Chapter 13, example problems: x (cm) 10.0


 William Carter
 2 years ago
 Views:
Transcription
1 Chapter 13, example problems: (13.04) Reading Fig (reproduced on the right): (a) Frequency f = 1/ T = 1/ (16s) = Hz. (since the figure shows that T/2 is 8 s.) (b) The amplitude is 10 cm. (Don t just say 10!) (c) The period T is 16 s. (d) The angular frequency ω is: 2π/ T = 2π/ (16 s) = (π/8) s 1 = s 1. Better yet, the unit should be given as rad/s, since 2π is actually 2π rad. x (cm) t(s) (13.14) Object undergoing SHM. T = s, and A = m. At t = 0, object is at x = 0. At t = s, x =? In general, x = A cos (ωt + φ). But since at t = 0, object is at x = 0, we must take φ = ± π/2, and obtain x = ±A sin (ωt). (The sign can not be decided since we do not know whether the objected started by moving to the right or left.) Thus at t = s, we have x = ± m sin ((2π/1.200 s) (0.480 s)) = ± m. That is, the object is m away from the equilibrium position. (13.28) 5.20 kg box attached to an ideal horizontal spring with k = 375 N/m. Inside the box, a stone with m = 3.44 kg. Oscillating with A = 7.50 cm. When at maximum speed, the stone is plucked vertically out of the box without touching the box. (a) T new = 2π / ω max = 2π / k/m new = 2π / (375 N/m / 5.20 kg) 1/2 = s. (b) The plucking does not exert any horizontal force to the motion of the box. The empty box will still have the maximum velocity of the original motion, which is v max = ω A = k/m A = (375 N/m / 8.64 kg) 1/ cm = 49.4 cm/s. But its angular frequency has changed to k/m new = (375 N/m / 5.20 kg) 1/2 = /s. Hence its new amplitude is A new = v max /ω new = 49.4 cm/s / /s = cm. (c) The new period is shorter, since it is now a lighter mass moving under the influence of the same spring. (The same spring force produces a larger acceleration on the lighter mass at any given displacement. So the frequency should be higher, and the period shorter.) (13.44) A simple pendulum on Mars: On earth its period is 1.60 s. On Mars where g = 3.71 m/s 2, the new period is: T Mars = 2π / g Mars /l = ( g Earth / g Mars) (2π / g Earth /l ) = ( 9.80 / 3.71) 1.60 s = 2.60 s. That is, the period is longer on Mars, because lower gravitational acceleration on Mars makes the swinging motion slower. (13.52) 1.80 kg monkey wrench pivoted m from its center of mass. Allowed to swing as a physical pendulum. Period of smallangle oscillation = s. (a) Moment of inertia of the wrench:
2 I = mgl / ω 2 = 1.80 kg 9.80 m/s m /(2π / s) 2 = kg m 2, (where use has been made that ω = mgl/i for a physical pendulum at smallangle oscillation, because the gravitational torque is τ = mgl sinθ, so for smallangle oscillations for which sinθ can be approximated by θ, the effective torque constant K is mgl. Thus ω = K/I becomes mgl/i. ) (b) Initial displacement = θ (t = 0) = rad. Want dθ /d t at θ = 0, i.e., ( dθ /d t ) max. We use energy conservation: (1/2) K θ max 2 = (1/2) I ( dθ /d t ) max 2 [which is the angular analog of (1/2) k x max 2 = (1/2) m v 2 max. The left hand side is at both extremes of the motion, where the velocity is zero, whereas the right hand side is at the center of the motion, where the displacement is zero.] Hence ( dθ /d t ) max = θ max (K/ I) 1/2 = ωθ max = (2π / s) rad = rad/s. (13.68) Before the small block slips, the frequency of the oscillation is: f = (1/2π) k/(m + M). Looking at the small block alone, the only horizontal force acting on it is the static frictional force, the maximum value of k which is: μ s N = μ s mg, (because the upward normal force N acing on the small block by the large block below it should cancel the downward weight of the small block, mg.) For slip to not occur to the small block, this maximum frictional force must be equal to its mass m times its maximum acceleration, or Aω 2. That is: μ s mg = maω 2 = ma [k/(m + M)], giving A = μ s (m+m)g/k. μ s frictionless m M (13.70) Rocket accelerating upward at 4.00 m/s 2 from launchpad on earth. A small 1.50 kg ball hangs from the ceiling inside the rocket by a light 1.10m wire. The ball is displaced by 8.50 from vertical and released. (i) Inside the rocket, the effective g is 9.80 m/s m/s 2 = m/s 2. Why? Because when the ball is in its equilibrium position below the hanging point of the ceiling, and T is the tension in the wire, which pulls the ball upward, then the Newton s second law gives T mg = m 4.00 m/s 2, giving T = m m/s 2. Thus the period of the oscillation is: 2π L/g eff = 2π 1.10 m/13.80 m/s 2 = 1.77 s. Remarks: (a) Einstein s equivalence principle precisely refers to this situation: In a frame which is accelerating upward with an acceleration a, any mass m behaves as if it has received an additional downward force equal to its mass m times a. Adding it to the downward weight mg of the mass m if it is near the surface of the earth, we find that the total force acting on the mass is m (g + a), as if g has been changed to (g + a). (b) Both tension and period are denoted by T. To avoid confusing we have not used T to denote the period here, so T stands for tension only here. In another problem in this chapter we will use T to denote period.
