Study on CET4 Marks in China s Graded English Teaching

Size: px
Start display at page:

Download "Study on CET4 Marks in China s Graded English Teaching"

Transcription

1 Study on CET4 Marks n Chna s Graded Englsh Teachng CHE We College of Foregn Studes, Shandong Insttute of Busness and Technology, P.R.Chna, Abstract: Ths paper deploys Logt model, and decomposes varables by usng O-B decomposton to analyze CET4 marks of graded teachng emprcally. The result shows graded teachng can help to enhance CET4 marks. The teachers frst school record and the graded students are studyng n, and genders of students are the sgnfcant varables that affect students CET4 marks. Keywords: Graded teachng, CET4, Logt model, O-B decomposton 1 Introducton Accordng to dfferent Englsh startng ponts of the unversty students, unversty Englsh teachng should consder the students of low Englsh startng ponts and provde development space for the other students wth comparatvely hgher Englsh ablty. Accordng to theoretcal researches, graded teachng embodes Krashen s +1 language Input Hypothess. Krashen put forward that only the deal language nput whch s a lttle hgher than language learners present profcency can enable the learners to acheve deal learnng effect: the dffcult nput may make learners feel dffdent and anxous, thus to lead to faled learnng; the too smple nput and especally the nput whch s approachng and even lower than learners present ablty may make learners unable to acheve new knowledge and sklls, and may make them feel dsgusted, ths makes the entre learnng process produce almost no effect. Consequently, Chna s general academes enforce unversty Englsh graded teachng. Ths ensures that students wth dfferent startng ponts make progress ndvdually. Ths paper, by usng statstcal analyss, s to study CET4 results emprcally of those graded and un-graded students n Shandong Insttute of Busness & Technology. Frstly, t s to use Logt regresson model to study the dfference choce of students achevements of passng the CET4 exam or not. Secondly, t s to study major factors that lead to dfferences of exam results by usng bnary choce O-B decomposton. It s to determne the major mpact varables from both the students and the teachers aspects, thus to provde scentfc foundaton for unversty Englsh graded teachng hereafter. 2 Data Selecton and Varable Descrpton 2.1 Data selecton Ths study collects and collates all students (they entered unversty n the year 2008, and they took the frst opportunty of CET4 exam n December, 2009) CET4 results, sexes, Englsh graded grades, and all the teachers nformaton n Shandong Insttute of Busness & Technology. By removng the absent canddates, a total of 3,979 vald samples are obtaned, ncludng the graded 3,834 students and those un-graded 145 ones. 2.2 Varable descrpton Table 1 shows the mean and standard devaton statstcs of the explaned varables and the explanatory varables. The varable s statstcal analyss results of mean and standard devaton are n Table

2 Varable Grade Sex Teacher Jbe Table 1 Varable s statstcal analyss descrpton Varable descrpton Students CET4 results, categorcal varable, dscrete values: =1, qualfed; =0, unqualfed Sex, categorcal varable, dscrete values: =1, female; =0, male Teacher s frst degree, categorcal varable, dscrete values: =1, Master s Degree; =0, Bachelor s Degree Grades of the graded students, categorcal varable, dscrete values: B3=0, B2=1, B1=2, A3=3, A2=4, A1=5 All the samples (n=3 834) Standard Mean Devaton The varable descrpton statstcal analyss results show that the explaned varable s students CET4 results, namely, the mean of Grade s Ths shows the overall CET4 results tend to be qualfed. Explanatory varables nclude sex Sex, teachers frst degree Teacher, and students Grades Jbe. Students grade mean s , ths shows t s at a medum level, and t trends towards B1 grade. 3 Econometrc Models and Methods 3.1 Bnary choce Logt regresson In ths study, the explaned varablegrade, a bnary response varable, shows whether the CET4 results are qualfes or unqualfed. Its mean s just a rato, representng the qualfed opportunty rate. Consequently, n order to clear dfferences on CET4 results of unversty Englsh graded teachng, the nfluencng factors have to be pcked up. In order to get the nfluencng factors, Logt regresson model has to be establshed. 1 p E( Grade) F( X ) 1 e X ( 1 ) In ths pattern (1), p s ndvdual s acceptance probablty of passng the exam. E() stands for mathematcal expectaton. F( z) 1 (1 e z ) s Logstc dstrbuton of cumulatve dstrbuton functon. X s the explanatory varable vector made up of personal characterstcs (gender, level), and teacher characterstcs (frst degree).β s the correspondng coeffcent estmates. To rearrange pattern 1 slghtly, we can get: p ln X 1- p ( 2 ) p In model (2), 1- p s wth defnte economc mplcaton, and that s named opportunty rato. From model (2), we can see that regresson coeffcent for the natural logarthm of the rato of opportunty wll have a lnear effect. 3.2 Bnary choce Logt regresson In order to further probe nto factors resultng n CET4 results dfferences of graded teachng, decomposton approach has to be employed. Oaxaca (1973) & Blnder (1973) put forward classc O-B decomposton approach, whch portrats dfferences of sample characters or nfluences on explaned varable s average level from coeffcent dfference n detals. But f the explaned varable s Bnary 261

3 response varable, the classc O-B decomposton wll not be effectve. Farle (2005) rased bnary choce O-B decomposton approach on the bass of Logt regresson model. Ths helps remove lmtatons that the classc O-B decomposton cannot be appled to explan the bnary response varable. Accordng to ths, students opportunty rato of qualfed CET4 results dfferences can be classfed nto two parts: explanatory part and unexplanable part. The former s also named characterstc effect, t s majorly caused by dfferences of students ndvdual characters and teachers characters; whle the latter s also named coeffcent effect, t s manly caused by regresson coeffcent and cannot be explaned by dfferences on students characters. Ths paper, by makng use of Farle s (2005) bnary choce O-B decomposton approach, s to decompose dfferences on students CET4 results. The specfc steps are lsted as follows: Frstly, to establsh Logt regresson model by makng use of pattern (1), and to get regresson coeffcent vector ˆβ. Secondly, to calculate the total effect by ˆβ, the pattern s lsted as follows: F Xβ ˆ 1 In pattern (3), X stands for Vector of explanatory varable, and stands for sample sze. Thrdly, calculatng the character effect of every explanatory varable, and calculatng the coeffcent effect. The character effect of Sex should be: F Xβ F X β ( 4 ) 1 The character effect of Jbe should be: F Xβ F X β ( 5 ) 1 The character effect of Teacher should be: F Xβ F X β ( 6 ) 1 ˆ Among them, ˆ, ˆ ˆ ˆ 1, 2, 3 4 Emprcal Analyss β =, 1, Sex, Teacher, Jbe X. 4.1 Analyss of CET4 results dfferences n unversty Englsh graded teachng Table 2 lsts estmate results of Logt regresson model. For model fttng results, seen from the table, McFadden R-squared s 0.91, Resdual sum of squares regresson model s only Both the equaton and the coeffcents have passed sgnfcance test. Table 2 Results of model regresson Explaned varable: GRADE Method: ML - Bnary Logt Sample: Varable Coeffcent Std. Error z-statstc Prob. C Sex Teacher Jbe T ( 3 ) 262

