Analisi Statistica per le Imprese

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Analisi Statistica per le Imprese"

Transcription

1 Analisi Statistica per le Imprese Dip. Economia Politica e Statistica 4. La prospettiva dell'ecienza interna 1 / 27

2 Obiettivo Ricerca dell'ecienza interna: si tratta determinare il corretto utilizzo delle risorse, dato un volume produzione atteso. 2 / 27

3 Secondo il BS Gli interventi da eseguire dovranno legare ecienza interna, aumento della produzione/ricavi, investimenti e ricerca della sodsfazione del cliente. Quin secondo la visione rappresentata dal sistema descritto, l'ecienza interna è il primo step una stima simultanea dell'intero sistema. 3 / 27

4 Formalmente Consideriamo la prima delle relazioni del sistema dove la variabile X può rappresentare grandezze come: spese per il personale spese per le materie prime spese per gli investimenti (capitale) ovvero ciò che riguarda i fattori produttivi utili per ottenere un livello produzione pressato. Veamo quin quali meto statistici possono essere applicati per il raggiungimento dei nostri obiettivi 4 / 27

5 Deterministic relationship A deterministic relationship f between a dependent variable Y and an independent variables X is expressed as: Y = f (X) (1) In the most simple case, when the relationship is linear and k = 1, it is commonly expressed as follows: Y = β 0 + β 1 X (2) This relationship can be represented graphically on a Cartesian Coornate System as a line with intercept β 0 and slope β 1. 5 / 27

6 Stochastic relationship However deterministic relationships are very rare due to randomness. The true relationship between a dependent variable Y and an independent variables X is approximated by the stochastic regression model as follows: Y = f (X) + ε (3) The term ε is supposed to incorporate the size of the approximation error. The introduction of such element identies the stochastic relationship. If f is a linear function, the regression model is linear and is expressed as: Y = β 0 + β 1 X + ε (4) The terms (β 0,β 1 ) are the regression parameters or model coecients. 6 / 27

7 analysis is a method to study functional relationships between variables. The relationship is expressed as an equation or model that links the dependent (tted or prected) variable to one or more independent (prector) variable Example Si supponga aver classicato i clienti una banca secondo due caratteri: redto meo sponibile e frequenza mensile ricorso al servizio Bancomat. La relazione che si vuole vericare è se la frequenza mensile ricorso al servizio Bancomat Y (variabile pendente), vari al variare del redto X. Observing a sample of size n we will have n observations for each variable. 7 / 27

8 Simple Linear The relationship between the dependent variable and the independent variable is expressed by the following linear model: Y = β 0 + β 1 X + ε (5) The parameters or coecients of regression are (β 0,β 1 ) and ε is the random component of the model. For each observation the model can be written as: Y i = β 0 + β 1 X i + ε i i = 1,...,n (6) 8 / 27

9 Scatter plot y y (x 2,y 2 ) (x 1,y 1 ) (x 3,y 3 ) (x 4,y 4 ) (x 5,y 5 ) (x 6,y 6 ) x x 9 / 27

10 Scatter plot y Ŷ = β 0 + β 1 X Ŷ = a + bx Ŷ = c + dx x 10 / 27

11 Optimal Parameters One must then nd the equation that best approximates the observations with coornates (X, Y). This equation is specied by the following linear model: Ŷ = β 0 + β 1 X (7) Hence one must nd the optimal parameters ( β 0, β 1 ). 11 / 27

12 (OLS) The method of (OLS) minimizes the following auxiliary function: n i=1 ( ) 2 n ( Y i Ŷ i = Y i β 0 + β 2 1 X) (8) i=1 The function is minimized for the following parameter values: ( β 1 = n i=1 Xi X )( Y i Y ) ( Xi X ) = n i=1 x iy i 2 n (9) i=1 x2 i n i=1 β 0 = Y β 1 X (10) 12 / 27

13 (OLS) x i = ( X i X ) (11) y i = ( Y i Y ) (12) X = 1 n Y = 1 n n i=1 n i=1 X i (13) Y i (14) 13 / 27

14 (OLS) A stochastic model is much more realistic then a deterministic model when the observations are not perfectly aligned. The introduction of the ε introduces culties but enhances the results that are more useful and deeper in meaning. First consideration: Justication How can we justify the introduction of the stochastic component? 1 There may be errors in the model 2 The number of covariates is limited 3 Randomness from empirical sampling 4 Measurement errors 14 / 27

15 (OLS) Second consideration: Random Variable The introduction of the error term allows the identication of Y as a random variable (r.v.). This implies that every value expressed as a function of Y is also a r.v. 15 / 27

16 (OLS) Third consideration: Assumptions 1 The functional relationship must be linear 2 The independent variable has a deterministic nature 3 The error term has a null expected value E [ε i ] = 0 4 The error term is homoskedastic Var [ε i ] = σ 2 5 The error terms are not autocorrelated Cov[ε i ε j ] i j = 0 16 / 27

