based matching could be conceived of as subfamilies of ridge feature-based matching, in as much as the pixel intensity and the minutiae positions are themselves features of the finger ridge pattern.

6 1. Correlation-based Techniques : Let T and I be the two fingerprint images corresponding to the template and the input finger- Fingerprint, respectively. Then an intuitive measure of their diversity is the sum of squared differences (SSD) between the intensities of the corresponding pixels: where the superscript "T" denotes the transpose of a vector. If the terms T 2 and l 2 are constant, the diversity between the two images is minimized when the cross-correlation (CC) between T and I is maximized: Note that the quantity 2, CC(T,I) appears as the third term in Equation 1. The cross- correlation (or simply correlation) is then a measure of image similarity. Due to the displacement and rotation that unavoidably characterize two impressions of a given finger, their similarity cannot be simply computed by superimposing T and I and applying Equation 2. Let I ( x, y,ѳ) represent a rotation of the input image I by an angle Ѳ around the origin (usually the image center) and shifted by x, y pixels in directions x and y, respectively; then the similarity between the two fingerprint images T and I can be measured as However equation 3 rarely leads to acceptable results because of the following problems. 1. Non-linear distortion makes impressions of the same finger significantly different in terms of global structure; in particular, the elastic distortion does not significantly alter the fingerprint pattern locally, but since the effects of distortion get integrated in image space, two global fingerprint patterns cannot be reliably correlated. 2. Skin condition and finger pressure cause image brightness, contrast, and ridge thickness to vary significantly across different impressions. 3. A direct application of Equation 3 is computationally very expensive. For example, consider two 400 x 400 pixel images; then the computation of the cross-correlation (Equation 2) for a single value of the ( x, y, Ѳ) triplet would require 16,000 multiplications and 16,000 summations. 2. Minutiae-based Methods: Minutiae matching is certainly the most authentic and widely used method for fingerprint matching.

7 Let T and I be the representation of the template and input fingerprint, respectively. Most common minutiae matching algorithms consider each minutia as a triplet m = {x, y, Ѳ} that indicates the x, y minutia location coordinates and the minutia angle Ѳ: where m and n denote the number of minutiae in T and I, respectively. A minutia m j in I and a minutia m i in T are considered "matching," if the spatial distance (sd) between them is smaller than a given tolerance r 0 and the direction difference (dd) between them is smaller than an angular tolerance Ѳ 0. R 0 and Ѳ 0 are necessary to compensate for errors in feature extraction process and to account for small plastic deformations. Aligning the two fingerprints is a mandatory step in order to maximize the number of matching minutiae. Correctly aligning two fingerprints certainly requires displacement (in x and y) and rotation (Ѳ) to be recovered and likely involves other geometrical transformations like scale resolution and other kinds of distortion. Let map(.) be the function that maps a minutia m' j (from I) into m" j according to a given geometrical transformation; for example, by considering a displacement of [ x, y] and a counterclockwise rotation Ѳ around the origin. Let mm(.) be an indicator function that returns 1 in the case where the minutiae m" j and m i, match according to Equations 5 and 6. Then, the matching problem can be formulated as

8 where P(i) is an unknown function that determines the pairing between I and T minutiae; in particular, each minutia has either exactly one mate in the other fingerprint or has no mate at all: 1. P(i) = j indicates that the mate of the m i in T is the minutia m' j in I; 2. P(i) = null indicates that minutia m i in T has no mate in I; 3. a minutia m' j in I, such that for all i = 1..m, P(i) j has no mate in T; 4. for all i = 1..m, k = l..m, i k => P(i) P(k) or P(i) = P(k) = null (this requires that each minutia in I is associated with a maximum of one minutia in T). Expression 7 requires that the number of minutiae mates be maximized, independently of how strict these mates are; in other words, if two minutiae comply with Equations 5 and 6, then their contribution to expression 7 is made independently of their spatial distance and of their direction difference. Also, to comply with constraint 4 above, each minutia m" j already mated has to be marked, to avoid mating it twice or more. To achieve the optimum pairing (according to Equation 7), a slightly more complicated scheme should be adopted i.e. in the case when a minutia of I falls within the tolerance hyper-sphere of more than one minutia of T, the optimum assignment is that which maximizes the number of mates. Solving the minutiae matching problem (expression7) is trivial when the correct alignment ( x, y, Ѳ) is known; in fact, the pairing (i.e., the function P) can be determined by setting for each i = 1..m:

9 Also, the maximization in 7 can be easily solved if the function P (minutiae correspondence) is known; in this case, the unknown alignment ( x, y, Ѳ) can be determined in the least square sense. However in practice both the function P and correct alignment ( x, y, Ѳ) is not known which makes the matching problem hard because of its exponential nature. Hence the minutiae matching problem has been generally addressed as a point pattern matching problem which can be solved using numerous approaches like relaxation methods, algebraic and operational research solutions, tree-pruning approaches, energy-minimization methods, Hough transform, and so on. An approach to point pattern matching, as proposed by Chang et al. (1997) consists of the main steps: 1. Detect the minutiae pair (called the principal pair) that receives the maximum Matching Pair Support (MPS) and the alignment parameters (Ѳ, s) that can match most minutiae between T and I. The principal pair that has maximum MPS is determined through a Hough transform-based voting process; 2. The remaining minutiae mates (i.e., the function P) are then determined once the two fingerprints have been registered to superimpose the minutiae constituting the principal pair; 3. The exact alignment is computed in the least square sense once the correspondence function is known. To accomplish Step 1, which is at the core of this approach, the algorithm considers segments defined by pairs of minutiae m i2 m i1 in T and m j2m j1 in I and derives, from each pair of segments, the parameters Ѳ and s simply as A transformation ( x, y, Ѳ, s), which aligns the two segments, must necessarily involve a scale change by an amount given by the ratio of the two segment lengths, and a rotation by an angle equal to the difference between the two segment angles