4 McFadden R-squared Obs wth Dep= LR statstc (3 df) Obs wth Dep= Probablty (LR stat) Total obs Table 2 reports estmaton results of Logt regresson model. Model fttng result has acheved 0.91, both Equaton and the coeffcents have passed test of sgnfcance. Accordng to regresson results, regresson coeffcent of sex explanatory varable s sgnfcantly postve. Ths shows that female students are more lkely to pass CET4 compared wth male students. Ths s n lne wth sex dfference n learnng of present unversty male and female students. Regresson coeffcent of Teachers frst degree s postve, ths shows the hgher the teacher s frst degree s, the more lkely that the students can pass CET4. Its comparatvely hgher margnal contrbuton s Regresson coeffcent of grade s also sgnfcantly postve. Ths shows clearly that the hgher graded class the students are studyng n, the easer they can pass CET4. The margnal contrbuton s To sort accordng to margnal contrbuton, factors nfluencng students CET4 results are teacher s frst degree, grades of the graded classes, and students sex. 4.2 Character effect analyss of factors nfluencng CET4 results dfferences To decompose the model s total effect by usng bnary choce O-B approach, the character effect of respectve explanatory varable can be acheved and lsted n Table 3. Table 3 Decomposton of model effect Effect ( 10-2 ) Percentage Total effect Sex Character effect Teacher s frst degree Character effect Grade Character effect On the bass of Logt regresson model, to explan the respectve varables nfluencng degree on students probablty of passng the exam by makng use of O-B decomposton. Table 3 reports Logt regresson-based contrbuton degree of the respectve nfluencng factors. From Table 3, teacher s frst degree s character effect plays the leadng role, and ts contrbuton acheves 76%. Samples dfference n teacher allocaton s the major factor that leads to students dfferent achevement probablty of passng CET4. The next mportant factor that nfluences students CET4 results s the graded class. The graded class A & class B are set accordng to students CET4 results. Students n class A are afrad of beng degraded to class B, whle those n class B want to be upgraded to class A by ther hard workng. So grade s the secondary mportant factor n contrbutng to CET4 passng probablty. The thrdly mportant factor s students sex. 5 Conclusons and Polcy Recommendatons The gravelly taught students achevements are sgnfcantly hgher than those not. Ths proves that the general academes Englsh graded teachng reform at present accordng to Unversty Englsh Currculum Requrements enforced by Chna s Educaton Department s effectve. It can enhance students CET4 results. The relatvely hgh standard devaton score of the classfed taught students 263

5 CET4 results, and the expanded gap between the dfferent classfcatons, we can see that n classfed teachng process, teachers should not just focus on teachng n hgher graded classes. They should take nto account both the hgher grade classes and the lower grade classes, and they even need to focus more on students n the lower grade classes. Besdes, to mprove the educatonal level of teachers takng part n classfed teachng task, to pay more attenton to boys n the classfed classes are both benefcal to ncrease CET4 results of classfed taught students. Ths paper studes on one college s samples. There s stll further dscusson on the general academes Englsh graded teachng, and on ts ftness for other types of nsttutons. References [1]. Humn, Wang Bele. Constructng a Brand-new Mode for College Englsh Teachng and Learnng [J]. Shandong Foregn Language Teachng Journal (1): (n Chnese) [2]. Wang Guofeng. A Tentatve Exploraton of the Constructon and Applcaton of Text-based Test Item Bank of College Englsh [J]. Shandong Foregn Language Teachng Journal (2): (n Chnese) [3]. Zheng Xufen. Practce and Thoughts on Unversty Englsh Graded Teachng [J]. Chna Hgher Educaton Research (12): (n Chnese) 264

Can Auto Liability Insurance Purchases Signal Risk Attitude?

Can Auto Liability Insurance Purchases Signal Risk Attitude? Internatonal Journal of Busness and Economcs, 2011, Vol. 10, No. 2, 159-164 Can Auto Lablty Insurance Purchases Sgnal Rsk Atttude? Chu-Shu L Department of Internatonal Busness, Asa Unversty, Tawan Sheng-Chang

More information

The Probit Model. Alexander Spermann. SoSe 2009

The Probit Model. Alexander Spermann. SoSe 2009 The Probt Model Aleander Spermann Unversty of Freburg SoSe 009 Course outlne. Notaton and statstcal foundatons. Introducton to the Probt model 3. Applcaton 4. Coeffcents and margnal effects 5. Goodness-of-ft

More information

THE TITANIC SHIPWRECK: WHO WAS

THE TITANIC SHIPWRECK: WHO WAS THE TITANIC SHIPWRECK: WHO WAS MOST LIKELY TO SURVIVE? A STATISTICAL ANALYSIS Ths paper examnes the probablty of survvng the Ttanc shpwreck usng lmted dependent varable regresson analyss. Ths appled analyss

More information

b) The mean of the fitted (predicted) values of Y is equal to the mean of the Y values: c) The residuals of the regression line sum up to zero: = ei

b) The mean of the fitted (predicted) values of Y is equal to the mean of the Y values: c) The residuals of the regression line sum up to zero: = ei Mathematcal Propertes of the Least Squares Regresson The least squares regresson lne obeys certan mathematcal propertes whch are useful to know n practce. The followng propertes can be establshed algebracally:

More information

An Analysis of Factors Influencing the Self-Rated Health of Elderly Chinese People

An Analysis of Factors Influencing the Self-Rated Health of Elderly Chinese People Open Journal of Socal Scences, 205, 3, 5-20 Publshed Onlne May 205 n ScRes. http://www.scrp.org/ournal/ss http://dx.do.org/0.4236/ss.205.35003 An Analyss of Factors Influencng the Self-Rated Health of

More information

Binary Dependent Variables. In some cases the outcome of interest rather than one of the right hand side variables is discrete rather than continuous

Binary Dependent Variables. In some cases the outcome of interest rather than one of the right hand side variables is discrete rather than continuous Bnary Dependent Varables In some cases the outcome of nterest rather than one of the rght hand sde varables s dscrete rather than contnuous The smplest example of ths s when the Y varable s bnary so that

More information

Introduction to Regression

Introduction to Regression Introducton to Regresson Regresson a means of predctng a dependent varable based one or more ndependent varables. -Ths s done by fttng a lne or surface to the data ponts that mnmzes the total error. -

More information

Forecasting the Direction and Strength of Stock Market Movement

Forecasting the Direction and Strength of Stock Market Movement Forecastng the Drecton and Strength of Stock Market Movement Jngwe Chen Mng Chen Nan Ye cjngwe@stanford.edu mchen5@stanford.edu nanye@stanford.edu Abstract - Stock market s one of the most complcated systems

More information

The Development of Web Log Mining Based on Improve-K-Means Clustering Analysis

The Development of Web Log Mining Based on Improve-K-Means Clustering Analysis The Development of Web Log Mnng Based on Improve-K-Means Clusterng Analyss TngZhong Wang * College of Informaton Technology, Luoyang Normal Unversty, Luoyang, 471022, Chna wangtngzhong2@sna.cn Abstract.

More information

PRIVATE SCHOOL CHOICE: THE EFFECTS OF RELIGIOUS AFFILIATION AND PARTICIPATION

PRIVATE SCHOOL CHOICE: THE EFFECTS OF RELIGIOUS AFFILIATION AND PARTICIPATION PRIVATE SCHOOL CHOICE: THE EFFECTS OF RELIIOUS AFFILIATION AND PARTICIPATION Danny Cohen-Zada Department of Economcs, Ben-uron Unversty, Beer-Sheva 84105, Israel Wllam Sander Department of Economcs, DePaul

More information

Marginal Returns to Education For Teachers

Marginal Returns to Education For Teachers The Onlne Journal of New Horzons n Educaton Volume 4, Issue 3 MargnalReturnstoEducatonForTeachers RamleeIsmal,MarnahAwang ABSTRACT FacultyofManagementand Economcs UnverstPenddkanSultan Idrs ramlee@fpe.ups.edu.my

More information

SIX WAYS TO SOLVE A SIMPLE PROBLEM: FITTING A STRAIGHT LINE TO MEASUREMENT DATA

SIX WAYS TO SOLVE A SIMPLE PROBLEM: FITTING A STRAIGHT LINE TO MEASUREMENT DATA SIX WAYS TO SOLVE A SIMPLE PROBLEM: FITTING A STRAIGHT LINE TO MEASUREMENT DATA E. LAGENDIJK Department of Appled Physcs, Delft Unversty of Technology Lorentzweg 1, 68 CJ, The Netherlands E-mal: e.lagendjk@tnw.tudelft.nl

More information

The Analysis of Covariance. ERSH 8310 Keppel and Wickens Chapter 15

The Analysis of Covariance. ERSH 8310 Keppel and Wickens Chapter 15 The Analyss of Covarance ERSH 830 Keppel and Wckens Chapter 5 Today s Class Intal Consderatons Covarance and Lnear Regresson The Lnear Regresson Equaton TheAnalyss of Covarance Assumptons Underlyng the

More information

Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting

Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting Causal, Explanatory Forecastng Assumes cause-and-effect relatonshp between system nputs and ts output Forecastng wth Regresson Analyss Rchard S. Barr Inputs System Cause + Effect Relatonshp The job of

More information

Study on Model of Risks Assessment of Standard Operation in Rural Power Network

Study on Model of Risks Assessment of Standard Operation in Rural Power Network Study on Model of Rsks Assessment of Standard Operaton n Rural Power Network Qngj L 1, Tao Yang 2 1 Qngj L, College of Informaton and Electrcal Engneerng, Shenyang Agrculture Unversty, Shenyang 110866,

More information

Forecasting the Demand of Emergency Supplies: Based on the CBR Theory and BP Neural Network

Forecasting the Demand of Emergency Supplies: Based on the CBR Theory and BP Neural Network 700 Proceedngs of the 8th Internatonal Conference on Innovaton & Management Forecastng the Demand of Emergency Supples: Based on the CBR Theory and BP Neural Network Fu Deqang, Lu Yun, L Changbng School

More information

9.1 The Cumulative Sum Control Chart

9.1 The Cumulative Sum Control Chart Learnng Objectves 9.1 The Cumulatve Sum Control Chart 9.1.1 Basc Prncples: Cusum Control Chart for Montorng the Process Mean If s the target for the process mean, then the cumulatve sum control chart s

More information

Binomial Link Functions. Lori Murray, Phil Munz

Binomial Link Functions. Lori Murray, Phil Munz Bnomal Lnk Functons Lor Murray, Phl Munz Bnomal Lnk Functons Logt Lnk functon: ( p) p ln 1 p Probt Lnk functon: ( p) 1 ( p) Complentary Log Log functon: ( p) ln( ln(1 p)) Motvatng Example A researcher

More information

An empirical study for credit card approvals in the Greek banking sector

An empirical study for credit card approvals in the Greek banking sector An emprcal study for credt card approvals n the Greek bankng sector Mara Mavr George Ioannou Bergamo, Italy 17-21 May 2004 Management Scences Laboratory Department of Management Scence & Technology Athens

More information

SIMPLE LINEAR CORRELATION

SIMPLE LINEAR CORRELATION SIMPLE LINEAR CORRELATION Smple lnear correlaton s a measure of the degree to whch two varables vary together, or a measure of the ntensty of the assocaton between two varables. Correlaton often s abused.