3 (ii) The amplitude of the oscillation is still 1.10 m (8.50 π radians / 180 ) = m, independent of the acceleration of the rocket. (13.80) A 40.0 N force stretches a vertical spring m. (a) Find m suspended from it to get a period of 1.00 s. Force constant of the spring k = 40.0 N / m = 160 N/m. T = 2π (m / k) 1/2 = 1.00 s. m = k (T / 2π ) 2 = 160 N/m (1.00 s / 2π ) 2 = 4.05 kg. (c) A = m, T = 1.00 s. Find x(t) and direction of motion at t = 0.35 s after the mass m has passed the equilibrium position, moving downward. We take downward as positive for x, measured from the new equilibrium position (which is m below the lower end of the unstretched spring), then x(t) = A sin (ωt) = A sin (2π f t) = A sin (2π t / T ) = m sin (2π 0.35 s / 1.00 s) = m. [Note that the argument of the sine function is in radians as revealed by the 2π factor. The formula ω = 2π f = 2π / T gives the angular frequency ω in radians per second.] As for the direction of motion at this t, we notice that 0.35 s / 1.00 s = 0.35 < 0.5 but > Thus the argument of the sine function has exceeded π / 2 but is still less than π. Thus the sine function has reached its first maximum and is now coming down. It means that the mass m is now moving toward the origin (i.e., the equilibrium position). You can also answer this question by computing the velocity, but it will take more time. (d) Find the force F acting on the mass when it is m below the equilibrium position moving upward. We use F = k x = 160 N/m 0.03 m = 4.80 N. The negative sign shows that this force is pointing upward, not because the motional velocity is pointing upward (given in the problem), but rather because x is positive. (The restoring force in a simple harmonic oscillator is always trying to bring the mass back to the origin.) 2 [Note that you can also use F = m a and a = ω x to do this problem, and the same answer will be obtained. (13.90) Model the leg of a T. rex. as two uniform rods, each 1.55 m long, joined rigidly end to end. The lower rod has mass M and the upper rod has mass 2M. The composite opject is pivoted about the top of the upper rod. Compute the oscillation period of this object for small amplitude oscillation. Compare results with that of Example We need to first find the moment of inertia and centerofmass location of this object. The total moment of inertia about P : P I = [(1/12)(2M) L 2 + (2M) (L/2) 2 ] + θ [(1/12)(M) L 2 + (M) (3L/2) 2 ] = (2/3)ML 2 + (14/6)ML 2 = 3ML 2 Let the center of mass of this composite object be located at a distance d from the pivot point P along the rod. Then an upward force of 3Mg at this point can support the whole object. Thus the 2Mg Mg
4 counterclockwise torque by this force at this point about P can balance the two clockwise torques about P, one by the weight 2Mg at (L/2) from P, and one by weight Mg at (3L/2) from P. That is, (3Mg) d sin θ = (2Mg) (L/2) sin θ + (Mg) (3L/2) sin θ giving d = (5/6) L. [This answer is independent of θ, so one could let θ = 90.] We are now ready to compute the oscillation period of this composite object: T = 2π [I / (3M)gd ] 1/2 = 2π (L 2 / gd ) 1/2 = 2π [1.55 m / 9.80 m/s 2 (5/6)] 1/2 = 2.74 s. Example found a period of 2.90 s by assuming that the object is a uniform rod of the same length 2L = 3.10 m. Clearly, by shifting the mass distribution toward the pivot point, the period becomes shorter. This is clearly right, since if the whole mass is concentrated at the lower end (farthest from the pivot point), we would get T = 2π [2L / g ] 1/2 = 3.53 s! Note that in all three cases, the answer does not depend on the total mass, only its distribution. (13.96) 0.100m m m m m P 1 P 2 Both springs are stretched from their natural length m to m so their free ends can be attached to the points P 1 and P 2. (a) If k 1 = 2.00 N/m and k 2 = 6.00 N/m, find the new equilibrium position of the block of mass m. Let the new equilibrium position be a distance x to the right of the original position. Then the (left) spring 1 is stretched by m + x, and the (right) spring 2 is stretched by m x. The force pulling the block to the left by the spring 1 is therefore F 1 = k 1 (0.100 m + x), and the force pulling the block to the right by the spring 2 is therefore F 2 = k 2 (0.100 m x). These two force should cancel each other for the new equilibrium position. Hence we obtain the equation: 2.00 N/m (0.100 m + x) = 6.00 N/m (0.100 m x). Recombining terms, we obtain N N = (2.00 N/m N/m) x. Solving for x and we obtain x = 0.05 m. Thus the new equilibrium position of the block is 0.05 m to the right of its initial position. (b) Find the period of oscillation of the block if it is slightly displaced from this new equilibrium position and released. Let the block be displaced by a distance y to the right of this new equilibrium position. Then the spring 1 is stretch by a total distance (0.100 m + x + y), and the spring 2 is stretched by a total distance (0.100 m x y). The force pulling the block to the left by the spring 1 is therefore F 1 = k 1 (0.100 m + x + y), and the force pulling the block to the right by the spring 2 is therefore F 2 = k 2 (0.100 m x y). These two forces no longer cancel, and the net force to the
5 right (i.e., in the direction of the displacement y) is F 2 F 1 = (k 1 + k 2 ) y, showing that the effective force constant for this oscillatory motion is (k 1 + k 2 ). Thus the period of this oscillatory motion is: T = (2π) m / ( k 1 + k 2 ) = (2π) kg / 8.00 N/m = s.
Physics 41 HW Set 1 Chapter 15
Physics 4 HW Set Chapter 5 Serway 8 th OC:, 4, 7 CQ: 4, 8 P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59, 67, 74 OC CQ P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59,
More informationAP Physics C. Oscillations/SHM Review Packet
AP Physics C Oscillations/SHM Review Packet 1. A 0.5 kg mass on a spring has a displacement as a function of time given by the equation x(t) = 0.8Cos(πt). Find the following: a. The time for one complete
More information226 Chapter 15: OSCILLATIONS
Chapter 15: OSCILLATIONS 1. In simple harmonic motion, the restoring force must be proportional to the: A. amplitude B. frequency C. velocity D. displacement E. displacement squared 2. An oscillatory motion
More informationSpring Simple Harmonic Oscillator. Spring constant. Potential Energy stored in a Spring. Understanding oscillations. Understanding oscillations
Spring Simple Harmonic Oscillator Simple Harmonic Oscillations and Resonance We have an object attached to a spring. The object is on a horizontal frictionless surface. We move the object so the spring
More informationPractice Test SHM with Answers
Practice Test SHM with Answers MPC 1) If we double the frequency of a system undergoing simple harmonic motion, which of the following statements about that system are true? (There could be more than one
More informationPhysics 1120: Simple Harmonic Motion Solutions
Questions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Physics 1120: Simple Harmonic Motion Solutions 1. A 1.75 kg particle moves as function of time as follows: x = 4cos(1.33t+π/5) where distance is measured
More informationSimple Harmonic Motion(SHM) Period and Frequency. Period and Frequency. Cosines and Sines
Simple Harmonic Motion(SHM) Vibration (oscillation) Equilibrium position position of the natural length of a spring Amplitude maximum displacement Period and Frequency Period (T) Time for one complete
More informationPhysics 231 Lecture 15
Physics 31 ecture 15 Main points of today s lecture: Simple harmonic motion Mass and Spring Pendulum Circular motion T 1/f; f 1/ T; ω πf for mass and spring ω x Acos( ωt) v ωasin( ωt) x ax ω Acos( ωt)
More informationC B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N
Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a
More informationSimple Harmonic Motion
Simple Harmonic Motion 1 Object To determine the period of motion of objects that are executing simple harmonic motion and to check the theoretical prediction of such periods. 2 Apparatus Assorted weights
More informationDetermination of Acceleration due to Gravity
Experiment 2 24 Kuwait University Physics 105 Physics Department Determination of Acceleration due to Gravity Introduction In this experiment the acceleration due to gravity (g) is determined using two
More informationPHY121 #8 Midterm I 3.06.2013
PHY11 #8 Midterm I 3.06.013 AP Physics Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension
More informationAP Physics  Chapter 8 Practice Test
AP Physics  Chapter 8 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A single conservative force F x = (6.0x 12) N (x is in m) acts on
More informationAP1 Oscillations. 1. Which of the following statements about a springblock oscillator in simple harmonic motion about its equilibrium point is false?