17 Creble assumptions 1 seems restrictive, but many non linear relationships can be expressed as linear relationships of the parameters through appropriate transformations. 2 is possibly the most unrealistic in socio-economic analysis, but guarantees important by E [X i ε i ] = X i E [ε i ] = 0 3 guarantees that the most likely error value is zero, as in this case the mean value is also the modal value. 4 can be unlikely in cross section observations, and can give serious culties. We will focus on this later. 5 can be unlikely in time series observations, and can give serious culties. 17 / 27

18 We will now examine the of the OLS s of the unknown parameters of the regression function. The estimates are obtained for both (Y, X) from n observations extracted with probabilistic sampling from a target population. If we extracted a new sample from the same population we would most likely obtain erent results, hence the parameters estimates would be erent. For this reason we can say that the estimates are tied to the r.v. When one writes β one means: 1 The slope of the regression line, estimated from a set of observations 2 the that has a specic probability stribution 18 / 27

19 Properties Given assumptions 1-5, OLS s are the Best Linear Unbiased Estimators (BLUE). This means that they are the most ecient (minimum variance) not systematically storted s within the class of linear s. Here we just prove that it is linear and unbiased. 19 / 27

20 Linear ( β 1 = n i=1 Xi X )( Y i Y ) n ( i=1 Xi X ) = n i=1 x iy i 2 n i=1 x2 i β 1 = x iy i x 2 i Similarly it can be proven for β 0. = w i y i w i = x i x 2 i (15) (16) w i = 0 w i x i = 1 (17) 20 / 27

21 Unbiased β 1 = w i y i = w i ( Yi Y ) = w i Y i Y w i }{{} 0 (18) β 1 = w i [β 0 + β 1 X i + ε i ] + 0 = w i β 0 + β 1 w i X i + w i ε i }{{}}{{} 0 1 (19) β 1 = 0 + β 1 + w i ε i (20) [ ] E β1 = E [ ] β 1 + w i ε i = β1 + w i E [ε i ] = β }{{} 1 (21) 0 Similarly it can be proven for β / 27

22 Let us add to the hypothesis 1-5 the following: The error term has Normal stribution so:ε i N(0,σ 2 ) so: y i N(βX i,σ 2 ) 22 / 27

23 OLS stribution As β is a weighted average of y and the y are normally stributed, β is also normally stributed. ( β 1 N β 1, σ ε 2 ( β 0 N β 0,σε 2 x 2 i X 2 i ) N x 2 i OLS s coincide with Maximum Likelihood (ML) s. The Central Limit supports that even if the y where not to be normally stributed, under a very nonrestrictive contions, the asymptotic stribution would still hold. ) (22) (23) 23 / 27

24 Residual Variance Estimator This, called the residual variance, can be obtained through Maximum Likelihood computations (here omitted). s 2 = σ 2 = 2 ε (Y i n 2 = i β 0 β ) 2 1 X i n 2 (24) ε i = Y i Ŷ i (Residual) (25) The residual variance is an unbiased and consistent of the variance of the error term. The denominator is n 2 because that is the number of degrees of freedom which are calculated as the number of observations minus the required parameters in the computation. In this case to calculate this one needs both (β 0,β 1 ). 24 / 27

25 Further observations ) Var ( β1 is a rect function of Var (ε i ) strongly variable errors lower precision and reliability ) Var ( β1 is an inrect function of the variability of X i covariates concentrated in a close interval worsen the quality of β 1 25 / 27

26 OLS Estimators standard error Once we have estimated the variance of the stochastic term in the regression model, we may substitute it in the OLS 's variance to obtain the standard errors (s.e.) of s. s 2 β1 = s2 x 2 i s 2 β0 = s 2 ( X 2 i n x 2 i ) (26) (27) 26 / 27

27 Pindyck R. and Rubinfeld D., 1998 Econometrics Models and Economic Forecasts (4-th Ed.) Bracalente, Cossignani, Mulas, 2009 Statistica Aziendale sec / 27

Chapter 11: Two Variable Regression Analysis

Chapter 11: Two Variable Regression Analysis Department of Mathematics Izmir University of Economics Week 14-15 2014-2015 In this chapter, we will focus on linear models and extend our analysis to relationships between variables, the definitions

More information

Simple Linear Regression Chapter 11

Simple Linear Regression Chapter 11 Simple Linear Regression Chapter 11 Rationale Frequently decision-making situations require modeling of relationships among business variables. For instance, the amount of sale of a product may be related

More information

Weighted Least Squares

Weighted Least Squares Weighted Least Squares The standard linear model assumes that Var(ε i ) = σ 2 for i = 1,..., n. As we have seen, however, there are instances where Var(Y X = x i ) = Var(ε i ) = σ2 w i. Here w 1,..., w

More information

Econometrics The Multiple Regression Model: Inference

Econometrics The Multiple Regression Model: Inference Econometrics The Multiple Regression Model: João Valle e Azevedo Faculdade de Economia Universidade Nova de Lisboa Spring Semester João Valle e Azevedo (FEUNL) Econometrics Lisbon, March 2011 1 / 24 in

More information

OLS is not only unbiased it is also the most precise (efficient) unbiased estimation technique - ie the estimator has the smallest variance

OLS is not only unbiased it is also the most precise (efficient) unbiased estimation technique - ie the estimator has the smallest variance Lecture 5: Hypothesis Testing What we know now: OLS is not only unbiased it is also the most precise (efficient) unbiased estimation technique - ie the estimator has the smallest variance (if the Gauss-Markov