More information

The covariance is the two variable analog to the variance. The formula for the covariance between two variables is

The covariance is the two variable analog to the variance. The formula for the covariance between two variables is Regresson Lectures So far we have talked only about statstcs that descrbe one varable. What we are gong to be dscussng for much of the remander of the course s relatonshps between two or more varables.

More information

Questions that we may have about the variables

Questions that we may have about the variables Antono Olmos, 01 Multple Regresson Problem: we want to determne the effect of Desre for control, Famly support, Number of frends, and Score on the BDI test on Perceved Support of Latno women. Dependent

More information

CHAPTER 7 THE TWO-VARIABLE REGRESSION MODEL: HYPOTHESIS TESTING

CHAPTER 7 THE TWO-VARIABLE REGRESSION MODEL: HYPOTHESIS TESTING CHAPTER 7 THE TWO-VARIABLE REGRESSION MODEL: HYPOTHESIS TESTING QUESTIONS 7.1. (a) In the regresson contet, the method of least squares estmates the regresson parameters n such a way that the sum of the

More information

Covariate-based pricing of automobile insurance

Covariate-based pricing of automobile insurance Insurance Markets and Companes: Analyses and Actuaral Computatons, Volume 1, Issue 2, 2010 José Antono Ordaz (Span), María del Carmen Melgar (Span) Covarate-based prcng of automoble nsurance Abstract Ths

More information

Institute of Informatics, Faculty of Business and Management, Brno University of Technology,Czech Republic

Institute of Informatics, Faculty of Business and Management, Brno University of Technology,Czech Republic Lagrange Multplers as Quanttatve Indcators n Economcs Ivan Mezník Insttute of Informatcs, Faculty of Busness and Management, Brno Unversty of TechnologCzech Republc Abstract The quanttatve role of Lagrange

More information

Lecture 9: Logit/Probit. Prof. Sharyn O Halloran Sustainable Development U9611 Econometrics II

Lecture 9: Logit/Probit. Prof. Sharyn O Halloran Sustainable Development U9611 Econometrics II Lecture 9: Logt/Probt Prof. Sharyn O Halloran Sustanable Development U96 Econometrcs II Revew of Lnear Estmaton So far, we know how to handle lnear estmaton models of the type: Y = β 0 + β *X + β 2 *X

More information

PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 12

PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 12 14 The Ch-squared dstrbuton PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 1 If a normal varable X, havng mean µ and varance σ, s standardsed, the new varable Z has a mean 0 and varance 1. When ths standardsed

More information

STATISTICAL DATA ANALYSIS IN EXCEL

STATISTICAL DATA ANALYSIS IN EXCEL Mcroarray Center STATISTICAL DATA ANALYSIS IN EXCEL Lecture 6 Some Advanced Topcs Dr. Petr Nazarov 14-01-013 petr.nazarov@crp-sante.lu Statstcal data analyss n Ecel. 6. Some advanced topcs Correcton for

More information

Traditional versus Online Courses, Efforts, and Learning Performance

Traditional versus Online Courses, Efforts, and Learning Performance Tradtonal versus Onlne Courses, Efforts, and Learnng Performance Kuang-Cheng Tseng, Department of Internatonal Trade, Chung-Yuan Chrstan Unversty, Tawan Shan-Yng Chu, Department of Internatonal Trade,

More information

Exhaustive Regression. An Exploration of Regression-Based Data Mining Techniques Using Super Computation

Exhaustive Regression. An Exploration of Regression-Based Data Mining Techniques Using Super Computation Exhaustve Regresson An Exploraton of Regresson-Based Data Mnng Technques Usng Super Computaton Antony Daves, Ph.D. Assocate Professor of Economcs Duquesne Unversty Pttsburgh, PA 58 Research Fellow The

More information

Evaluating the Effects of FUNDEF on Wages and Test Scores in Brazil *

Evaluating the Effects of FUNDEF on Wages and Test Scores in Brazil * Evaluatng the Effects of FUNDEF on Wages and Test Scores n Brazl * Naérco Menezes-Flho Elane Pazello Unversty of São Paulo Abstract In ths paper we nvestgate the effects of the 1998 reform n the fundng

More information

Module 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module LOSSLESS IMAGE COMPRESSION SYSTEMS Lesson 3 Lossless Compresson: Huffman Codng Instructonal Objectves At the end of ths lesson, the students should be able to:. Defne and measure source entropy..

More information

An Alternative Way to Measure Private Equity Performance

An Alternative Way to Measure Private Equity Performance An Alternatve Way to Measure Prvate Equty Performance Peter Todd Parlux Investment Technology LLC Summary Internal Rate of Return (IRR) s probably the most common way to measure the performance of prvate

More information

Subcontracting Structure and Productivity in the Japanese Software Industry

Subcontracting Structure and Productivity in the Japanese Software Industry Rev Soconetwork Strat (2009) 3:51-65 Subcontractng Structure and Productvty n e Japanese Software Industry Kazunor MINETAKI 1) and Kazuyuk MOTOHASHI 2) 1) The Research Insttute for Soconetwork Strateges,

More information

Risk-based Fatigue Estimate of Deep Water Risers -- Course Project for EM388F: Fracture Mechanics, Spring 2008

Risk-based Fatigue Estimate of Deep Water Risers -- Course Project for EM388F: Fracture Mechanics, Spring 2008 Rsk-based Fatgue Estmate of Deep Water Rsers -- Course Project for EM388F: Fracture Mechancs, Sprng 2008 Chen Sh Department of Cvl, Archtectural, and Envronmental Engneerng The Unversty of Texas at Austn

More information

Statistical Methods to Develop Rating Models

Statistical Methods to Develop Rating Models Statstcal Methods to Develop Ratng Models [Evelyn Hayden and Danel Porath, Österrechsche Natonalbank and Unversty of Appled Scences at Manz] Source: The Basel II Rsk Parameters Estmaton, Valdaton, and

More information

The Analysis of Outliers in Statistical Data

The Analysis of Outliers in Statistical Data THALES Project No. xxxx The Analyss of Outlers n Statstcal Data Research Team Chrysses Caron, Assocate Professor (P.I.) Vaslk Karot, Doctoral canddate Polychrons Economou, Chrstna Perrakou, Postgraduate