1. Which of the following statements about a springblock oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The
More informationPHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?
1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always
More informationChapter 18 Static Equilibrium
Chapter 8 Static Equilibrium 8. Introduction Static Equilibrium... 8. Lever Law... Example 8. Lever Law... 4 8.3 Generalized Lever Law... 5 8.4 Worked Examples... 7 Example 8. Suspended Rod... 7 Example
More informationSample Questions for the AP Physics 1 Exam
Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Multiplechoice Questions Note: To simplify calculations, you may use g 5 10 m/s 2 in all problems. Directions: Each
More informationPHY231 Section 1, Form B March 22, 2012
1. A car enters a horizontal, curved roadbed of radius 50 m. The coefficient of static friction between the tires and the roadbed is 0.20. What is the maximum speed with which the car can safely negotiate
More informationPhysics 111: Lecture 4: Chapter 4  Forces and Newton s Laws of Motion. Physics is about forces and how the world around us reacts to these forces.
Physics 111: Lecture 4: Chapter 4  Forces and Newton s Laws of Motion Physics is about forces and how the world around us reacts to these forces. Whats a force? Contact and noncontact forces. Whats a
More informationcircular motion & gravitation physics 111N
circular motion & gravitation physics 111N uniform circular motion an object moving around a circle at a constant rate must have an acceleration always perpendicular to the velocity (else the speed would
More informationv v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )
Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution
More informationNewton s Law of Motion
chapter 5 Newton s Law of Motion Static system 1. Hanging two identical masses Context in the textbook: Section 5.3, combination of forces, Example 4. Vertical motion without friction 2. Elevator: Decelerating
More informationboth double. A. T and v max B. T remains the same and v max doubles. both remain the same. C. T and v max
Q13.1 An object on the end of a spring is oscillating in simple harmonic motion. If the amplitude of oscillation is doubled, how does this affect the oscillation period T and the object s maximum speed
More informationPHYS 211 FINAL FALL 2004 Form A
1. Two boys with masses of 40 kg and 60 kg are holding onto either end of a 10 m long massless pole which is initially at rest and floating in still water. They pull themselves along the pole toward each
More informationTennessee State University
Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an Fgrade. Other instructions will be given in the Hall. MULTIPLE CHOICE.
More informationwww.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x
Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity
More informationPh\sics 2210 Fall 2012  Novcmbcr 21 David Ailion
Ph\sics 2210 Fall 2012  Novcmbcr 21 David Ailion Unid: Discussion T A: Bryant Justin Will Yuan 1 Place answers in box provided for each question. Specify units for each answer. Circle correct answer(s)
More informationHOOKE S LAW AND SIMPLE HARMONIC MOTION
HOOKE S LAW AND SIMPLE HARMONIC MOTION Alexander Sapozhnikov, Brooklyn College CUNY, New York, alexs@brooklyn.cuny.edu Objectives Study Hooke s Law and measure the spring constant. Study Simple Harmonic
More informationPhysics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives
Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring
More informationPHYSICS 111 HOMEWORK SOLUTION #10. April 8, 2013
PHYSICS HOMEWORK SOLUTION #0 April 8, 203 0. Find the net torque on the wheel in the figure below about the axle through O, taking a = 6.0 cm and b = 30.0 cm. A torque that s produced by a force can be
More informationPHYS 1014M, Fall 2005 Exam #3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
PHYS 1014M, Fall 2005 Exam #3 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A bicycle wheel rotates uniformly through 2.0 revolutions in
More informationMidterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m
Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of
More informationColumbia University Department of Physics QUALIFYING EXAMINATION
Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 13, 2014 1:00PM to 3:00PM Classical Physics Section 1. Classical Mechanics Two hours are permitted for the completion of
More informationLecture L222D Rigid Body Dynamics: Work and Energy
J. Peraire, S. Widnall 6.07 Dynamics Fall 008 Version.0 Lecture L  D Rigid Body Dynamics: Work and Energy In this lecture, we will revisit the principle of work and energy introduced in lecture L3 for
More information1) The time for one cycle of a periodic process is called the A) wavelength. B) period. C) frequency. D) amplitude.
