# Chapter 13, example problems: x (cm) 10.0

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Chapter 13, example problems: (13.04) Reading Fig (reproduced on the right): (a) Frequency f = 1/ T = 1/ (16s) = Hz. (since the figure shows that T/2 is 8 s.) (b) The amplitude is 10 cm. (Don t just say 10!) (c) The period T is 16 s. (d) The angular frequency ω is: 2π/ T = 2π/ (16 s) = (π/8) s 1 = s 1. Better yet, the unit should be given as rad/s, since 2π is actually 2π rad. x (cm) t(s) (13.14) Object undergoing SHM. T = s, and A = m. At t = 0, object is at x = 0. At t = s, x =? In general, x = A cos (ωt + φ). But since at t = 0, object is at x = 0, we must take φ = ± π/2, and obtain x = ±A sin (ωt). (The sign can not be decided since we do not know whether the objected started by moving to the right or left.) Thus at t = s, we have x = ± m sin ((2π/1.200 s) (0.480 s)) = ± m. That is, the object is m away from the equilibrium position. (13.28) 5.20 kg box attached to an ideal horizontal spring with k = 375 N/m. Inside the box, a stone with m = 3.44 kg. Oscillating with A = 7.50 cm. When at maximum speed, the stone is plucked vertically out of the box without touching the box. (a) T new = 2π / ω max = 2π / k/m new = 2π / (375 N/m / 5.20 kg) 1/2 = s. (b) The plucking does not exert any horizontal force to the motion of the box. The empty box will still have the maximum velocity of the original motion, which is v max = ω A = k/m A = (375 N/m / 8.64 kg) 1/ cm = 49.4 cm/s. But its angular frequency has changed to k/m new = (375 N/m / 5.20 kg) 1/2 = /s. Hence its new amplitude is A new = v max /ω new = 49.4 cm/s / /s = cm. (c) The new period is shorter, since it is now a lighter mass moving under the influence of the same spring. (The same spring force produces a larger acceleration on the lighter mass at any given displacement. So the frequency should be higher, and the period shorter.) (13.44) A simple pendulum on Mars: On earth its period is 1.60 s. On Mars where g = 3.71 m/s 2, the new period is: T Mars = 2π / g Mars /l = ( g Earth / g Mars) (2π / g Earth /l ) = ( 9.80 / 3.71) 1.60 s = 2.60 s. That is, the period is longer on Mars, because lower gravitational acceleration on Mars makes the swinging motion slower. (13.52) 1.80 kg monkey wrench pivoted m from its center of mass. Allowed to swing as a physical pendulum. Period of small-angle oscillation = s. (a) Moment of inertia of the wrench:

2 I = mgl / ω 2 = 1.80 kg 9.80 m/s m /(2π / s) 2 = kg m 2, (where use has been made that ω = mgl/i for a physical pendulum at smallangle oscillation, because the gravitational torque is τ = mgl sinθ, so for smallangle oscillations for which sinθ can be approximated by θ, the effective torque constant K is mgl. Thus ω = K/I becomes mgl/i. ) (b) Initial displacement = θ (t = 0) = rad. Want dθ /d t at θ = 0, i.e., ( dθ /d t ) max. We use energy conservation: (1/2) K θ max 2 = (1/2) I ( dθ /d t ) max 2 [which is the angular analog of (1/2) k x max 2 = (1/2) m v 2 max. The left hand side is at both extremes of the motion, where the velocity is zero, whereas the right hand side is at the center of the motion, where the displacement is zero.] Hence ( dθ /d t ) max = θ max (K/ I) 1/2 = ωθ max = (2π / s) rad = rad/s. (13.68) Before the small block slips, the frequency of the oscillation is: f = (1/2π) k/(m + M). Looking at the small block alone, the only horizontal force acting on it is the static frictional force, the maximum value of k which is: μ s N = μ s mg, (because the upward normal force N acing on the small block by the large block below it should cancel the downward weight of the small block, mg.) For slip to not occur to the small block, this maximum frictional force must be equal to its mass m times its maximum acceleration, or Aω 2. That is: μ s mg = maω 2 = ma [k/(m + M)], giving A = μ s (m+m)g/k. μ s frictionless m M (13.70) Rocket accelerating upward at 4.00 m/s 2 from launchpad on earth. A small 1.50 kg ball hangs from the ceiling inside the rocket by a light 1.10-m wire. The ball is displaced by 8.50 from vertical and released. (i) Inside the rocket, the effective g is 9.80 m/s m/s 2 = m/s 2. Why? Because when the ball is in its equilibrium position below the hanging point of the ceiling, and T is the tension in the wire, which pulls the ball upward, then the Newton s second law gives T mg = m 4.00 m/s 2, giving T = m m/s 2. Thus the period of the oscillation is: 2π L/g eff = 2π 1.10 m/13.80 m/s 2 = 1.77 s. Remarks: (a) Einstein s equivalence principle precisely refers to this situation: In a frame which is accelerating upward with an acceleration a, any mass m behaves as if it has received an additional downward force equal to its mass m times a. Adding it to the downward weight mg of the mass m if it is near the surface of the earth, we find that the total force acting on the mass is m (g + a), as if g has been changed to (g + a). (b) Both tension and period are denoted by T. To avoid confusing we have not used T to denote the period here, so T stands for tension only here. In another problem in this chapter we will use T to denote period.