More information

An Evaluation of the Extended Logistic, Simple Logistic, and Gompertz Models for Forecasting Short Lifecycle Products and Services

An Evaluation of the Extended Logistic, Simple Logistic, and Gompertz Models for Forecasting Short Lifecycle Products and Services An Evaluaton of the Extended Logstc, Smple Logstc, and Gompertz Models for Forecastng Short Lfecycle Products and Servces Charles V. Trappey a,1, Hsn-yng Wu b a Professor (Management Scence), Natonal Chao

More information

CHAPTER 14 MORE ABOUT REGRESSION

CHAPTER 14 MORE ABOUT REGRESSION CHAPTER 14 MORE ABOUT REGRESSION We learned n Chapter 5 that often a straght lne descrbes the pattern of a relatonshp between two quanttatve varables. For nstance, n Example 5.1 we explored the relatonshp

More information

Returns to Experience in Mozambique: A Nonparametric Regression Approach

Returns to Experience in Mozambique: A Nonparametric Regression Approach Returns to Experence n Mozambque: A Nonparametrc Regresson Approach Joel Muzma Conference Paper nº 27 Conferênca Inaugural do IESE Desafos para a nvestgação socal e económca em Moçambque 19 de Setembro

More information

Examples of Multiple Linear Regression Models

Examples of Multiple Linear Regression Models ECON *: Examples of Multple Regresson Models Examples of Multple Lnear Regresson Models Data: Stata tutoral data set n text fle autoraw or autotxt Sample data: A cross-sectonal sample of 7 cars sold n

More information

Capital asset pricing model, arbitrage pricing theory and portfolio management

Capital asset pricing model, arbitrage pricing theory and portfolio management Captal asset prcng model, arbtrage prcng theory and portfolo management Vnod Kothar The captal asset prcng model (CAPM) s great n terms of ts understandng of rsk decomposton of rsk nto securty-specfc rsk

More information

I. SCOPE, APPLICABILITY AND PARAMETERS Scope

I. SCOPE, APPLICABILITY AND PARAMETERS Scope D Executve Board Annex 9 Page A/R ethodologcal Tool alculaton of the number of sample plots for measurements wthn A/R D project actvtes (Verson 0) I. SOPE, PIABIITY AD PARAETERS Scope. Ths tool s applcable

More information

Analysis of Premium Liabilities for Australian Lines of Business

Analysis of Premium Liabilities for Australian Lines of Business Summary of Analyss of Premum Labltes for Australan Lnes of Busness Emly Tao Honours Research Paper, The Unversty of Melbourne Emly Tao Acknowledgements I am grateful to the Australan Prudental Regulaton

More information

Design of Chinese steel TV towers

Design of Chinese steel TV towers Desgn of Chnese steel TV towers Xng Ma Department of Cvl & Envronmental Engneerng, Unversty of Auckland, New Zealand Zhaomn Wang Department of Cvl Engneerng, Tongj Unversty, Shangha, Chna 6 NZSEE Conference

More information

DECOMPOSING ALLOCATIVE EFFICIENCY FOR MULTI-PRODUCT PRODUCTION SYSTEMS

DECOMPOSING ALLOCATIVE EFFICIENCY FOR MULTI-PRODUCT PRODUCTION SYSTEMS DECOMPOSING ALLOCATIVE EFFICIENCY FOR MULTI-PRODUCT PRODUCTION SYSTEMS EKONOMIKA A MANAGEMENT Tao Zhang Introducton Data envelopment analyss (DEA, the non-parametrc approach to measurng effcency, was frst

More information

Using an Ordered Probit Regression Model to Assess the Performance of Real Estate Brokers

Using an Ordered Probit Regression Model to Assess the Performance of Real Estate Brokers Usng an Ordered Probt Regresson Model to Assess the Performance of Real Estate Brokers Chun-Chang Lee, Department of Real Estate Management, Natonal Pngtung Insttute of Commerce, Tawan Shu-Man You, Department

More information

Analysis of Covariance

Analysis of Covariance Chapter 551 Analyss of Covarance Introducton A common tas n research s to compare the averages of two or more populatons (groups). We mght want to compare the ncome level of two regons, the ntrogen content

More information

Gender differences in revealed risk taking: evidence from mutual fund investors

Gender differences in revealed risk taking: evidence from mutual fund investors Economcs Letters 76 (2002) 151 158 www.elsever.com/ locate/ econbase Gender dfferences n revealed rsk takng: evdence from mutual fund nvestors a b c, * Peggy D. Dwyer, James H. Glkeson, John A. Lst a Unversty

More information

Human Capital and Regional Economic Growth in Slovenia

Human Capital and Regional Economic Growth in Slovenia Human Captal and Regonal Economc Growth n Slovena Matjaž Novak and Štefan Bojnec Unversty of Prmorska Slovena Ths artcle presents the emprcal results concernng the economc growth n Slovena at the aggregate

More information

PRACTICE 1: MUTUAL FUNDS EVALUATION USING MATLAB.

PRACTICE 1: MUTUAL FUNDS EVALUATION USING MATLAB. PRACTICE 1: MUTUAL FUNDS EVALUATION USING MATLAB. INDEX 1. Load data usng the Edtor wndow and m-fle 2. Learnng to save results from the Edtor wndow. 3. Computng the Sharpe Rato 4. Obtanng the Treynor Rato

More information

THE METHOD OF LEAST SQUARES THE METHOD OF LEAST SQUARES

THE METHOD OF LEAST SQUARES THE METHOD OF LEAST SQUARES The goal: to measure (determne) an unknown quantty x (the value of a RV X) Realsaton: n results: y 1, y 2,..., y j,..., y n, (the measured values of Y 1, Y 2,..., Y j,..., Y n ) every result s encumbered

More information

Quality Adjustment of Second-hand Motor Vehicle Application of Hedonic Approach in Hong Kong s Consumer Price Index

Quality Adjustment of Second-hand Motor Vehicle Application of Hedonic Approach in Hong Kong s Consumer Price Index Qualty Adustment of Second-hand Motor Vehcle Applcaton of Hedonc Approach n Hong Kong s Consumer Prce Index Prepared for the 14 th Meetng of the Ottawa Group on Prce Indces 20 22 May 2015, Tokyo, Japan