10 Using the above algorithm we get the principal pair and the corresponding parameters (Ѳ*, s*). Thereafter we perform step 2 and 3 to find the rest matching pairs and their alignments. Thus at the end of step 3 we get the max number of matching pairs of minutiae which helps in matching the 2 fingerprints. This is basically the crux of fingerprint matching algorithm. Various other techniques are additionally used to efficiently solve and improve results of the matching problem like Minutiae matching with pre-alignment, Global and local Minutiae matching, distortion corrections etc.

11 3. Ridge Feature-based Matching Techniques: Techniques followed under this category resulted from the disadvantages Minutiae-based methods suffered with. Some of them are: Reliably extracting minutiae from poor quality fingerprints is very difficult. Although minutiae may carry most of the fingerprint discriminatory information, they do not always constitute the best tradeoff between accuracy and robustness; Minutiae extraction is computationally expensive and time consuming. Need for additional features to be used in conjunction with minutiae (and not as an alternative) to increase system accuracy and robustness. The commonly used alternative features under this category are: spatial relationship and geometrical attributes of the ridge lines: In 1986 Moayer and Fu and Isenor and Zaky introduced tree grammars to classify ridge line patterns and graph

12 structures to perform incremental graph matching which was carried out to compare a set of ridges. global and local texture information: Textures are defined by spatial repetition of basic elements, and are characterized by properties such as scale, orientation, frequency, symmetry, isotropy, and so on. Fingerprint ridge lines are mainly described by smooth ridge orientation and frequency, except at singular regions. These singular regions are discontinuities in a basically regular pattern and include the loop(s) and the delta(s) at a coarse resolution and the minutiae points at a high resolution. Various techniques using filters are applied to extract both global and local textures. shape features : Ceguerra and Koprinska in 2002 proposed shape-based features, where a compact one- dimensional shape signature that encodes the general shape of the fingerprint is generated from the two-dimensional fingerprint image using a reference axis. Summary This was a brief discussion about the different techniques use for fingerprint matching and recognition. We included only a brief description of the techniques being used and did not include the procedure of finger print sensing, feature extraction, fingerprint classification and indexing etc. since it is beyond the scope of the report. References Handbook of Fingerprint Recognition by Davide Maltoni, Dario Maio, Anil K. Jain, Salil Prabhakar Fingerprint Classification and Matching by Anil Jain (Dept. of Computer Science & Engg, Michigan State University) & Sharath Pankanti (Exploratory Computer Vision Grp. IBM T. J. Watson Research Centre) Wikipedia (Document By : National Science and Technology Council (NSTC), Committee on Technology, Committee on Homeland and National Security Subcommittee on Biometrics )

Cross-correlation Based Algorithm for Fingerprint recognition Using MATLAB

Cross-correlation Based Algorithm for Fingerprint recognition Using MATLAB International Journal of Engineering and Technical Research (IJETR) ISSN: 2321-0869, Volume-2, Issue-3, March 2014 Cross-correlation Based Algorithm for Fingerprint recognition Using MATLAB Miss.Arti Sandbhor,

More information

Classification of Fingerprints. Sarat C. Dass Department of Statistics & Probability

Classification of Fingerprints. Sarat C. Dass Department of Statistics & Probability Classification of Fingerprints Sarat C. Dass Department of Statistics & Probability Fingerprint Classification Fingerprint classification is a coarse level partitioning of a fingerprint database into smaller

More information

Fingerprint s Core Point Detection using Gradient Field Mask

Fingerprint s Core Point Detection using Gradient Field Mask Fingerprint s Core Point Detection using Gradient Field Mask Ashish Mishra Assistant Professor Dept. of Computer Science, GGCT, Jabalpur, [M.P.], Dr.Madhu Shandilya Associate Professor Dept. of Electronics.MANIT,Bhopal[M.P.]

More information

Fingerprint recognition using fingerprint model

Fingerprint recognition using fingerprint model International Journal of Engineering and Technical Research (IJETR) Fingerprint recognition using fingerprint model Suman Sankhla, Sunil Sharma, Naveen Jain Abstract Nowadays, fingerprint recognisation

More information

Fingerprint recognition using standardized fingerprint model

Fingerprint recognition using standardized fingerprint model ISSN (Online): 1694-0784 ISSN (Print): 1694-0814 11 Fingerprint recognition using standardized fingerprint model Le Hoang Thai 1 and Ha Nhat Tam 2 1 Faculty of Information Technology, University of Science

More information

Document #8 Standard for the Documentation of Analysis, Comparison, Evaluation, and Verification (ACE-V) (Latent)

Document #8 Standard for the Documentation of Analysis, Comparison, Evaluation, and Verification (ACE-V) (Latent) Document #8 Standard for the Documentation of Analysis, Comparison, Evaluation, and Verification (ACE-V) (Latent) 1. Preamble 1.1. When friction ridge detail is examined using the ACE-V methodology, examiners