3 (ii) The amplitude of the oscillation is still 1.10 m (8.50 π radians / 180 ) = m, independent of the acceleration of the rocket. (13.80) A 40.0 N force stretches a vertical spring m. (a) Find m suspended from it to get a period of 1.00 s. Force constant of the spring k = 40.0 N / m = 160 N/m. T = 2π (m / k) 1/2 = 1.00 s. m = k (T / 2π ) 2 = 160 N/m (1.00 s / 2π ) 2 = 4.05 kg. (c) A = m, T = 1.00 s. Find x(t) and direction of motion at t = 0.35 s after the mass m has passed the equilibrium position, moving downward. We take downward as positive for x, measured from the new equilibrium position (which is m below the lower end of the unstretched spring), then x(t) = A sin (ωt) = A sin (2π f t) = A sin (2π t / T ) = m sin (2π 0.35 s / 1.00 s) = m. [Note that the argument of the sine function is in radians as revealed by the 2π factor. The formula ω = 2π f = 2π / T gives the angular frequency ω in radians per second.] As for the direction of motion at this t, we notice that 0.35 s / 1.00 s = 0.35 < 0.5 but > Thus the argument of the sine function has exceeded π / 2 but is still less than π. Thus the sine function has reached its first maximum and is now coming down. It means that the mass m is now moving toward the origin (i.e., the equilibrium position). You can also answer this question by computing the velocity, but it will take more time. (d) Find the force F acting on the mass when it is m below the equilibrium position moving upward. We use F = k x = 160 N/m 0.03 m = 4.80 N. The negative sign shows that this force is pointing upward, not because the motional velocity is pointing upward (given in the problem), but rather because x is positive. (The restoring force in a simple harmonic oscillator is always trying to bring the mass back to the origin.) 2 [Note that you can also use F = m a and a = ω x to do this problem, and the same answer will be obtained. (13.90) Model the leg of a T. rex. as two uniform rods, each 1.55 m long, joined rigidly end to end. The lower rod has mass M and the upper rod has mass 2M. The composite opject is pivoted about the top of the upper rod. Compute the oscillation period of this object for small amplitude oscillation. Compare results with that of Example We need to first find the moment of inertia and center-of-mass location of this object. The total moment of inertia about P : P I = [(1/12)(2M) L 2 + (2M) (L/2) 2 ] + θ [(1/12)(M) L 2 + (M) (3L/2) 2 ] = (2/3)ML 2 + (14/6)ML 2 = 3ML 2 Let the center of mass of this composite object be located at a distance d from the pivot point P along the rod. Then an upward force of 3Mg at this point can support the whole object. Thus the 2Mg Mg