More information

15.1 The Regression Model: Analysis of Residuals

15.1 The Regression Model: Analysis of Residuals 15.1 The Regression Model: Analysis of Residuals Tom Lewis Fall Term 2009 Tom Lewis () 15.1 The Regression Model: Analysis of Residuals Fall Term 2009 1 / 12 Outline 1 The regression model 2 Estimating

More information

Simple Linear Regression Inference

Simple Linear Regression Inference Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation

More information

Regression Analysis: Basic Concepts

Regression Analysis: Basic Concepts The simple linear model Regression Analysis: Basic Concepts Allin Cottrell Represents the dependent variable, y i, as a linear function of one independent variable, x i, subject to a random disturbance

More information

The Simple Linear Regression Model: Specification and Estimation

The Simple Linear Regression Model: Specification and Estimation Chapter 3 The Simple Linear Regression Model: Specification and Estimation 3.1 An Economic Model Suppose that we are interested in studying the relationship between household income and expenditure on

More information

1. The Classical Linear Regression Model: The Bivariate Case

1. The Classical Linear Regression Model: The Bivariate Case Business School, Brunel University MSc. EC5501/5509 Modelling Financial Decisions and Markets/Introduction to Quantitative Methods Prof. Menelaos Karanasos (Room SS69, Tel. 018956584) Lecture Notes 3 1.

More information

where b is the slope of the line and a is the intercept i.e. where the line cuts the y axis.

where b is the slope of the line and a is the intercept i.e. where the line cuts the y axis. Least Squares Introduction We have mentioned that one should not always conclude that because two variables are correlated that one variable is causing the other to behave a certain way. However, sometimes

More information

E 31501/4150 Properties of OLS estimators by Monte Carlo simulation

E 31501/4150 Properties of OLS estimators by Monte Carlo simulation E 31501/4150 Properties of OLS estimators by Monte Carlo simulation Ragnar Nymoen 19 January 2012 Repeated sampling Section 2.4.3 of the HGL book is called Repeated sampling The point is that by drawing

More information

Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model

Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model 1 September 004 A. Introduction and assumptions The classical normal linear regression model can be written

More information

OLS in Matrix Form. Let y be an n 1 vector of observations on the dependent variable.

OLS in Matrix Form. Let y be an n 1 vector of observations on the dependent variable. OLS in Matrix Form 1 The True Model Let X be an n k matrix where we have observations on k independent variables for n observations Since our model will usually contain a constant term, one of the columns

More information

PASS Sample Size Software. Linear Regression

PASS Sample Size Software. Linear Regression Chapter 855 Introduction Linear regression is a commonly used procedure in statistical analysis. One of the main objectives in linear regression analysis is to test hypotheses about the slope (sometimes

More information

In this chapter, we aim to answer the following questions: 1. What is the nature of heteroskedasticity?

In this chapter, we aim to answer the following questions: 1. What is the nature of heteroskedasticity? Lecture 9 Heteroskedasticity In this chapter, we aim to answer the following questions: 1. What is the nature of heteroskedasticity? 2. What are its consequences? 3. how does one detect it? 4. What are

More information

A brush-up on residuals

A brush-up on residuals A brush-up on residuals Going back to a single level model... y i = β 0 + β 1 x 1i + ε i The residual for each observation is the difference between the value of y predicted by the equation and the actual

More information

1 Another method of estimation: least squares

1 Another method of estimation: least squares 1 Another method of estimation: least squares erm: -estim.tex, Dec8, 009: 6 p.m. (draft - typos/writos likely exist) Corrections, comments, suggestions welcome. 1.1 Least squares in general Assume Y i

More information

Hence, multiplying by 12, the 95% interval for the hourly rate is (965, 1435)

Hence, multiplying by 12, the 95% interval for the hourly rate is (965, 1435) Confidence Intervals for Poisson data For an observation from a Poisson distribution, we have σ 2 = λ. If we observe r events, then our estimate ˆλ = r : N(λ, λ) If r is bigger than 20, we can use this

More information

Simple Linear Regression

Simple Linear Regression Inference for Regression Simple Linear Regression IPS Chapter 10.1 2009 W.H. Freeman and Company Objectives (IPS Chapter 10.1) Simple linear regression Statistical model for linear regression Estimating

More information

Regression, least squares

Regression, least squares Regression, least squares Joe Felsenstein Department of Genome Sciences and Department of Biology Regression, least squares p.1/24 Fitting a straight line X Two distinct cases: The X values are chosen

More information

Wooldridge, Introductory Econometrics, 4th ed. Chapter 15: Instrumental variables and two stage least squares

Wooldridge, Introductory Econometrics, 4th ed. Chapter 15: Instrumental variables and two stage least squares Wooldridge, Introductory Econometrics, 4th ed. Chapter 15: Instrumental variables and two stage least squares Many economic models involve endogeneity: that is, a theoretical relationship does not fit

More information

Notes 5: More on regression and residuals ECO 231W - Undergraduate Econometrics

Notes 5: More on regression and residuals ECO 231W - Undergraduate Econometrics Notes 5: More on regression and residuals ECO 231W - Undergraduate Econometrics Prof. Carolina Caetano 1 Regression Method Let s review the method to calculate the regression line: 1. Find the point of

More information

Inference in Regression Analysis. Dr. Frank Wood

Inference in Regression Analysis. Dr. Frank Wood Inference in Regression Analysis Dr. Frank Wood Inference in the Normal Error Regression Model Y i = β 0 + β 1 X i + ɛ i Y i value of the response variable in the i th trial β 0 and β 1 are parameters

More information

Exam and Solution. Please discuss each problem on a separate sheet of paper, not just on a separate page!