More information

Multivariate EWMA Control Chart

Multivariate EWMA Control Chart Multvarate EWMA Control Chart Summary The Multvarate EWMA Control Chart procedure creates control charts for two or more numerc varables. Examnng the varables n a multvarate sense s extremely mportant

More information

benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ).

benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ). REVIEW OF RISK MANAGEMENT CONCEPTS LOSS DISTRIBUTIONS AND INSURANCE Loss and nsurance: When someone s subject to the rsk of ncurrng a fnancal loss, the loss s generally modeled usng a random varable or

More information

Number of Levels Cumulative Annual operating Income per year construction costs costs ($) ($) ($) 1 600,000 35,000 100,000 2 2,200,000 60,000 350,000

Number of Levels Cumulative Annual operating Income per year construction costs costs ($) ($) ($) 1 600,000 35,000 100,000 2 2,200,000 60,000 350,000 Problem Set 5 Solutons 1 MIT s consderng buldng a new car park near Kendall Square. o unversty funds are avalable (overhead rates are under pressure and the new faclty would have to pay for tself from

More information

Hot and easy in Florida: The case of economics professors

Hot and easy in Florida: The case of economics professors Research n Hgher Educaton Journal Abstract Hot and easy n Florda: The case of economcs professors Olver Schnusenberg The Unversty of North Florda Cheryl Froehlch The Unversty of North Florda We nvestgate

More information

Criminal Justice System on Crime *

Criminal Justice System on Crime * On the Impact of the NSW Crmnal Justce System on Crme * Dr Vasls Sarafds, Dscplne of Operatons Management and Econometrcs Unversty of Sydney * Ths presentaton s based on jont work wth Rchard Kelaher 1

More information

THE DETERMINANTS OF THE TUNISIAN BANKING INDUSTRY PROFITABILITY: PANEL EVIDENCE

THE DETERMINANTS OF THE TUNISIAN BANKING INDUSTRY PROFITABILITY: PANEL EVIDENCE THE DETERMINANTS OF THE TUNISIAN BANKING INDUSTRY PROFITABILITY: PANEL EVIDENCE Samy Ben Naceur ERF Research Fellow Department of Fnance Unversté Lbre de Tuns Avenue Khéreddne Pacha, 002 Tuns Emal : sbennaceur@eudoramal.com

More information

Economic Interpretation of Regression. Theory and Applications

Economic Interpretation of Regression. Theory and Applications Economc Interpretaton of Regresson Theor and Applcatons Classcal and Baesan Econometrc Methods Applcaton of mathematcal statstcs to economc data for emprcal support Economc theor postulates a qualtatve

More information

CHAPTER 5 RELATIONSHIPS BETWEEN QUANTITATIVE VARIABLES

CHAPTER 5 RELATIONSHIPS BETWEEN QUANTITATIVE VARIABLES CHAPTER 5 RELATIONSHIPS BETWEEN QUANTITATIVE VARIABLES In ths chapter, we wll learn how to descrbe the relatonshp between two quanttatve varables. Remember (from Chapter 2) that the terms quanttatve varable

More information

Factors Affecting Outsourcing for Information Technology Services in Rural Hospitals: Theory and Evidence

Factors Affecting Outsourcing for Information Technology Services in Rural Hospitals: Theory and Evidence Factors Affectng Outsourcng for Informaton Technology Servces n Rural Hosptals: Theory and Evdence Bran E. Whtacre Department of Agrcultural Economcs Oklahoma State Unversty bran.whtacre@okstate.edu J.

More information

Financial Instability and Life Insurance Demand + Mahito Okura *

Financial Instability and Life Insurance Demand + Mahito Okura * Fnancal Instablty and Lfe Insurance Demand + Mahto Okura * Norhro Kasuga ** Abstract Ths paper estmates prvate lfe nsurance and Kampo demand functons usng household-level data provded by the Postal Servces

More information

Data Mining from the Information Systems: Performance Indicators at Masaryk University in Brno

Data Mining from the Information Systems: Performance Indicators at Masaryk University in Brno Data Mnng from the Informaton Systems: Performance Indcators at Masaryk Unversty n Brno Mkuláš Bek EUA Workshop Strasbourg, 1-2 December 2006 1 Locaton of Brno Brno EUA Workshop Strasbourg, 1-2 December

More information

! # %& ( ) +,../ 0 1 2 3 4 0 4 # 5##&.6 7% 8 # 0 4 2 #...

! # %& ( ) +,../ 0 1 2 3 4 0 4 # 5##&.6 7% 8 # 0 4 2 #... ! # %& ( ) +,../ 0 1 2 3 4 0 4 # 5##&.6 7% 8 # 0 4 2 #... 9 Sheffeld Economc Research Paper Seres SERP Number: 2011010 ISSN 1749-8368 Sarah Brown, Aurora Ortz-Núñez and Karl Taylor Educatonal loans and

More information

Latent Class Regression. Statistics for Psychosocial Research II: Structural Models December 4 and 6, 2006

Latent Class Regression. Statistics for Psychosocial Research II: Structural Models December 4 and 6, 2006 Latent Class Regresson Statstcs for Psychosocal Research II: Structural Models December 4 and 6, 2006 Latent Class Regresson (LCR) What s t and when do we use t? Recall the standard latent class model

More information

Job satisfaction among US Ph.D. graduates: the effects of gender and employment sector

Job satisfaction among US Ph.D. graduates: the effects of gender and employment sector Job satsfacton among US Ph.D. graduates: the effects of gender and employment sector Phlppe Moguérou 1 IREDU, CNRS-Unversté de Bourgogne (Djon, France) and SPRU, Unversty of Sussex (Brghton, UK) Frst draft,

More information

PROFIT RATIO AND MARKET STRUCTURE

PROFIT RATIO AND MARKET STRUCTURE POFIT ATIO AND MAKET STUCTUE By Yong Yun Introducton: Industral economsts followng from Mason and Ban have run nnumerable tests of the relaton between varous market structural varables and varous dmensons

More information

Descriptive Statistics (60 points)

Descriptive Statistics (60 points) Economcs 30330: Statstcs for Economcs Problem Set 2 Unversty of otre Dame Instructor: Julo Garín Sprng 2012 Descrptve Statstcs (60 ponts) 1. Followng a recent government shutdown, Mnnesota Governor Mark