4 counterclockwise torque by this force at this point about P can balance the two clockwise torques about P, one by the weight 2Mg at (L/2) from P, and one by weight Mg at (3L/2) from P. That is, (3Mg) d sin θ = (2Mg) (L/2) sin θ + (Mg) (3L/2) sin θ giving d = (5/6) L. [This answer is independent of θ, so one could let θ = 90.] We are now ready to compute the oscillation period of this composite object: T = 2π [I / (3M)gd ] 1/2 = 2π (L 2 / gd ) 1/2 = 2π [1.55 m / 9.80 m/s 2 (5/6)] 1/2 = 2.74 s. Example found a period of 2.90 s by assuming that the object is a uniform rod of the same length 2L = 3.10 m. Clearly, by shifting the mass distribution toward the pivot point, the period becomes shorter. This is clearly right, since if the whole mass is concentrated at the lower end (farthest from the pivot point), we would get T = 2π [2L / g ] 1/2 = 3.53 s! Note that in all three cases, the answer does not depend on the total mass, only its distribution. (13.96) 0.100m m m m m P 1 P 2 Both springs are stretched from their natural length m to m so their free ends can be attached to the points P 1 and P 2. (a) If k 1 = 2.00 N/m and k 2 = 6.00 N/m, find the new equilibrium position of the block of mass m. Let the new equilibrium position be a distance x to the right of the original position. Then the (left) spring 1 is stretched by m + x, and the (right) spring 2 is stretched by m x. The force pulling the block to the left by the spring 1 is therefore F 1 = k 1 (0.100 m + x), and the force pulling the block to the right by the spring 2 is therefore F 2 = k 2 (0.100 m x). These two force should cancel each other for the new equilibrium position. Hence we obtain the equation: 2.00 N/m (0.100 m + x) = 6.00 N/m (0.100 m x). Recombining terms, we obtain N N = (2.00 N/m N/m) x. Solving for x and we obtain x = 0.05 m. Thus the new equilibrium position of the block is 0.05 m to the right of its initial position. (b) Find the period of oscillation of the block if it is slightly displaced from this new equilibrium position and released. Let the block be displaced by a distance y to the right of this new equilibrium position. Then the spring 1 is stretch by a total distance (0.100 m + x + y), and the spring 2 is stretched by a total distance (0.100 m x y). The force pulling the block to the left by the spring 1 is therefore F 1 = k 1 (0.100 m + x + y), and the force pulling the block to the right by the spring 2 is therefore F 2 = k 2 (0.100 m x y). These two forces no longer cancel, and the net force to the

5 right (i.e., in the direction of the displacement y) is F 2 F 1 = (k 1 + k 2 ) y, showing that the effective force constant for this oscillatory motion is (k 1 + k 2 ). Thus the period of this oscillatory motion is: T = (2π) m / ( k 1 + k 2 ) = (2π) kg / 8.00 N/m = s.

### Physics 41 HW Set 1 Chapter 15

Physics 4 HW Set Chapter 5 Serway 8 th OC:, 4, 7 CQ: 4, 8 P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59, 67, 74 OC CQ P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59,

### AP Physics C. Oscillations/SHM Review Packet

AP Physics C Oscillations/SHM Review Packet 1. A 0.5 kg mass on a spring has a displacement as a function of time given by the equation x(t) = 0.8Cos(πt). Find the following: a. The time for one complete

### 226 Chapter 15: OSCILLATIONS

Chapter 15: OSCILLATIONS 1. In simple harmonic motion, the restoring force must be proportional to the: A. amplitude B. frequency C. velocity D. displacement E. displacement squared 2. An oscillatory motion

### Spring Simple Harmonic Oscillator. Spring constant. Potential Energy stored in a Spring. Understanding oscillations. Understanding oscillations

Spring Simple Harmonic Oscillator Simple Harmonic Oscillations and Resonance We have an object attached to a spring. The object is on a horizontal frictionless surface. We move the object so the spring

### Practice Test SHM with Answers

Practice Test SHM with Answers MPC 1) If we double the frequency of a system undergoing simple harmonic motion, which of the following statements about that system are true? (There could be more than one

### Physics 1120: Simple Harmonic Motion Solutions

Questions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Physics 1120: Simple Harmonic Motion Solutions 1. A 1.75 kg particle moves as function of time as follows: x = 4cos(1.33t+π/5) where distance is measured

### Simple Harmonic Motion(SHM) Period and Frequency. Period and Frequency. Cosines and Sines

Simple Harmonic Motion(SHM) Vibration (oscillation) Equilibrium position position of the natural length of a spring Amplitude maximum displacement Period and Frequency Period (T) Time for one complete

### Physics 231 Lecture 15

Physics 31 ecture 15 Main points of today s lecture: Simple harmonic motion Mass and Spring Pendulum Circular motion T 1/f; f 1/ T; ω πf for mass and spring ω x Acos( ωt) v ωasin( ωt) x ax ω Acos( ωt)