Exam and Solution. Please discuss each problem on a separate sheet of paper, not just on a separate page! Econometrics - Exam 1 Exam and Solution Please discuss each problem on a separate sheet of paper, not just on a separate page! Problem 1: (20 points A health economist plans to evaluate whether screening

More information

Definition The covariance of X and Y, denoted by cov(x, Y ) is defined by. cov(x, Y ) = E(X µ 1 )(Y µ 2 ).

Definition The covariance of X and Y, denoted by cov(x, Y ) is defined by. cov(x, Y ) = E(X µ 1 )(Y µ 2 ). Correlation Regression Bivariate Normal Suppose that X and Y are r.v. s with joint density f(x y) and suppose that the means of X and Y are respectively µ 1 µ 2 and the variances are 1 2. Definition The

More information

Regression Analysis. Pekka Tolonen

Regression Analysis. Pekka Tolonen Regression Analysis Pekka Tolonen Outline of Topics Simple linear regression: the form and estimation Hypothesis testing and statistical significance Empirical application: the capital asset pricing model

More information

Bivariate Regression Analysis. The beginning of many types of regression

Bivariate Regression Analysis. The beginning of many types of regression Bivariate Regression Analysis The beginning of many types of regression TOPICS Beyond Correlation Forecasting Two points to estimate the slope Meeting the BLUE criterion The OLS method Purpose of Regression

More information

BIO 226: APPLIED LONGITUDINAL ANALYSIS LECTURE 13. Linear Mixed Effects Model and Prediction

BIO 226: APPLIED LONGITUDINAL ANALYSIS LECTURE 13. Linear Mixed Effects Model and Prediction BIO 226: APPLIED LONGITUDINAL ANALYSIS LECTURE 13 Linear Mixed Effects Model and Prediction 1 Linear Mixed Effects Model and Prediction Recall that in the linear mixed effects model, Y ij = X ijβ + Z ijb

More information

2. Linear regression with multiple regressors

2. Linear regression with multiple regressors 2. Linear regression with multiple regressors Aim of this section: Introduction of the multiple regression model OLS estimation in multiple regression Measures-of-fit in multiple regression Assumptions

More information

SELF-TEST: SIMPLE REGRESSION

SELF-TEST: SIMPLE REGRESSION ECO 22000 McRAE SELF-TEST: SIMPLE REGRESSION Note: Those questions indicated with an (N) are unlikely to appear in this form on an in-class examination, but you should be able to describe the procedures

More information

Regression Estimation - Least Squares and Maximum Likelihood. Dr. Frank Wood

Regression Estimation - Least Squares and Maximum Likelihood. Dr. Frank Wood Regression Estimation - Least Squares and Maximum Likelihood Dr. Frank Wood Least Squares Max(min)imization Function to minimize w.r.t. b 0, b 1 Q = n (Y i (b 0 + b 1 X i )) 2 i=1 Minimize this by maximizing

More information

Gauss-Markov Theorem. The Gauss-Markov Theorem is given in the following regression model and assumptions:

Gauss-Markov Theorem. The Gauss-Markov Theorem is given in the following regression model and assumptions: Gauss-Markov Theorem The Gauss-Markov Theorem is given in the following regression model and assumptions: The regression model y i = β 1 + β x i + u i, i = 1,, n (1) Assumptions (A) or Assumptions (B):

More information

Regression Estimation - Least Squares and Maximum Likelihood. Dr. Frank Wood

Regression Estimation - Least Squares and Maximum Likelihood. Dr. Frank Wood Regression Estimation - Least Squares and Maximum Likelihood Dr. Frank Wood Least Squares Max(min)imization 1. Function to minimize w.r.t. β 0, β 1 Q = n (Y i (β 0 + β 1 X i )) 2 i=1 2. Minimize this by

More information

A Guide to Modern Econometrics / 2ed. Answers to selected exercises - Chapter 4. Exercise 4.1. Variable Coefficient Std. Error t-statistic Prob.