More information

Lecture 10: Linear Regression Approach, Assumptions and Diagnostics

Lecture 10: Linear Regression Approach, Assumptions and Diagnostics Approach to Modelng I Lecture 1: Lnear Regresson Approach, Assumptons and Dagnostcs Sandy Eckel seckel@jhsph.edu 8 May 8 General approach for most statstcal modelng: Defne the populaton of nterest State

More information

Economies of Scale in Hong Kong s Banking Industry

Economies of Scale in Hong Kong s Banking Industry 2014 年 2 月第十七卷一期 Vol. 17, No. 1, February 2014 Economes of Scale n Hong Kong s Banng Industry Agol Ho http://cmr.ba.ouh.edu.h Web Journal of Chnese Management Revew Vol 17 No 1 1 Economes of Scale n Hong

More information

Inequality and The Accounting Period. Quentin Wodon and Shlomo Yitzhaki. World Bank and Hebrew University. September 2001.

Inequality and The Accounting Period. Quentin Wodon and Shlomo Yitzhaki. World Bank and Hebrew University. September 2001. Inequalty and The Accountng Perod Quentn Wodon and Shlomo Ytzha World Ban and Hebrew Unversty September Abstract Income nequalty typcally declnes wth the length of tme taen nto account for measurement.

More information

A Novel Methodology of Working Capital Management for Large. Public Constructions by Using Fuzzy S-curve Regression

A Novel Methodology of Working Capital Management for Large. Public Constructions by Using Fuzzy S-curve Regression Novel Methodology of Workng Captal Management for Large Publc Constructons by Usng Fuzzy S-curve Regresson Cheng-Wu Chen, Morrs H. L. Wang and Tng-Ya Hseh Department of Cvl Engneerng, Natonal Central Unversty,

More information

HOUSEHOLDS DEBT BURDEN: AN ANALYSIS BASED ON MICROECONOMIC DATA*

HOUSEHOLDS DEBT BURDEN: AN ANALYSIS BASED ON MICROECONOMIC DATA* HOUSEHOLDS DEBT BURDEN: AN ANALYSIS BASED ON MICROECONOMIC DATA* Luísa Farnha** 1. INTRODUCTION The rapd growth n Portuguese households ndebtedness n the past few years ncreased the concerns that debt

More information

Swedish Institute for Social Research (SOFI)

Swedish Institute for Social Research (SOFI) Swedsh Insttute for Socal Research (SOFI) Stockholm Unversty WORKING PAPER 7/2007 ARE WOMEN ASKING FOR LOW WAGES? GENDER DIFFERENCES IN WAGE BARGAINING STRATEGIES AND ENSUING BARGAINING SUCCESS by Jenny

More information

Staff Paper. Farm Savings Accounts: Examining Income Variability, Eligibility, and Benefits. Brent Gloy, Eddy LaDue, and Charles Cuykendall

Staff Paper. Farm Savings Accounts: Examining Income Variability, Eligibility, and Benefits. Brent Gloy, Eddy LaDue, and Charles Cuykendall SP 2005-02 August 2005 Staff Paper Department of Appled Economcs and Management Cornell Unversty, Ithaca, New York 14853-7801 USA Farm Savngs Accounts: Examnng Income Varablty, Elgblty, and Benefts Brent

More information

7.5. Present Value of an Annuity. Investigate

7.5. Present Value of an Annuity. Investigate 7.5 Present Value of an Annuty Owen and Anna are approachng retrement and are puttng ther fnances n order. They have worked hard and nvested ther earnngs so that they now have a large amount of money on

More information

Financial Mathemetics

Financial Mathemetics Fnancal Mathemetcs 15 Mathematcs Grade 12 Teacher Gude Fnancal Maths Seres Overvew In ths seres we am to show how Mathematcs can be used to support personal fnancal decsons. In ths seres we jon Tebogo,

More information

Central exit examinations increase performance... but take the fun out of mathematics

Central exit examinations increase performance... but take the fun out of mathematics SCHUMPETER DISCUSSION PAPERS Central ext examnatons ncrease performance... but take the fun out of mathematcs Hendrk Jürges Kerstn Schneder SDP 2008-001 ISSN 1867-5352 by the author Central ext examnatons

More information

Feature selection for intrusion detection. Slobodan Petrović NISlab, Gjøvik University College

Feature selection for intrusion detection. Slobodan Petrović NISlab, Gjøvik University College Feature selecton for ntruson detecton Slobodan Petrovć NISlab, Gjøvk Unversty College Contents The feature selecton problem Intruson detecton Traffc features relevant for IDS The CFS measure The mrmr measure

More information

Communication Networks II Contents

Communication Networks II Contents 8 / 1 -- Communcaton Networs II (Görg) -- www.comnets.un-bremen.de Communcaton Networs II Contents 1 Fundamentals of probablty theory 2 Traffc n communcaton networs 3 Stochastc & Marovan Processes (SP

More information

Is There A Tradeoff between Employer-Provided Health Insurance and Wages?

Is There A Tradeoff between Employer-Provided Health Insurance and Wages? Is There A Tradeoff between Employer-Provded Health Insurance and Wages? Lye Zhu, Southern Methodst Unversty October 2005 Abstract Though most of the lterature n health nsurance and the labor market assumes

More information

Why Women are Self-Employed? Empirical Evidence from Pakistan

Why Women are Self-Employed? Empirical Evidence from Pakistan Why Women are Self-Employed? Emprcal Evdence from Pakstan Muhammad Zahr Fard Assstant Professor Department Of Economcs, Bahauddn Zakarya Unversty, Multan, Pakstan Tel: 92-30-0680-1779 E-mal: zahrfard4u@yahoo.com

More information

ChE 4520/5520: Mass Transport. Objective/Introduction. Outline. Gerardine G. Botte

ChE 4520/5520: Mass Transport. Objective/Introduction. Outline. Gerardine G. Botte ChE 450/550: Mass Transport Gerardne G. Botte Objectve/Introducton In prevous chapters we neglected transport lmtatons In ths chapter we wll learn how to evaluate the effect of transport lmtatons We wll