More information

Fingerprinting Information Sheet

Fingerprinting Information Sheet Fingerprinting Information Sheet HISTORY Fingerprints weren t always used as a means to identify criminals. One of the first methods used to compare physical characteristics was developed in 1883 by Alphonse

More information

Forensic Science Lesson 3: Trace Evidence Analysis

Forensic Science Lesson 3: Trace Evidence Analysis Forensic Science Lesson 3: Trace Evidence Analysis History Alphonse Bertillon 1883 Created the first systematic system of individual classification & identification Detailed description of subject, full-length

More information

Palmprint Recognition. By Sree Rama Murthy kora Praveen Verma Yashwant Kashyap

Palmprint Recognition. By Sree Rama Murthy kora Praveen Verma Yashwant Kashyap Palmprint Recognition By Sree Rama Murthy kora Praveen Verma Yashwant Kashyap Palm print Palm Patterns are utilized in many applications: 1. To correlate palm patterns with medical disorders, e.g. genetic

More information

High Resolution Fingerprint Matching Using Level 3 Features

High Resolution Fingerprint Matching Using Level 3 Features High Resolution Fingerprint Matching Using Level 3 Features Anil K. Jain and Yi Chen Michigan State University Fingerprint Features Latent print examiners use Level 3 all the time We do not just count

More information

Keywords EIC (Electronic Identity Card), NIC(National Identification Card, FP (Fingerprint), authentication, Program card.

Keywords EIC (Electronic Identity Card), NIC(National Identification Card, FP (Fingerprint), authentication, Program card. Volume 3, Issue 9, September 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com An Effective

More information

SWGFAST. Defining Level Three Detail

SWGFAST. Defining Level Three Detail SWGFAST Defining Level Three Detail ANSI / NIST Workshop Data Format for the Interchange of Fingerprint, Facial, & Scar Mark & Tattoo (SMT) Information April 26-28,2005 28,2005 Defining Level Three Detail

More information

Fingerprint Verification Using SIFT Features

Fingerprint Verification Using SIFT Features Fingerprint Verification Using SIFT Features Unsang Park* a, Sharath Pankanti a, A. K. Jain b a IBM T. J. Watson Research Center, Hawthorne, NY, USA 10532; b Dept. of Computer Science & Engineering, Michigan

More information

The Biometrics Fingerprint Sensor

The Biometrics Fingerprint Sensor AKME LOCK LLC The Biometrics Fingerprint Sensor There are two main types of sensors for inputting fingerprints. One is an optical sensor using a prism or hologram, and the other type is a non-optical sensor.

More information

Object Recognition and Template Matching

Object Recognition and Template Matching Object Recognition and Template Matching Template Matching A template is a small image (sub-image) The goal is to find occurrences of this template in a larger image That is, you want to find matches of

More information

A responsive Fingerprint Matching system for a scalable functional agent

A responsive Fingerprint Matching system for a scalable functional agent A responsive Fingerprint Matching system for a scalable functional agent N. Nagaraju Research Scholar, PACE Institute of Technology & Sciences Ongole. ABSTRACT The Fingerprint Matching is that the most

More information

Part-Based Recognition

Part-Based Recognition Part-Based Recognition Benedict Brown CS597D, Fall 2003 Princeton University CS 597D, Part-Based Recognition p. 1/32 Introduction Many objects are made up of parts It s presumably easier to identify simple

More information

Pattern Recognition 43 (2010) 1050 -- 1061. Contents lists available at ScienceDirect. Pattern Recognition

Pattern Recognition 43 (2010) 1050 -- 1061. Contents lists available at ScienceDirect. Pattern Recognition Pattern Recognition 43 (2010) 1050 -- 1061 Contents lists available at ScienceDirect Pattern Recognition journal homepage: www.elsevier.com/locate/pr High resolution partial fingerprint alignment using

More information

On the Operational Quality of Fingerprint Scanners

On the Operational Quality of Fingerprint Scanners BioLab - Biometric System Lab University of Bologna - ITALY http://biolab.csr.unibo.it On the Operational Quality of Fingerprint Scanners Davide Maltoni and Matteo Ferrara November 7, 2007 Outline The

More information

Automatic Biometric Student Attendance System: A Case Study Christian Service University College

Automatic Biometric Student Attendance System: A Case Study Christian Service University College Automatic Biometric Student Attendance System: A Case Study Christian Service University College Dr Thomas Yeboah Dr Ing Edward Opoku-Mensah Mr Christopher Ayaaba Abilimi ABSTRACT In many tertiary institutions

More information

Filterbank-Based Fingerprint Matching

Filterbank-Based Fingerprint Matching 846 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 5, MAY 2000 Filterbank-Based Fingerprint Matching Anil K. Jain, Fellow, IEEE, Salil Prabhakar, Lin Hong, and Sharath Pankanti Abstract With identity

More information

PARTIAL FINGERPRINT REGISTRATION FOR FORENSICS USING MINUTIAE-GENERATED ORIENTATION FIELDS

PARTIAL FINGERPRINT REGISTRATION FOR FORENSICS USING MINUTIAE-GENERATED ORIENTATION FIELDS PARTIAL FINGERPRINT REGISTRATION FOR FORENSICS USING MINUTIAE-GENERATED ORIENTATION FIELDS Ram P. Krish 1, Julian Fierrez 1, Daniel Ramos 1, Javier Ortega-Garcia 1, Josef Bigun 2 1 Biometric Recognition

More information

DNA Biometrics 1 DNA BIOMETRICS. Sandra Maestre Sean Nichols ISM

DNA Biometrics 1 DNA BIOMETRICS. Sandra Maestre Sean Nichols ISM DNA Biometrics 1 DNA BIOMETRICS Sandra Maestre Sean Nichols ISM 4320-001 DNA Biometrics 2 Table of Contents I. Executive Summary. 3-4 II. Introduction.. 5-6 III. Biometrics.. 6 IV. Comparison of Biometrics.