A Guide to Modern Econometrics / 2ed. Answers to selected exercises - Chapter 4. Exercise 4.1. Variable Coefficient Std. Error t-statistic Prob. A Guide to Modern Econometrics / 2ed Answers to selected exercises - Chapter 4 Exercise 4.1 a. The OLS results (Eviews 5.0 output) are as follows: Dependent Variable: AIRQ Date: 12/02/05 Time: 14:04 C

More information

SIMPLE REGRESSION ANALYSIS

SIMPLE REGRESSION ANALYSIS SIMPLE REGRESSION ANALYSIS Introduction. Regression analysis is used when two or more variables are thought to be systematically connected by a linear relationship. In simple regression, we have only two

More information

Financial Econometrics Jeffrey R. Russell Final Exam

Financial Econometrics Jeffrey R. Russell Final Exam Name Financial Econometrics Jeffrey R. Russell Final Exam You have 3 hours to complete the exam. Use can use a calculator. Try to fit all your work in the space provided. If you find you need more space

More information

Linear and Piecewise Linear Regressions

Linear and Piecewise Linear Regressions Tarigan Statistical Consulting & Coaching statistical-coaching.ch Doctoral Program in Computer Science of the Universities of Fribourg, Geneva, Lausanne, Neuchâtel, Bern and the EPFL Hands-on Data Analysis

More information

t-tests and F-tests in regression

t-tests and F-tests in regression t-tests and F-tests in regression Johan A. Elkink University College Dublin 5 April 2012 Johan A. Elkink (UCD) t and F-tests 5 April 2012 1 / 25 Outline 1 Simple linear regression Model Variance and R

More information

Heteroskedasticity and Weighted Least Squares

Heteroskedasticity and Weighted Least Squares Econ 507. Econometric Analysis. Spring 2009 April 14, 2009 The Classical Linear Model: 1 Linearity: Y = Xβ + u. 2 Strict exogeneity: E(u) = 0 3 No Multicollinearity: ρ(x) = K. 4 No heteroskedasticity/

More information

CHAPTER 9: SERIAL CORRELATION

CHAPTER 9: SERIAL CORRELATION Serial correlation (or autocorrelation) is the violation of Assumption 4 (observations of the error term are uncorrelated with each other). Pure Serial Correlation This type of correlation tends to be

More information

Chapter 8: Interval Estimates and Hypothesis Testing

Chapter 8: Interval Estimates and Hypothesis Testing Chapter 8: Interval Estimates and Hypothesis Testing Chapter 8 Outline Clint s Assignment: Taking Stock Estimate Reliability: Interval Estimate Question o Normal Distribution versus the Student t-distribution:

More information

2 Testing under Normality Assumption

2 Testing under Normality Assumption 1 Hypothesis testing A statistical test is a method of making a decision about one hypothesis (the null hypothesis in comparison with another one (the alternative using a sample of observations of known

More information

Econometrics Simple Linear Regression

Econometrics Simple Linear Regression Econometrics Simple Linear Regression Burcu Eke UC3M Linear equations with one variable Recall what a linear equation is: y = b 0 + b 1 x is a linear equation with one variable, or equivalently, a straight

More information

The Method of Least Squares

The Method of Least Squares 33 The Method of Least Squares KEY WORDS confidence interval, critical sum of squares, dependent variable, empirical model, experimental error, independent variable, joint confidence region, least squares,

More information

An Introduction to Bayesian Statistics

An Introduction to Bayesian Statistics An Introduction to Bayesian Statistics Robert Weiss Department of Biostatistics UCLA School of Public Health robweiss@ucla.edu April 2011 Robert Weiss (UCLA) An Introduction to Bayesian Statistics UCLA

More information

The Classical Linear Regression Model

The Classical Linear Regression Model The Classical Linear Regression Model 1 September 2004 A. A brief review of some basic concepts associated with vector random variables Let y denote an n x l vector of random variables, i.e., y = (y 1,

More information

Outline. Correlation & Regression, III. Review. Relationship between r and regression

Outline. Correlation & Regression, III. Review. Relationship between r and regression Outline Correlation & Regression, III 9.07 4/6/004 Relationship between correlation and regression, along with notes on the correlation coefficient Effect size, and the meaning of r Other kinds of correlation

More information

Chapter 4: Vector Autoregressive Models

Chapter 4: Vector Autoregressive Models Chapter 4: Vector Autoregressive Models 1 Contents: Lehrstuhl für Department Empirische of Wirtschaftsforschung Empirical Research and und Econometrics Ökonometrie IV.1 Vector Autoregressive Models (VAR)...

More information

Instrumental Variables & 2SLS

Instrumental Variables & 2SLS Instrumental Variables & 2SLS y 1 = β 0 + β 1 y 2 + β 2 z 1 +... β k z k + u y 2 = π 0 + π 1 z k+1 + π 2 z 1 +... π k z k + v Economics 20 - Prof. Schuetze 1 Why Use Instrumental Variables? Instrumental

More information

Module 10: Mixed model theory II: Tests and confidence intervals

Module 10: Mixed model theory II: Tests and confidence intervals St@tmaster 02429/MIXED LINEAR MODELS PREPARED BY THE STATISTICS GROUPS AT IMM, DTU AND KU-LIFE Module 10: Mixed model theory II: Tests and confidence intervals 10.1 Notes..................................