practice wave test.. Name Use the text to make use of any equations you might need (e.g., to determine the velocity of waves in a given material) MULTIPLE CHOICE. Choose the one alternative that best completes
More informationOscillations. Vern Lindberg. June 10, 2010
Oscillations Vern Lindberg June 10, 2010 You have discussed oscillations in Vibs and Waves: we will therefore touch lightly on Chapter 3, mainly trying to refresh your memory and extend the concepts. 1
More informationSolution Derivations for Capa #11
Solution Derivations for Capa #11 1) A horizontal circular platform (M = 128.1 kg, r = 3.11 m) rotates about a frictionless vertical axle. A student (m = 68.3 kg) walks slowly from the rim of the platform
More informationPhysics 2A, Sec B00: Mechanics  Winter 2011 Instructor: B. Grinstein Final Exam
Physics 2A, Sec B00: Mechanics  Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry
More informationA) F = k x B) F = k C) F = x k D) F = x + k E) None of these.
CT161 Which of the following is necessary to make an object oscillate? i. a stable equilibrium ii. little or no friction iii. a disturbance A: i only B: ii only C: iii only D: i and iii E: All three Answer:
More informationPhysics 1A Lecture 10C
Physics 1A Lecture 10C "If you neglect to recharge a battery, it dies. And if you run full speed ahead without stopping for water, you lose momentum to finish the race. Oprah Winfrey Static Equilibrium
More informationPhysics 201 Homework 8
Physics 201 Homework 8 Feb 27, 2013 1. A ceiling fan is turned on and a net torque of 1.8 Nm is applied to the blades. 8.2 rad/s 2 The blades have a total moment of inertia of 0.22 kgm 2. What is the
More informationChapter 15, example problems:
Chapter, example problems: (.0) Ultrasound imaging. (Frequenc > 0,000 Hz) v = 00 m/s. λ 00 m/s /.0 mm =.0 0 6 Hz. (Smaller wave length implies larger frequenc, since their product,
More informationPhysics 112 Homework 5 (solutions) (2004 Fall) Solutions to Homework Questions 5
Solutions to Homework Questions 5 Chapt19, Problem2: (a) Find the direction of the force on a proton (a positively charged particle) moving through the magnetic fields in Figure P19.2, as shown. (b) Repeat
More informationChapter 3.8 & 6 Solutions
Chapter 3.8 & 6 Solutions P3.37. Prepare: We are asked to find period, speed and acceleration. Period and frequency are inverses according to Equation 3.26. To find speed we need to know the distance traveled
More informationLecture 6. Weight. Tension. Normal Force. Static Friction. Cutnell+Johnson: 4.84.12, second half of section 4.7
Lecture 6 Weight Tension Normal Force Static Friction Cutnell+Johnson: 4.84.12, second half of section 4.7 In this lecture, I m going to discuss four different kinds of forces: weight, tension, the normal
More informationExperiment 9. The Pendulum
Experiment 9 The Pendulum 9.1 Objectives Investigate the functional dependence of the period (τ) 1 of a pendulum on its length (L), the mass of its bob (m), and the starting angle (θ 0 ). Use a pendulum
More information5. Forces and MotionI. Force is an interaction that causes the acceleration of a body. A vector quantity.