More information

Fe-Fi-Fo-Thumb. February 9, 2004

Fe-Fi-Fo-Thumb. February 9, 2004 Fe-Fi-Fo-Thumb February 9, 2004 Abstract Fingerprinting is one of the oldest techniques for identification, and it is still used by many agencies today. The primary motivation for this is that fingerprints

More information

FINGERPRINTING IS A SCIENCE - TAKE A SCIENTIFIC APPROACH

FINGERPRINTING IS A SCIENCE - TAKE A SCIENTIFIC APPROACH FINGERPRINTING IS A SCIENCE - TAKE A SCIENTIFIC APPROACH FINGERPRINT CLEAN HANDS ONLY DRY HANDS THOROUGHLY ROLL FINGERS FROM NAIL-TO-NAIL NOTE THE CORES AND DELTAS TAKE IMPRESSIONS IN CORRECT ORDER PRODUCE

More information

Personal Identity Verification (PIV) IMAGE QUALITY SPECIFICATIONS FOR SINGLE FINGER CAPTURE DEVICES

Personal Identity Verification (PIV) IMAGE QUALITY SPECIFICATIONS FOR SINGLE FINGER CAPTURE DEVICES Personal Identity Verification (PIV) IMAGE QUALITY SPECIFICATIONS FOR SINGLE FINGER CAPTURE DEVICES 1.0 SCOPE AND PURPOSE These specifications apply to fingerprint capture devices which scan and capture

More information

Efficient Attendance Management: A Face Recognition Approach

Efficient Attendance Management: A Face Recognition Approach Efficient Attendance Management: A Face Recognition Approach Badal J. Deshmukh, Sudhir M. Kharad Abstract Taking student attendance in a classroom has always been a tedious task faultfinders. It is completely

More information

Automated Sudoku Solver. Marty Otzenberger EGGN 510 December 4, 2012

Automated Sudoku Solver. Marty Otzenberger EGGN 510 December 4, 2012 Automated Sudoku Solver Marty Otzenberger EGGN 510 December 4, 2012 Outline Goal Problem Elements Initial Testing Test Images Approaches Final Algorithm Results/Statistics Conclusions Problems/Limits Future

More information

Multimodal Biometric Recognition Security System

Multimodal Biometric Recognition Security System Multimodal Biometric Recognition Security System Anju.M.I, G.Sheeba, G.Sivakami, Monica.J, Savithri.M Department of ECE, New Prince Shri Bhavani College of Engg. & Tech., Chennai, India ABSTRACT: Security

More information

CHAPTER 5 SENDER AUTHENTICATION USING FACE BIOMETRICS

CHAPTER 5 SENDER AUTHENTICATION USING FACE BIOMETRICS 74 CHAPTER 5 SENDER AUTHENTICATION USING FACE BIOMETRICS 5.1 INTRODUCTION Face recognition has become very popular in recent years, and is used in many biometric-based security systems. Face recognition

More information

Polygonal Approximation of Closed Curves across Multiple Views

Polygonal Approximation of Closed Curves across Multiple Views Polygonal Approximation of Closed Curves across Multiple Views M. Pawan Kumar Saurabh Goyal C. V. Jawahar P. J. Narayanan Centre for Visual Information Technology International Institute of Information

More information

ATM Transaction Security Using Fingerprint/OTP

ATM Transaction Security Using Fingerprint/OTP ATM Transaction Security Using Fingerprint/OTP 1 Krishna Nand Pandey, 2 Md. Masoom, 3 Supriya Kumari, 4 Preeti Dhiman 1,2,3,4 Electronics & Instrumentation Engineering, Galgotias College of Engineering

More information

Hierarchically linked extended features for fingerprint processing

Hierarchically linked extended features for fingerprint processing Hierarchically linked extended features for fingerprint processing Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultäten der Georg-August-Universität zu Göttingen

More information

Defining AFIS Latent Print Lights-Out

Defining AFIS Latent Print Lights-Out NIST ELFT Workshop March 19-20, 2009 Defining AFIS Latent Print Lights-Out Stephen B. Meagher Dactyl ID, LLC AFIS 10-Print Lights-Out Arrest Booking Process Booking Officer performs 10-Print fingerprint

More information

3D Pipeline Segmentation (planar)

3D Pipeline Segmentation (planar) 3D Pipeline Segmentation (planar) Registration (using lines) 3D PHOTOGRAPHY EXAMPLE Ten scans were acquired of façade of Thomas Hunter Building (NYC) Automatic registration. Each scan has a different color.