More information

Econometrics Regression Analysis with Time Series Data

Econometrics Regression Analysis with Time Series Data Econometrics Regression Analysis with Time Series Data João Valle e Azevedo Faculdade de Economia Universidade Nova de Lisboa Spring Semester João Valle e Azevedo (FEUNL) Econometrics Lisbon, May 2011

More information

Statistiek (WISB361)

Statistiek (WISB361) Statistiek (WISB361) Final exam June 29, 2015 Schrijf uw naam op elk in te leveren vel. Schrijf ook uw studentnummer op blad 1. The maximum number of points is 100. Points distribution: 23 20 20 20 17

More information

Two-Variable Regression: Interval Estimation and Hypothesis Testing

Two-Variable Regression: Interval Estimation and Hypothesis Testing Two-Variable Regression: Interval Estimation and Hypothesis Testing Jamie Monogan University of Georgia Intermediate Political Methodology Jamie Monogan (UGA) Confidence Intervals & Hypothesis Testing

More information

Regression in SPSS. Workshop offered by the Mississippi Center for Supercomputing Research and the UM Office of Information Technology

Regression in SPSS. Workshop offered by the Mississippi Center for Supercomputing Research and the UM Office of Information Technology Regression in SPSS Workshop offered by the Mississippi Center for Supercomputing Research and the UM Office of Information Technology John P. Bentley Department of Pharmacy Administration University of

More information

Regression Analysis Prof. Soumen Maity Department of Mathematics Indian Institute of Technology, Kharagpur. Lecture - 2 Simple Linear Regression

Regression Analysis Prof. Soumen Maity Department of Mathematics Indian Institute of Technology, Kharagpur. Lecture - 2 Simple Linear Regression Regression Analysis Prof. Soumen Maity Department of Mathematics Indian Institute of Technology, Kharagpur Lecture - 2 Simple Linear Regression Hi, this is my second lecture in module one and on simple

More information

Ordinary Least Squares and Poisson Regression Models by Luc Anselin University of Illinois Champaign-Urbana, IL

Ordinary Least Squares and Poisson Regression Models by Luc Anselin University of Illinois Champaign-Urbana, IL Appendix C Ordinary Least Squares and Poisson Regression Models by Luc Anselin University of Illinois Champaign-Urbana, IL This note provides a brief description of the statistical background, estimators

More information

12.1 Inference for Linear Regression

12.1 Inference for Linear Regression 12.1 Inference for Linear Regression Least Squares Regression Line y = a + bx You might want to refresh your memory of LSR lines by reviewing Chapter 3! 1 Sample Distribution of b p740 Shape Center Spread

More information

Statistics & Regression: Easier than SAS

Statistics & Regression: Easier than SAS ST003 Statistics & Regression: Easier than SAS Vincent Maffei, Anthem Blue Cross and Blue Shield, North Haven, CT Michael Davis, Bassett Consulting Services, Inc., North Haven, CT ABSTRACT In this paper

More information

Linear combinations of parameters

Linear combinations of parameters Linear combinations of parameters Suppose we want to test the hypothesis that two regression coefficients are equal, e.g. β 1 = β 2. This is equivalent to testing the following linear constraint (null

More information

1 Logit & Probit Models for Binary Response

1 Logit & Probit Models for Binary Response ECON 370: Limited Dependent Variable 1 Limited Dependent Variable Econometric Methods, ECON 370 We had previously discussed the possibility of running regressions even when the dependent variable is dichotomous

More information

PARTIAL PLOTS IN REGRESSION ANALYSIS

PARTIAL PLOTS IN REGRESSION ANALYSIS PARTIAL PLOTS IN REGRESSION ANALYSIS George C. J. Fernandez, Department of Applied Economics and Statistics /204, University of Nevada, USA In Multiple linear regression models, problems arise when serious

More information

TIME SERIES REGRESSION

TIME SERIES REGRESSION DEPARTMENT OF POLITICAL SCIENCE AND INTERNATIONAL RELATIONS Posc/Uapp 816 TIME SERIES REGRESSION I. AGENDA: A. A couple of general considerations in analyzing time series data B. Intervention analysis

More information

EC327: Advanced Econometrics, Spring 2007

EC327: Advanced Econometrics, Spring 2007 EC327: Advanced Econometrics, Spring 2007 Wooldridge, Introductory Econometrics (3rd ed, 2006) Appendix D: Summary of matrix algebra Basic definitions A matrix is a rectangular array of numbers, with m

More information

Lecture 7 Linear Regression Diagnostics

Lecture 7 Linear Regression Diagnostics Lecture 7 Linear Regression Diagnostics BIOST 515 January 27, 2004 BIOST 515, Lecture 6 Major assumptions 1. The relationship between the outcomes and the predictors is (approximately) linear. 2. The error

More information

Instrumental Variables (IV) Instrumental Variables (IV) is a method of estimation that is widely used

Instrumental Variables (IV) Instrumental Variables (IV) is a method of estimation that is widely used Instrumental Variables (IV) Instrumental Variables (IV) is a method of estimation that is widely used in many economic applications when correlation between the explanatory variables and the error term

More information

Chapter 11: Linear Regression - Inference in Regression Analysis - Part 2

Chapter 11: Linear Regression - Inference in Regression Analysis - Part 2 Chapter 11: Linear Regression - Inference in Regression Analysis - Part 2 Note: Whether we calculate confidence intervals or perform hypothesis tests we need the distribution of the statistic we will use.