5. Forces and MotionI 1 Force is an interaction that causes the acceleration of a body. A vector quantity. Newton's First Law: Consider a body on which no net force acts. If the body is at rest, it will
More informationCHAPTER 15 FORCE, MASS AND ACCELERATION
CHAPTER 5 FORCE, MASS AND ACCELERATION EXERCISE 83, Page 9. A car initially at rest accelerates uniformly to a speed of 55 km/h in 4 s. Determine the accelerating force required if the mass of the car
More informationSerway_ISM_V1 1 Chapter 4
Serway_ISM_V1 1 Chapter 4 ANSWERS TO MULTIPLE CHOICE QUESTIONS 1. Newton s second law gives the net force acting on the crate as This gives the kinetic friction force as, so choice (a) is correct. 2. As
More informationAcceleration due to Gravity
Acceleration due to Gravity 1 Object To determine the acceleration due to gravity by different methods. 2 Apparatus Balance, ball bearing, clamps, electric timers, meter stick, paper strips, precision
More informationLecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is
Lecture 17 Rotational Dynamics Rotational Kinetic Energy Stress and Strain and Springs Cutnell+Johnson: 9.49.6, 10.110.2 Rotational Dynamics (some more) Last time we saw that the rotational analog of
More informationChapter 4. Forces and Newton s Laws of Motion. continued
Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting
More informationSolution: F = kx is Hooke s law for a mass and spring system. Angular frequency of this system is: k m therefore, k
Physics 1C Midterm 1 Summer Session II, 2011 Solutions 1. If F = kx, then k m is (a) A (b) ω (c) ω 2 (d) Aω (e) A 2 ω Solution: F = kx is Hooke s law for a mass and spring system. Angular frequency of
More informationMechanical Vibrations
Mechanical Vibrations A mass m is suspended at the end of a spring, its weight stretches the spring by a length L to reach a static state (the equilibrium position of the system). Let u(t) denote the displacement,
More informationPrelab Exercises: Hooke's Law and the Behavior of Springs
59 Prelab Exercises: Hooke's Law and the Behavior of Springs Study the description of the experiment that follows and answer the following questions.. (3 marks) Explain why a mass suspended vertically
More information9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J
1. If the kinetic energy of an object is 16 joules when its speed is 4.0 meters per second, then the mass of the objects is (1) 0.5 kg (3) 8.0 kg (2) 2.0 kg (4) 19.6 kg Base your answers to questions 9
More informationLab 8: Ballistic Pendulum
Lab 8: Ballistic Pendulum Equipment: Ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale. Caution In this experiment a steel ball is projected horizontally
More informationExercises on Oscillations and Waves
Exercises on Oscillations and Waves Exercise 1.1 You find a spring in the laboratory. When you hang 100 grams at the end of the spring it stretches 10 cm. You pull the 100 gram mass 6 cm from its equilibrium
More informationHW Set VI page 1 of 9 PHYSICS 1401 (1) homework solutions
HW Set VI page 1 of 9 1030 A 10 g bullet moving directly upward at 1000 m/s strikes and passes through the center of mass of a 5.0 kg block initially at rest (Fig. 1033 ). The bullet emerges from the
More informationChapter 9. is gradually increased, does the center of mass shift toward or away from that particle or does it remain stationary.
Chapter 9 9.2 Figure 937 shows a three particle system with masses m 1 3.0 kg, m 2 4.0 kg, and m 3 8.0 kg. The scales are set by x s 2.0 m and y s 2.0 m. What are (a) the x coordinate and (b) the y coordinate
More informationVELOCITY, ACCELERATION, FORCE
VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how
More informationSTUDY PACKAGE. Available Online : www.mathsbysuhag.com
fo/u fopkjr Hkh# tu] ugha vkjehks dke] foifr ns[k NksM+s rqjar e/;e eu dj ';kea iq#"k flag ladyi dj] lgrs foifr vusd] ^cuk^ u NksM+s /;s; dks] j?kqcj jk[ks VsdAA jfpr% ekuo /kez iz.ksrk ln~xq# Jh j.knksm+nklth
More informationLinear Motion vs. Rotational Motion
Linear Motion vs. Rotational Motion Linear motion involves an object moving from one point to another in a straight line. Rotational motion involves an object rotating about an axis. Examples include a
More informationANALYTICAL METHODS FOR ENGINEERS
UNIT 1: Unit code: QCF Level: 4 Credit value: 15 ANALYTICAL METHODS FOR ENGINEERS A/601/1401 OUTCOME  TRIGONOMETRIC METHODS TUTORIAL 1 SINUSOIDAL FUNCTION Be able to analyse and model engineering situations
More informationF N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26
Physics 23 Exam 2 Spring 2010 Dr. Alward Page 1 1. A 250N force is directed horizontally as shown to push a 29kg box up an inclined plane at a constant speed. Determine the magnitude of the normal force,
More informationPractice Exam Three Solutions
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01T Fall Term 2004 Practice Exam Three Solutions Problem 1a) (5 points) Collisions and Center of Mass Reference Frame In the lab frame,
More informationNotice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case.