More information

Development of a Networked Thumb Print-Based Staff Attendance Management System

Development of a Networked Thumb Print-Based Staff Attendance Management System American Journal of Engineering Research (AJER) e-issn : 2320-0847 p-issn : 2320-0936 Volume-03, Issue-03, pp-121-126 www.ajer.org Research Paper Open Access Development of a Networked Thumb Print-Based

More information

Multimodal Biometrics Based Integrated Authentication and Security System

Multimodal Biometrics Based Integrated Authentication and Security System Multimodal Biometrics Based Integrated Authentication and Security System Mr.Rajput Nirajsing 1, Ms. Rajgire Mayuri, 2 Mr. Shaikh Moinuddin 3, Ms.Nakhawa Priyanka 4 1 2 3 4 (Comp Dept & DYPCOE,,Talegaon,

More information

IMDA Systems: Digital Signature Verification

IMDA Systems: Digital Signature Verification IMDA Systems: Digital Signature Verification ECE-492/3 Senior Design Project Spring 2011 Electrical and Computer Engineering Department Volgenau School of Engineering George Mason University Fairfax, VA

More information

Secured Employee Attendance Management System Using Fingerprint

Secured Employee Attendance Management System Using Fingerprint IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 2278-0661, p- ISSN: 2278-8727Volume 16, Issue 1, Ver. III (Jan. 2014), PP 32-37 Secured Employee Attendance Management System Using Fingerprint Chiwa,

More information

Chapter 15 Introduction to Linear Programming

Chapter 15 Introduction to Linear Programming Chapter 15 Introduction to Linear Programming An Introduction to Optimization Spring, 2014 Wei-Ta Chu 1 Brief History of Linear Programming The goal of linear programming is to determine the values of

More information

Published International Standards Developed by ISO/IEC JTC 1/SC 37 - Biometrics

Published International Standards Developed by ISO/IEC JTC 1/SC 37 - Biometrics Published International Standards Developed by ISO/IEC JTC 1/SC 37 - Biometrics Revised October 25, 2007 These standards can be obtained (for a fee) at ANSI s estandards Store: http://webstore.ansi.org/

More information

SWGFAST Glossary - Friction Ridge Automation

SWGFAST Glossary - Friction Ridge Automation SWGFAST Glossary - Friction Ridge Automation ADIPS Analog Digital Image-Processing System. AFIS Automated Fingerprint Identification System. ALGORITHM Mathematical routine used in computer processing,

More information

Template and Database Security in Biometrics Systems: A Challenging Task

Template and Database Security in Biometrics Systems: A Challenging Task Template and Database Security in Biometrics Systems: A Challenging Task Manvjeet Kaur Lecturer CSE Deptt. Dr. Sanjeev Sofat Prof. and Head CSE Deptt. Deepak Saraswat ME (CSE) Student ABSTRACT Security

More information

The calibration problem was discussed in details during lecture 3.

The calibration problem was discussed in details during lecture 3. 1 2 The calibration problem was discussed in details during lecture 3. 3 Once the camera is calibrated (intrinsics are known) and the transformation from the world reference system to the camera reference

More information

Section 2.3 Authentication Technologies. Authentication

Section 2.3 Authentication Technologies. Authentication Section 2.3 Authentication Technologies 1 Authentication The determination of identity, usually based on a combination of something the person has (like a smart card or a radio key fob storing secret keys),

More information

Identity Verification of Newborn Using Biometrics

Identity Verification of Newborn Using Biometrics Identity Verification of Newborn Using Biometrics S.Balameenakshi, S.Sumathi and R. Rani Hema Malini S.Balameenakshi is M.E Communication Systems student in the department of Electronics and Communication

More information

Calibrating a Camera and Rebuilding a Scene by Detecting a Fixed Size Common Object in an Image

Calibrating a Camera and Rebuilding a Scene by Detecting a Fixed Size Common Object in an Image Calibrating a Camera and Rebuilding a Scene by Detecting a Fixed Size Common Object in an Image Levi Franklin Section 1: Introduction One of the difficulties of trying to determine information about a

More information

Model-based Chart Image Recognition

Model-based Chart Image Recognition Model-based Chart Image Recognition Weihua Huang, Chew Lim Tan and Wee Kheng Leow SOC, National University of Singapore, 3 Science Drive 2, Singapore 117543 E-mail: {huangwh,tancl, leowwk@comp.nus.edu.sg}

More information

Categorical Data Visualization and Clustering Using Subjective Factors

Categorical Data Visualization and Clustering Using Subjective Factors Categorical Data Visualization and Clustering Using Subjective Factors Chia-Hui Chang and Zhi-Kai Ding Department of Computer Science and Information Engineering, National Central University, Chung-Li,

More information

PSS 27.2 The Electric Field of a Continuous Distribution of Charge

PSS 27.2 The Electric Field of a Continuous Distribution of Charge Chapter 27 Solutions PSS 27.2 The Electric Field of a Continuous Distribution of Charge Description: Knight Problem-Solving Strategy 27.2 The Electric Field of a Continuous Distribution of Charge is illustrated.

More information

Perceptual Color Spaces

Perceptual Color Spaces Perceptual Color Spaces Background Humans can perceive thousands of colors, and only about a couple of dozen gray shades (cones/rods) Divided into two major areas: full color and pseudo color processing

More information

The Scientific Data Mining Process

The Scientific Data Mining Process Chapter 4 The Scientific Data Mining Process When I use a word, Humpty Dumpty said, in rather a scornful tone, it means just what I choose it to mean neither more nor less. Lewis Carroll [87, p. 214] In

More information

An Efficient Automatic Attendance System Using Fingerprint Reconstruction Technique

An Efficient Automatic Attendance System Using Fingerprint Reconstruction Technique An Efficient Automatic Attendance System Using Fingerprint Reconstruction Technique Josphineleela.R Research scholar Department of Computer Science and Engineering Sathyabamauniversity Chennai,India ilanleela@yahoo.com