### C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a

### Simple Harmonic Motion

Simple Harmonic Motion 1 Object To determine the period of motion of objects that are executing simple harmonic motion and to check the theoretical prediction of such periods. 2 Apparatus Assorted weights

### Determination of Acceleration due to Gravity

Experiment 2 24 Kuwait University Physics 105 Physics Department Determination of Acceleration due to Gravity Introduction In this experiment the acceleration due to gravity (g) is determined using two

### PHY121 #8 Midterm I 3.06.2013

PHY11 #8 Midterm I 3.06.013 AP Physics- Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension

### AP Physics - Chapter 8 Practice Test

AP Physics - Chapter 8 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A single conservative force F x = (6.0x 12) N (x is in m) acts on

### AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false?

1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The

### PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?

1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always

### Chapter 18 Static Equilibrium

Chapter 8 Static Equilibrium 8. Introduction Static Equilibrium... 8. Lever Law... Example 8. Lever Law... 4 8.3 Generalized Lever Law... 5 8.4 Worked Examples... 7 Example 8. Suspended Rod... 7 Example

### Sample Questions for the AP Physics 1 Exam

Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Multiple-choice Questions Note: To simplify calculations, you may use g 5 10 m/s 2 in all problems. Directions: Each

### PHY231 Section 1, Form B March 22, 2012

1. A car enters a horizontal, curved roadbed of radius 50 m. The coefficient of static friction between the tires and the roadbed is 0.20. What is the maximum speed with which the car can safely negotiate

### Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion. Physics is about forces and how the world around us reacts to these forces.

Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion Physics is about forces and how the world around us reacts to these forces. Whats a force? Contact and non-contact forces. Whats a

### circular motion & gravitation physics 111N

circular motion & gravitation physics 111N uniform circular motion an object moving around a circle at a constant rate must have an acceleration always perpendicular to the velocity (else the speed would

### v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )

Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

### Newton s Law of Motion

chapter 5 Newton s Law of Motion Static system 1. Hanging two identical masses Context in the textbook: Section 5.3, combination of forces, Example 4. Vertical motion without friction 2. Elevator: Decelerating

### both double. A. T and v max B. T remains the same and v max doubles. both remain the same. C. T and v max

Q13.1 An object on the end of a spring is oscillating in simple harmonic motion. If the amplitude of oscillation is doubled, how does this affect the oscillation period T and the object s maximum speed

### PHYS 211 FINAL FALL 2004 Form A

1. Two boys with masses of 40 kg and 60 kg are holding onto either end of a 10 m long massless pole which is initially at rest and floating in still water. They pull themselves along the pole toward each

### Tennessee State University

Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an F-grade. Other instructions will be given in the Hall. MULTIPLE CHOICE.

### www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x

Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity

### Ph\sics 2210 Fall 2012 - Novcmbcr 21 David Ailion

Ph\sics 2210 Fall 2012 - Novcmbcr 21 David Ailion Unid: Discussion T A: Bryant Justin Will Yuan 1 Place answers in box provided for each question. Specify units for each answer. Circle correct answer(s)

### HOOKE S LAW AND SIMPLE HARMONIC MOTION

HOOKE S LAW AND SIMPLE HARMONIC MOTION Alexander Sapozhnikov, Brooklyn College CUNY, New York, alexs@brooklyn.cuny.edu Objectives Study Hooke s Law and measure the spring constant. Study Simple Harmonic

### Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

### PHYSICS 111 HOMEWORK SOLUTION #10. April 8, 2013

PHYSICS HOMEWORK SOLUTION #0 April 8, 203 0. Find the net torque on the wheel in the figure below about the axle through O, taking a = 6.0 cm and b = 30.0 cm. A torque that s produced by a force can be

### PHYS 101-4M, Fall 2005 Exam #3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

PHYS 101-4M, Fall 2005 Exam #3 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A bicycle wheel rotates uniformly through 2.0 revolutions in

### Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m

Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of

### Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 13, 2014 1:00PM to 3:00PM Classical Physics Section 1. Classical Mechanics Two hours are permitted for the completion of

### Lecture L22-2D Rigid Body Dynamics: Work and Energy

J. Peraire, S. Widnall 6.07 Dynamics Fall 008 Version.0 Lecture L - D Rigid Body Dynamics: Work and Energy In this lecture, we will revisit the principle of work and energy introduced in lecture L-3 for