More information

HYPOTHESIS TESTING OF PARAMETERS FOR ORDINARY LINEAR CIRCULAR REGRESSION

HYPOTHESIS TESTING OF PARAMETERS FOR ORDINARY LINEAR CIRCULAR REGRESSION HYPOTHESIS TESTING OF PARAMETERS FOR ORDINARY LINEAR CIRCULAR REGRESSION Abdul Ghapor Hussn Centre for Foundaton Studes n Scence Unversty of Malaya 563 KUALA LUMPUR E-mal: ghapor@umedumy Abstract Ths paper

More information

Nasdaq Iceland Bond Indices 01 April 2015

Nasdaq Iceland Bond Indices 01 April 2015 Nasdaq Iceland Bond Indces 01 Aprl 2015 -Fxed duraton Indces Introducton Nasdaq Iceland (the Exchange) began calculatng ts current bond ndces n the begnnng of 2005. They were a response to recent changes

More information

The Choice of Direct Dealing or Electronic Brokerage in Foreign Exchange Trading

The Choice of Direct Dealing or Electronic Brokerage in Foreign Exchange Trading The Choce of Drect Dealng or Electronc Brokerage n Foregn Exchange Tradng Mchael Melvn & Ln Wen Arzona State Unversty Introducton Electronc Brokerage n Foregn Exchange Start from a base of zero n 1992

More information

Macro Factors and Volatility of Treasury Bond Returns

Macro Factors and Volatility of Treasury Bond Returns Macro Factors and Volatlty of Treasury Bond Returns Jngzh Huang Department of Fnance Smeal Colleage of Busness Pennsylvana State Unversty Unversty Park, PA 16802, U.S.A. Le Lu School of Fnance Shangha

More information

Fixed income risk attribution

Fixed income risk attribution 5 Fxed ncome rsk attrbuton Chthra Krshnamurth RskMetrcs Group chthra.krshnamurth@rskmetrcs.com We compare the rsk of the actve portfolo wth that of the benchmark and segment the dfference between the two

More information

Student Performance in Online Quizzes as a Function of Time in Undergraduate Financial Management Courses

Student Performance in Online Quizzes as a Function of Time in Undergraduate Financial Management Courses Student Performance n Onlne Quzzes as a Functon of Tme n Undergraduate Fnancal Management Courses Olver Schnusenberg The Unversty of North Florda ABSTRACT An nterestng research queston n lght of recent

More information

Military Conscription and University Enrolment: Evidence from Italy

Military Conscription and University Enrolment: Evidence from Italy DISCUSSION PAPER SERIES IZA DP No. 4212 Mltary Conscrpton and Unversty Enrolment: Evdence from Italy Gorgo D Petro June 2009 Forschungsnsttut zur Zukunft der Arbet Insttute for the Study of Labor Mltary

More information

What is Candidate Sampling

What is Candidate Sampling What s Canddate Samplng Say we have a multclass or mult label problem where each tranng example ( x, T ) conssts of a context x a small (mult)set of target classes T out of a large unverse L of possble

More information

Wage inequality and returns to schooling in Europe: a semi-parametric approach using EU-SILC data

Wage inequality and returns to schooling in Europe: a semi-parametric approach using EU-SILC data MPRA Munch Personal RePEc Archve Wage nequalty and returns to schoolng n Europe: a sem-parametrc approach usng EU-SILC data Marco Bagett and Sergo Sccchtano Unversty La Sapenza Rome, Mnstry of Economc

More information

Management Quality, Financial and Investment Policies, and. Asymmetric Information

Management Quality, Financial and Investment Policies, and. Asymmetric Information Management Qualty, Fnancal and Investment Polces, and Asymmetrc Informaton Thomas J. Chemmanur * Imants Paegls ** and Karen Smonyan *** Current verson: December 2007 * Professor of Fnance, Carroll School

More information

Chapter 14 Simple Linear Regression

Chapter 14 Simple Linear Regression Sldes Prepared JOHN S. LOUCKS St. Edward s Unverst Slde Chapter 4 Smple Lnear Regresson Smple Lnear Regresson Model Least Squares Method Coeffcent of Determnaton Model Assumptons Testng for Sgnfcance Usng

More information

Time Series Analysis in Studies of AGN Variability. Bradley M. Peterson The Ohio State University

Time Series Analysis in Studies of AGN Variability. Bradley M. Peterson The Ohio State University Tme Seres Analyss n Studes of AGN Varablty Bradley M. Peterson The Oho State Unversty 1 Lnear Correlaton Degree to whch two parameters are lnearly correlated can be expressed n terms of the lnear correlaton

More information

Survive Then Thrive: Determinants of Success in the Economics Ph.D. Program. Wayne A. Grove Le Moyne College, Economics Department

Survive Then Thrive: Determinants of Success in the Economics Ph.D. Program. Wayne A. Grove Le Moyne College, Economics Department Survve Then Thrve: Determnants of Success n the Economcs Ph.D. Program Wayne A. Grove Le Moyne College, Economcs Department Donald H. Dutkowsky Syracuse Unversty, Economcs Department Andrew Grodner East

More information

Describing Communities. Species Diversity Concepts. Species Richness. Species Richness. Species-Area Curve. Species-Area Curve

Describing Communities. Species Diversity Concepts. Species Richness. Species Richness. Species-Area Curve. Species-Area Curve peces versty Concepts peces Rchness peces-area Curves versty Indces - mpson's Index - hannon-wener Index - rlloun Index peces Abundance Models escrbng Communtes There are two mportant descrptors of a communty:

More information

Control Charts for Means (Simulation)

Control Charts for Means (Simulation) Chapter 290 Control Charts for Means (Smulaton) Introducton Ths procedure allows you to study the run length dstrbuton of Shewhart (Xbar), Cusum, FIR Cusum, and EWMA process control charts for means usng

More information

presented by TAO LI. born in Yangling, Shaanxi Province, P.R.China

presented by TAO LI. born in Yangling, Shaanxi Province, P.R.China EMPIRICIAL STUDIES ON LENDING VOLUME DECISIOINS, THE NUMBER OF LENDING APPROVALS, AND LENDING RATES ATTITUDES: ESTIMATION BASED ON HOUSEHOLD DATA FROM RURAL SHANDONG, CHINA Dssertaton to obtan the Ph.

More information