More information

CHAPTER 4 4. METHODS FOR MEASURING DISTANCE IN IMAGES

CHAPTER 4 4. METHODS FOR MEASURING DISTANCE IN IMAGES 50 CHAPTER 4 4. METHODS FOR MEASURING DISTANCE IN IMAGES 4.1. INTRODUCTION In image analysis, the distance transform measures the distance of each object point from the nearest boundary and is an important

More information

On the Individuality of Fingerprints

On the Individuality of Fingerprints On the Individuality of Fingerprints Sharath Pankanti Salil Prabhakar nil K. Jain IBM T. J. Watson Research Center DigitalPersona, Inc. Dept. of Comp. Sci. and Eng. Yorktown Heights, NY 0598 Redwood City,

More information

An Optical Sudoku Solver

An Optical Sudoku Solver An Optical Sudoku Solver Martin Byröd February 12, 07 Abstract In this report, a vision-based sudoku solver is described. The solver is capable of solving a sudoku directly from a photograph taken with

More information

An Iterative Image Registration Technique with an Application to Stereo Vision

An Iterative Image Registration Technique with an Application to Stereo Vision An Iterative Image Registration Technique with an Application to Stereo Vision Bruce D. Lucas Takeo Kanade Computer Science Department Carnegie-Mellon University Pittsburgh, Pennsylvania 15213 Abstract

More information

History of Fingerprinting

History of Fingerprinting History of Fingerprinting The Ancient World Ancient China documented use about 3000 years ago. Babylon used for identity on clay tablets History of Fingerprinting The Modern World 1686 Marcello Malpighi

More information

RealScan-S. Fingerprint Scanner RealScan-S

RealScan-S. Fingerprint Scanner RealScan-S Fingerprint Scanner RealScan-S Outline A fingerprint scanner used by the police or prosecution for collecting a suspect s rolled fingerprints or acquiring a person s flat fingerprints for identification.

More information

Interpolating and Approximating Implicit Surfaces from Polygon Soup

Interpolating and Approximating Implicit Surfaces from Polygon Soup Interpolating and Approximating Implicit Surfaces from Polygon Soup 1. Briefly summarize the paper s contributions. Does it address a new problem? Does it present a new approach? Does it show new types

More information

Process Control and Instrumentation Prof. D. Sarkar Department of Chemical Engineering Indian Institute of Technology, Kharagpur

Process Control and Instrumentation Prof. D. Sarkar Department of Chemical Engineering Indian Institute of Technology, Kharagpur Process Control and Instrumentation Prof. D. Sarkar Department of Chemical Engineering Indian Institute of Technology, Kharagpur Lecture - 38 Instrumentation: General Principle of Measurement Systems (Contd.)

More information

Palmprint as a Biometric Identifier

Palmprint as a Biometric Identifier Palmprint as a Biometric Identifier 1 Kasturika B. Ray, 2 Rachita Misra 1 Orissa Engineering College, Nabojyoti Vihar, Bhubaneswar, Orissa, India 2 Dept. Of IT, CV Raman College of Engineering, Bhubaneswar,

More information

VECTORAL IMAGING THE NEW DIRECTION IN AUTOMATED OPTICAL INSPECTION

VECTORAL IMAGING THE NEW DIRECTION IN AUTOMATED OPTICAL INSPECTION VECTORAL IMAGING THE NEW DIRECTION IN AUTOMATED OPTICAL INSPECTION Mark J. Norris Vision Inspection Technology, LLC Haverhill, MA mnorris@vitechnology.com ABSTRACT Traditional methods of identifying and

More information

Face Recognition using Principle Component Analysis

Face Recognition using Principle Component Analysis Face Recognition using Principle Component Analysis Kyungnam Kim Department of Computer Science University of Maryland, College Park MD 20742, USA Summary This is the summary of the basic idea about PCA

More information

C4 Computer Vision. 4 Lectures Michaelmas Term Tutorial Sheet Prof A. Zisserman. fundamental matrix, recovering ego-motion, applications.

C4 Computer Vision. 4 Lectures Michaelmas Term Tutorial Sheet Prof A. Zisserman. fundamental matrix, recovering ego-motion, applications. C4 Computer Vision 4 Lectures Michaelmas Term 2004 1 Tutorial Sheet Prof A. Zisserman Overview Lecture 1: Stereo Reconstruction I: epipolar geometry, fundamental matrix. Lecture 2: Stereo Reconstruction

More information

An Attendance Monitoring System Using Biometrics Authentication Anchal V Khetan

An Attendance Monitoring System Using Biometrics Authentication Anchal V Khetan An Attendance Monitoring System Using Biometrics Authentication Anchal V Khetan Computer Science engg dept., Ballari Institute of Technology and Management Bellary-583103, India khetanaanchal15@gmail.com

More information

State of Stress at Point

State of Stress at Point State of Stress at Point Einstein Notation The basic idea of Einstein notation is that a covector and a vector can form a scalar: This is typically written as an explicit sum: According to this convention,

More information

The Basics of FEA Procedure

The Basics of FEA Procedure CHAPTER 2 The Basics of FEA Procedure 2.1 Introduction This chapter discusses the spring element, especially for the purpose of introducing various concepts involved in use of the FEA technique. A spring