HW1 Possible Solutions Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case. Tipler 14.P.003 An object attached to a spring has simple
More informationCenter of Gravity. We touched on this briefly in chapter 7! x 2
Center of Gravity We touched on this briefly in chapter 7! x 1 x 2 cm m 1 m 2 This was for what is known as discrete objects. Discrete refers to the fact that the two objects separated and individual.
More informationUnit 4 Practice Test: Rotational Motion
Unit 4 Practice Test: Rotational Motion Multiple Guess Identify the letter of the choice that best completes the statement or answers the question. 1. How would an angle in radians be converted to an angle
More informationObjective: Equilibrium Applications of Newton s Laws of Motion I
Type: Single Date: Objective: Equilibrium Applications of Newton s Laws of Motion I Homework: Assignment (111) Read (4.14.5, 4.8, 4.11); Do PROB # s (46, 47, 52, 58) Ch. 4 AP Physics B Mr. Mirro Equilibrium,
More informationCambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level
Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level *0123456789* PHYSICS 9702/02 Paper 2 AS Level Structured Questions For Examination from 2016 SPECIMEN
More informationRotation: Moment of Inertia and Torque
Rotation: Moment of Inertia and Torque Every time we push a door open or tighten a bolt using a wrench, we apply a force that results in a rotational motion about a fixed axis. Through experience we learn
More informationWork, Power, Energy Multiple Choice. PSI Physics. Multiple Choice Questions
Work, Power, Energy Multiple Choice PSI Physics Name Multiple Choice Questions 1. A block of mass m is pulled over a distance d by an applied force F which is directed in parallel to the displacement.
More informationLAB 6: GRAVITATIONAL AND PASSIVE FORCES
55 Name Date Partners LAB 6: GRAVITATIONAL AND PASSIVE FORCES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies by the attraction
More informationPENDULUM PERIODS. First Last. Partners: student1, student2, and student3
PENDULUM PERIODS First Last Partners: student1, student2, and student3 Governor s School for Science and Technology 520 Butler Farm Road, Hampton, VA 23666 April 13, 2011 ABSTRACT The effect of amplitude,
More informationUnit  6 Vibrations of Two Degree of Freedom Systems
Unit  6 Vibrations of Two Degree of Freedom Systems Dr. T. Jagadish. Professor for Post Graduation, Department of Mechanical Engineering, Bangalore Institute of Technology, Bangalore Introduction A two
More informationTIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 1111, Exam 3 Section 1 Version 1 December 6, 2005 Total Weight: 100 points
TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES PHYS 1111, Exam 3 Section 1 Version 1 December 6, 2005 Total Weight: 100 points 1. Check your examination for completeness prior to starting.
More informationLesson 11. Luis Anchordoqui. Physics 168. Tuesday, December 8, 15
Lesson 11 Physics 168 1 Oscillations and Waves 2 Simple harmonic motion If an object vibrates or oscillates back and forth over same path each cycle taking same amount of time motion is called periodic
More informationApplications of SecondOrder Differential Equations
Applications of SecondOrder Differential Equations Secondorder linear differential equations have a variety of applications in science and engineering. In this section we explore two of them: the vibration
More informationChapter 11 Equilibrium
11.1 The First Condition of Equilibrium The first condition of equilibrium deals with the forces that cause possible translations of a body. The simplest way to define the translational equilibrium of
More informationAP Physics Applying Forces
AP Physics Applying Forces This section of your text will be very tedious, very tedious indeed. (The Physics Kahuna is just as sorry as he can be.) It s mostly just a bunch of complicated problems and
More informationLAB 6  GRAVITATIONAL AND PASSIVE FORCES
L061 Name Date Partners LAB 6  GRAVITATIONAL AND PASSIVE FORCES OBJECTIVES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies
More informationTwoBody System: Two Hanging Masses
Specific Outcome: i. I can apply Newton s laws of motion to solve, algebraically, linear motion problems in horizontal, vertical and inclined planes near the surface of Earth, ignoring air resistance.