More information

Econometric Methods for Panel Data

Econometric Methods for Panel Data Based on the books by Baltagi: Econometric Analysis of Panel Data and by Hsiao: Analysis of Panel Data Robert M. Kunst robert.kunst@univie.ac.at University of Vienna and Institute for Advanced Studies

More information

ELEC-E8104 Stochastics models and estimation, Lecture 3b: Linear Estimation in Static Systems

ELEC-E8104 Stochastics models and estimation, Lecture 3b: Linear Estimation in Static Systems Stochastics models and estimation, Lecture 3b: Linear Estimation in Static Systems Minimum Mean Square Error (MMSE) MMSE estimation of Gaussian random vectors Linear MMSE estimator for arbitrarily distributed

More information

2. What are the theoretical and practical consequences of autocorrelation?

2. What are the theoretical and practical consequences of autocorrelation? Lecture 10 Serial Correlation In this lecture, you will learn the following: 1. What is the nature of autocorrelation? 2. What are the theoretical and practical consequences of autocorrelation? 3. Since

More information

Solución del Examen Tipo: 1

Solución del Examen Tipo: 1 Solución del Examen Tipo: 1 Universidad Carlos III de Madrid ECONOMETRICS Academic year 2009/10 FINAL EXAM May 17, 2010 DURATION: 2 HOURS 1. Assume that model (III) verifies the assumptions of the classical

More information

Lecture 18 Chapter 6: Empirical Statistics

Lecture 18 Chapter 6: Empirical Statistics Lecture 18 Chapter 6: Empirical Statistics M. George Akritas Definition (Sample Covariance and Pearson s Correlation) Let (X 1, Y 1 ),..., (X n, Y n ) be a sample from a bivariate population. The sample

More information

Section 3: Simple Linear Regression

Section 3: Simple Linear Regression Section 3: Simple Linear Regression Carlos M. Carvalho The University of Texas at Austin McCombs School of Business http://faculty.mccombs.utexas.edu/carlos.carvalho/teaching/ 1 Regression: General Introduction

More information

Statistics for Management II-STAT 362-Final Review

Statistics for Management II-STAT 362-Final Review Statistics for Management II-STAT 362-Final Review Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. The ability of an interval estimate to

More information

Assessing Forecasting Error: The Prediction Interval. David Gerbing School of Business Administration Portland State University

Assessing Forecasting Error: The Prediction Interval. David Gerbing School of Business Administration Portland State University Assessing Forecasting Error: The Prediction Interval David Gerbing School of Business Administration Portland State University November 27, 2015 Contents 1 Prediction Intervals 1 1.1 Modeling Error..................................

More information

Inference in Regression Analysis

Inference in Regression Analysis Yang Feng Inference in the Normal Error Regression Model Y i = β 0 + β 1 X i + ɛ i Y i value of the response variable in the i th trial β 0 and β 1 are parameters X i is a known constant, the value of

More information

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2013, Mr. Ruey S. Tsay Solutions to Final Exam

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2013, Mr. Ruey S. Tsay Solutions to Final Exam The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2013, Mr. Ruey S. Tsay Solutions to Final Exam Problem A: (40 points) Answer briefly the following questions. 1. Describe

More information

Statistical Modelling in Stata 5: Linear Models

Statistical Modelling in Stata 5: Linear Models Statistical Modelling in Stata 5: Linear Models Mark Lunt Arthritis Research UK Centre for Excellence in Epidemiology University of Manchester 08/11/2016 Structure This Week What is a linear model? How

More information

Math 62 Statistics Sample Exam Questions

Math 62 Statistics Sample Exam Questions Math 62 Statistics Sample Exam Questions 1. (10) Explain the difference between the distribution of a population and the sampling distribution of a statistic, such as the mean, of a sample randomly selected

More information

17. SIMPLE LINEAR REGRESSION II

17. SIMPLE LINEAR REGRESSION II 17. SIMPLE LINEAR REGRESSION II The Model In linear regression analysis, we assume that the relationship between X and Y is linear. This does not mean, however, that Y can be perfectly predicted from X.

More information

Regression Analysis Prof. Soumen Maity Department of Mathematics Indian Institute of Technology, Kharagpur

Regression Analysis Prof. Soumen Maity Department of Mathematics Indian Institute of Technology, Kharagpur Regression Analysis Prof. Soumen Maity Department of Mathematics Indian Institute of Technology, Kharagpur Lecture - 7 Multiple Linear Regression (Contd.) This is my second lecture on Multiple Linear Regression

More information

Statistics II Final Exam - January Use the University stationery to give your answers to the following questions.