More information

SECURE FINGERPRINT VERIFICATION BASED ON IMAGE PROCESSING SEGMENTATION USING COMPUTATIONAL GEOMETRY ALGORITHMS

SECURE FINGERPRINT VERIFICATION BASED ON IMAGE PROCESSING SEGMENTATION USING COMPUTATIONAL GEOMETRY ALGORITHMS SECURE FINGERPRINT VERIFICATION BASED ON IMAGE PROCESSING SEGMENTATION USING COMPUTATIONAL GEOMETRY ALGORITHMS M.Poulos E.Magkos V. Chrissikopoulos N. Alexandris marios.p@usa.net emagos@unipi.gr vchris@ionio.gr

More information

Least-Squares Intersection of Lines

Least-Squares Intersection of Lines Least-Squares Intersection of Lines Johannes Traa - UIUC 2013 This write-up derives the least-squares solution for the intersection of lines. In the general case, a set of lines will not intersect at a

More information

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in two-dimensional space (1) 2x y = 3 describes a line in two-dimensional space The coefficients of x and y in the equation

More information

Biometrics in Physical Access Control Issues, Status and Trends White Paper

Biometrics in Physical Access Control Issues, Status and Trends White Paper Biometrics in Physical Access Control Issues, Status and Trends White Paper Authored and Presented by: Bill Spence, Recognition Systems, Inc. SIA Biometrics Industry Group Vice-Chair & SIA Biometrics Industry

More information

SWGFAST Glossary - Classification

SWGFAST Glossary - Classification SWGFAST Glossary - Classification APPENDAGE An attachment or connection within friction ridges. ARCH - PLAIN A fingerprint pattern in which the ridges enter on one side of the impression, and flow, or

More information

Fingerprint Characteristic Extraction by Ridge Orientation: An Approach for a Supervised Contactless Biometric System

Fingerprint Characteristic Extraction by Ridge Orientation: An Approach for a Supervised Contactless Biometric System Fingerprint Characteristic Extraction by Ridge Orientation: An Approach for a Supervised Contactless Biometric System M. Kokou Assogba LETIA, Ecole Polytech. Ab-Calavi (EPAC) 01 BP 2009 COTONOU BENIN Amine

More information

Leaf recognition for plant classification using GLCM and PCA methods

Leaf recognition for plant classification using GLCM and PCA methods Oriental Journal of Computer Science & Technology Vol. 3(1), 31-36 (2010) Leaf recognition for plant classification using GLCM and PCA methods ABDOLVAHAB EHSANIRAD and SHARATH KUMAR Y. H. Department of

More information

Colour Image Segmentation Technique for Screen Printing

Colour Image Segmentation Technique for Screen Printing 60 R.U. Hewage and D.U.J. Sonnadara Department of Physics, University of Colombo, Sri Lanka ABSTRACT Screen-printing is an industry with a large number of applications ranging from printing mobile phone

More information

AUTOMATED THREE-ANTENNA POLARIZATION MEASUREMENTS USING DIGITAL SIGNAL PROCESSING

AUTOMATED THREE-ANTENNA POLARIZATION MEASUREMENTS USING DIGITAL SIGNAL PROCESSING AUTOMATED THREE-ANTENNA POLARIZATION MEASUREMENTS USING DIGITAL SIGNAL PROCESSING John R. Jones and Doren W. Hess Abstract In this paper we present a three-antenna measurement procedure which yields the

More information

Solving Simultaneous Equations and Matrices

Solving Simultaneous Equations and Matrices Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering

More information

Digital Imaging and Multimedia. Filters. Ahmed Elgammal Dept. of Computer Science Rutgers University

Digital Imaging and Multimedia. Filters. Ahmed Elgammal Dept. of Computer Science Rutgers University Digital Imaging and Multimedia Filters Ahmed Elgammal Dept. of Computer Science Rutgers University Outlines What are Filters Linear Filters Convolution operation Properties of Linear Filters Application

More information

Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture 7 Transformations in 2-D

Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture 7 Transformations in 2-D Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture 7 Transformations in 2-D Welcome everybody. We continue the discussion on 2D

More information

Introduction. Chapter 1

Introduction. Chapter 1 1 Chapter 1 Introduction Robotics and automation have undergone an outstanding development in the manufacturing industry over the last decades owing to the increasing demand for higher levels of productivity

More information

DigitalPersona White Paper Guide to Fingerprint Recognition

DigitalPersona White Paper Guide to Fingerprint Recognition DigitalPersona White Paper Guide to Fingerprint Recognition A DigitalPersona, Inc. White Paper July 2007 DigitalPersona, Inc. 1+ 650.474.4000 www.digitalpersona.com Table of Contents DigitalPersona White

More information

Unified Lecture # 4 Vectors

Unified Lecture # 4 Vectors Fall 2005 Unified Lecture # 4 Vectors These notes were written by J. Peraire as a review of vectors for Dynamics 16.07. They have been adapted for Unified Engineering by R. Radovitzky. References [1] Feynmann,

More information

6 th Grade New Mexico Math Standards

6 th Grade New Mexico Math Standards Strand 1: NUMBER AND OPERATIONS Standard: Students will understand numerical concepts and mathematical operations. 5-8 Benchmark 1: Understand numbers, ways of representing numbers, relationships among

More information

FACE RECOGNITION BASED ATTENDANCE MARKING SYSTEM

FACE RECOGNITION BASED ATTENDANCE MARKING SYSTEM Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 2, February 2014,

More information

arxiv: v1 [math.mg] 6 May 2014

arxiv: v1 [math.mg] 6 May 2014 DEFINING RELATIONS FOR REFLECTIONS. I OLEG VIRO arxiv:1405.1460v1 [math.mg] 6 May 2014 Stony Brook University, NY, USA; PDMI, St. Petersburg, Russia Abstract. An idea to present a classical Lie group of