More informationConceptual Questions: Forces and Newton s Laws
Conceptual Questions: Forces and Newton s Laws 1. An object can have motion only if a net force acts on it. his statement is a. true b. false 2. And the reason for this (refer to previous question) is
More informationWeight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N)
Gravitational Field A gravitational field as a region in which an object experiences a force due to gravitational attraction Gravitational Field Strength The gravitational field strength at a point in
More informationPHYSICS 111 HOMEWORK SOLUTION, week 4, chapter 5, sec 17. February 13, 2013
PHYSICS 111 HOMEWORK SOLUTION, week 4, chapter 5, sec 17 February 13, 2013 0.1 A 2.00kg object undergoes an acceleration given by a = (6.00î + 4.00ĵ)m/s 2 a) Find the resultatnt force acting on the object
More informationRotational Inertia Demonstrator
WWW.ARBORSCI.COM Rotational Inertia Demonstrator P33545 BACKGROUND: The Rotational Inertia Demonstrator provides an engaging way to investigate many of the principles of angular motion and is intended
More informationEXPERIMENT 2 Measurement of g: Use of a simple pendulum
EXPERIMENT 2 Measurement of g: Use of a simple pendulum OBJECTIVE: To measure the acceleration due to gravity using a simple pendulum. Textbook reference: pp1015 INTRODUCTION: Many things in nature wiggle
More informationState Newton's second law of motion for a particle, defining carefully each term used.
5 Question 1. [Marks 20] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding
More information3 Work, Power and Energy
3 Work, Power and Energy At the end of this section you should be able to: a. describe potential energy as energy due to position and derive potential energy as mgh b. describe kinetic energy as energy
More informationE X P E R I M E N T 8
E X P E R I M E N T 8 Torque, Equilibrium & Center of Gravity Produced by the Physics Staff at Collin College Copyright Collin College Physics Department. All Rights Reserved. University Physics, Exp 8:
More informationAngular acceleration α
Angular Acceleration Angular acceleration α measures how rapidly the angular velocity is changing: Slide 70 Linear and Circular Motion Compared Slide 7 Linear and Circular Kinematics Compared Slide 7
More informationPHYS 2425 Engineering Physics I EXPERIMENT 9 SIMPLE HARMONIC MOTION
PHYS 2425 Engineering Physics I EXPERIMENT 9 SIMPLE HARMONIC MOTION I. INTRODUCTION The objective of this experiment is the study of oscillatory motion. In particular the springmass system and the simple
More informationChapter 8: Potential Energy and Conservation of Energy. Work and kinetic energy are energies of motion.
Chapter 8: Potential Energy and Conservation of Energy Work and kinetic energy are energies of motion. Consider a vertical spring oscillating with mass m attached to one end. At the extreme ends of travel
More informationStanding Waves on a String
1 of 6 Standing Waves on a String Summer 2004 Standing Waves on a String If a string is tied between two fixed supports, pulled tightly and sharply plucked at one end, a pulse will travel from one end
More informationFXA 2008. UNIT G484 Module 2 4.2.3 Simple Harmonic Oscillations 11. frequency of the applied = natural frequency of the
11 FORCED OSCILLATIONS AND RESONANCE POINTER INSTRUMENTS Analogue ammeter and voltmeters, have CRITICAL DAMPING so as to allow the needle pointer to reach its correct position on the scale after a single
More informationCHAPTER 6 WORK AND ENERGY
CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From
More informationChapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc.
Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces Units of Chapter 5 Applications of Newton s Laws Involving Friction Uniform Circular Motion Kinematics Dynamics of Uniform Circular
More informationCandidate Number. General Certificate of Education Advanced Level Examination June 2014
entre Number andidate Number Surname Other Names andidate Signature General ertificate of Education dvanced Level Examination June 214 Physics PHY4/1 Unit 4 Fields and Further Mechanics Section Wednesday
More informationPhysics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion
Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckleup? A) the first law
More information