Statistics II Final Exam - January Use the University stationery to give your answers to the following questions. Statistics II Final Exam - January 2012 Use the University stationery to give your answers to the following questions. Do not forget to write down your name and class group in each page. Indicate clearly

More information

Statistics in Geophysics: Linear Regression II

Statistics in Geophysics: Linear Regression II Statistics in Geophysics: Linear Regression II Steffen Unkel Department of Statistics Ludwig-Maximilians-University Munich, Germany Winter Term 2013/14 1/28 Model definition Suppose we have the following

More information

The scatterplot indicates a positive linear relationship between waist size and body fat percentage:

The scatterplot indicates a positive linear relationship between waist size and body fat percentage: STAT E-150 Statistical Methods Multiple Regression Three percent of a man's body is essential fat, which is necessary for a healthy body. However, too much body fat can be dangerous. For men between the

More information

CHAPTER 13 SIMPLE LINEAR REGRESSION. Opening Example. Simple Regression. Linear Regression

CHAPTER 13 SIMPLE LINEAR REGRESSION. Opening Example. Simple Regression. Linear Regression Opening Example CHAPTER 13 SIMPLE LINEAR REGREION SIMPLE LINEAR REGREION! Simple Regression! Linear Regression Simple Regression Definition A regression model is a mathematical equation that descries the

More information

8. Model Specification and Data Problems. 8.1 Functional Form Misspecification

8. Model Specification and Data Problems. 8.1 Functional Form Misspecification 8. Model Specification and Data Problems 8.1 Functional Form Misspecification A functional form misspecification generally means that the model does not account for some important nonlinearities. Recall

More information

Chapter 6: Multivariate Cointegration Analysis

Chapter 6: Multivariate Cointegration Analysis Chapter 6: Multivariate Cointegration Analysis 1 Contents: Lehrstuhl für Department Empirische of Wirtschaftsforschung Empirical Research and und Econometrics Ökonometrie VI. Multivariate Cointegration

More information

7. Tests of association and Linear Regression

7. Tests of association and Linear Regression 7. Tests of association and Linear Regression In this chapter we consider 1. Tests of Association for 2 qualitative variables. 2. Measures of the strength of linear association between 2 quantitative variables.

More information

Regression Analysis: A Complete Example

Regression Analysis: A Complete Example Regression Analysis: A Complete Example This section works out an example that includes all the topics we have discussed so far in this chapter. A complete example of regression analysis. PhotoDisc, Inc./Getty

More information

Simple linear regression

Simple linear regression Simple linear regression Introduction Simple linear regression is a statistical method for obtaining a formula to predict values of one variable from another where there is a causal relationship between

More information

Hypothesis Testing in the Linear Regression Model An Overview of t tests, D Prescott

Hypothesis Testing in the Linear Regression Model An Overview of t tests, D Prescott Hypothesis Testing in the Linear Regression Model An Overview of t tests, D Prescott 1. Hypotheses as restrictions An hypothesis typically places restrictions on population regression coefficients. Consider

More information

7. Autocorrelation (Violation of Assumption #B3)

7. Autocorrelation (Violation of Assumption #B3) 7. Autocorrelation (Violation of Assumption #B3) Assumption #B3: The error term u i is not autocorrelated, i.e. Cov(u i, u j ) = 0 for all i = 1,..., N and j = 1,..., N where i j Where do we typically

More information

MS&E 226: Small Data. Lecture 17: Additional topics in inference (v1) Ramesh Johari

MS&E 226: Small Data. Lecture 17: Additional topics in inference (v1) Ramesh Johari MS&E 226: Small Data Lecture 17: Additional topics in inference (v1) Ramesh Johari ramesh.johari@stanford.edu 1 / 34 Warnings 2 / 34 Modeling assumptions: Regression Remember that most of the inference

More information

Analysis of Environmental Data Problem Set Conceptual Foundations: Hy p o th e sis te stin g c o n c e p ts

Analysis of Environmental Data Problem Set Conceptual Foundations: Hy p o th e sis te stin g c o n c e p ts Analysis of Environmental Data Problem Set Conceptual Foundations: Hy p o th e sis te stin g c o n c e p ts Answer any one of questions 1-4, AND answer question 5: 1. Consider a hypothetical study of wood

More information

, then the form of the model is given by: which comprises a deterministic component involving the three regression coefficients (

, then the form of the model is given by: which comprises a deterministic component involving the three regression coefficients ( Multiple regression Introduction Multiple regression is a logical extension of the principles of simple linear regression to situations in which there are several predictor variables. For instance if we

More information

The method of least squares

The method of least squares The method of least squares 1 Contents 1. Introduction. Statistical interpretation of the curve fitting problem 3. The parametric model 4. The stochastic model 5. The least squares estimators of parameters

More information

Paired Differences and Regression

Paired Differences and Regression Paired Differences and Regression Students sometimes have difficulty distinguishing between paired data and independent samples when comparing two means. One can return to this topic after covering simple

More information

Section I: Multiple Choice Select the best answer for each question.

Section I: Multiple Choice Select the best answer for each question. Chapter 15 (Regression Inference) AP Statistics Practice Test (TPS- 4 p796) Section I: Multiple Choice Select the best answer for each question. 1. Which of the following is not one of the conditions that

More information

Simultaneous Equations

Simultaneous Equations Simultaneous Equations 1 Motivation and Examples Now we relax the assumption that EX u 0 his wil require new techniques: 1 Instrumental variables 2 2- and 3-stage least squares 3 Limited LIML and full

More information

Cov(x, y) V ar(x)v ar(y)

Cov(x, y) V ar(x)v ar(y) Simple linear regression Systematic components: β 0 + β 1 x i Stochastic component : error term ε Y i = β 0 + β 1 x i + ε i ; i = 1,..., n E(Y X) = β 0 + β 1 x the central parameter is the slope parameter

More information