More information

The purpose of major case prints is to record all friction ridge detail

The purpose of major case prints is to record all friction ridge detail Chapter 12 Major Case Prints The purpose of major case prints is to record all friction ridge detail so that complete and accurate finger and palm print comparisons can be completed. This includes the

More information

Encoders for Linear Motors in the Electronics Industry

Encoders for Linear Motors in the Electronics Industry Technical Information Encoders for Linear Motors in the Electronics Industry The semiconductor industry and automation technology increasingly require more precise and faster machines in order to satisfy

More information

Aman Chadha et al, Int. J. Comp. Tech. Appl., Vol 2 (5), 1419-1425

Aman Chadha et al, Int. J. Comp. Tech. Appl., Vol 2 (5), 1419-1425 Rotation, Scaling and Translation Analysis of Biometric Templates Aman Chadha, Divya Jyoti, M. Mani Roja Thadomal Shahani Engineering College, Mumbai, India aman.x64@gmail.com Abstract Biometric authentication

More information

COMPARISON OF OBJECT BASED AND PIXEL BASED CLASSIFICATION OF HIGH RESOLUTION SATELLITE IMAGES USING ARTIFICIAL NEURAL NETWORKS

COMPARISON OF OBJECT BASED AND PIXEL BASED CLASSIFICATION OF HIGH RESOLUTION SATELLITE IMAGES USING ARTIFICIAL NEURAL NETWORKS COMPARISON OF OBJECT BASED AND PIXEL BASED CLASSIFICATION OF HIGH RESOLUTION SATELLITE IMAGES USING ARTIFICIAL NEURAL NETWORKS B.K. Mohan and S. N. Ladha Centre for Studies in Resources Engineering IIT

More information

Introduction to Pattern Recognition

Introduction to Pattern Recognition Introduction to Pattern Recognition Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Spring 2009 CS 551, Spring 2009 c 2009, Selim Aksoy (Bilkent University)

More information

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 01

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 01 Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras Lecture - 01 Welcome to the series of lectures, on finite element analysis. Before I start,

More information

Lab Project: Bridge Construction

Lab Project: Bridge Construction MATH 5485 Introduction to Numerical Methods I Fall 2008 Marcel Arndt (modified by Duane Nykamp) Lab Project: Bridge Construction In this lab project, we investigate the static behavior of bridges built

More information

Metrics on SO(3) and Inverse Kinematics

Metrics on SO(3) and Inverse Kinematics Mathematical Foundations of Computer Graphics and Vision Metrics on SO(3) and Inverse Kinematics Luca Ballan Institute of Visual Computing Optimization on Manifolds Descent approach d is a ascent direction

More information

International Year of Light 2015 Tech-Talks BREGENZ: Mehmet Arik Well-Being in Office Applications Light Measurement & Quality Parameters

International Year of Light 2015 Tech-Talks BREGENZ: Mehmet Arik Well-Being in Office Applications Light Measurement & Quality Parameters www.led-professional.com ISSN 1993-890X Trends & Technologies for Future Lighting Solutions ReviewJan/Feb 2015 Issue LpR 47 International Year of Light 2015 Tech-Talks BREGENZ: Mehmet Arik Well-Being in

More information

CVChess: Computer Vision Chess Analytics

CVChess: Computer Vision Chess Analytics CVChess: Computer Vision Chess Analytics Jay Hack and Prithvi Ramakrishnan Abstract We present a computer vision application and a set of associated algorithms capable of recording chess game moves fully

More information

Centroid Distance Function and the Fourier Descriptor with Applications to Cancer Cell Clustering

Centroid Distance Function and the Fourier Descriptor with Applications to Cancer Cell Clustering Centroid Distance Function and the Fourier Descriptor with Applications to Cancer Cell Clustering By, Swati Bhonsle Alissa Klinzmann Mentors Fred Park Department of Mathematics Ernie Esser Department of

More information

Improved Three-dimensional Image Processing Technology for Remote Handling Auxiliary System

Improved Three-dimensional Image Processing Technology for Remote Handling Auxiliary System Improved Three-dimensional Image Processing Technology for Remote Handling Auxiliary System Chiaki Tomizuka Keisuke Jinza Hiroshi Takahashi 1. Introduction Remote handling devices are used in the radioactive

More information

Per Svedensten, Plant Simulation Specialist Sandvik Mining and Construction, Svedala, Sweden

Per Svedensten, Plant Simulation Specialist Sandvik Mining and Construction, Svedala, Sweden CRUSHING PLANT PERFORMANCE OPTIMIZATION Per Svedensten, Plant Simulation Specialist Sandvik Mining and Construction, Svedala, Sweden per.svedensten@sandvik.com ABSTRACT The crushing plant system of crusher,

More information

NAVIGATING SCIENTIFIC LITERATURE A HOLISTIC PERSPECTIVE. Venu Govindaraju

NAVIGATING SCIENTIFIC LITERATURE A HOLISTIC PERSPECTIVE. Venu Govindaraju NAVIGATING SCIENTIFIC LITERATURE A HOLISTIC PERSPECTIVE Venu Govindaraju BIOMETRICS DOCUMENT ANALYSIS PATTERN RECOGNITION 8/24/2015 ICDAR- 2015 2 Towards a Globally Optimal Approach for Learning Deep Unsupervised

More information