### 1) The time for one cycle of a periodic process is called the A) wavelength. B) period. C) frequency. D) amplitude.

practice wave test.. Name Use the text to make use of any equations you might need (e.g., to determine the velocity of waves in a given material) MULTIPLE CHOICE. Choose the one alternative that best completes

### Oscillations. Vern Lindberg. June 10, 2010

Oscillations Vern Lindberg June 10, 2010 You have discussed oscillations in Vibs and Waves: we will therefore touch lightly on Chapter 3, mainly trying to refresh your memory and extend the concepts. 1

### Solution Derivations for Capa #11

Solution Derivations for Capa #11 1) A horizontal circular platform (M = 128.1 kg, r = 3.11 m) rotates about a frictionless vertical axle. A student (m = 68.3 kg) walks slowly from the rim of the platform

### Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

### A) F = k x B) F = k C) F = x k D) F = x + k E) None of these.

CT16-1 Which of the following is necessary to make an object oscillate? i. a stable equilibrium ii. little or no friction iii. a disturbance A: i only B: ii only C: iii only D: i and iii E: All three Answer:

### Physics 1A Lecture 10C

Physics 1A Lecture 10C "If you neglect to recharge a battery, it dies. And if you run full speed ahead without stopping for water, you lose momentum to finish the race. --Oprah Winfrey Static Equilibrium

### Physics 201 Homework 8

Physics 201 Homework 8 Feb 27, 2013 1. A ceiling fan is turned on and a net torque of 1.8 N-m is applied to the blades. 8.2 rad/s 2 The blades have a total moment of inertia of 0.22 kg-m 2. What is the

### Chapter 15, example problems:

Chapter, example problems: (.0) Ultrasound imaging. (Frequenc > 0,000 Hz) v = 00 m/s. λ 00 m/s /.0 mm =.0 0 6 Hz. (Smaller wave length implies larger frequenc, since their product,

### Physics 112 Homework 5 (solutions) (2004 Fall) Solutions to Homework Questions 5

Solutions to Homework Questions 5 Chapt19, Problem-2: (a) Find the direction of the force on a proton (a positively charged particle) moving through the magnetic fields in Figure P19.2, as shown. (b) Repeat

### Chapter 3.8 & 6 Solutions

Chapter 3.8 & 6 Solutions P3.37. Prepare: We are asked to find period, speed and acceleration. Period and frequency are inverses according to Equation 3.26. To find speed we need to know the distance traveled

### Lecture 6. Weight. Tension. Normal Force. Static Friction. Cutnell+Johnson: 4.8-4.12, second half of section 4.7

Lecture 6 Weight Tension Normal Force Static Friction Cutnell+Johnson: 4.8-4.12, second half of section 4.7 In this lecture, I m going to discuss four different kinds of forces: weight, tension, the normal

### Experiment 9. The Pendulum

Experiment 9 The Pendulum 9.1 Objectives Investigate the functional dependence of the period (τ) 1 of a pendulum on its length (L), the mass of its bob (m), and the starting angle (θ 0 ). Use a pendulum

### 5. Forces and Motion-I. Force is an interaction that causes the acceleration of a body. A vector quantity.

5. Forces and Motion-I 1 Force is an interaction that causes the acceleration of a body. A vector quantity. Newton's First Law: Consider a body on which no net force acts. If the body is at rest, it will

### CHAPTER 15 FORCE, MASS AND ACCELERATION

CHAPTER 5 FORCE, MASS AND ACCELERATION EXERCISE 83, Page 9. A car initially at rest accelerates uniformly to a speed of 55 km/h in 4 s. Determine the accelerating force required if the mass of the car

### Serway_ISM_V1 1 Chapter 4

Serway_ISM_V1 1 Chapter 4 ANSWERS TO MULTIPLE CHOICE QUESTIONS 1. Newton s second law gives the net force acting on the crate as This gives the kinetic friction force as, so choice (a) is correct. 2. As

### Acceleration due to Gravity

Acceleration due to Gravity 1 Object To determine the acceleration due to gravity by different methods. 2 Apparatus Balance, ball bearing, clamps, electric timers, meter stick, paper strips, precision

### Lecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is

Lecture 17 Rotational Dynamics Rotational Kinetic Energy Stress and Strain and Springs Cutnell+Johnson: 9.4-9.6, 10.1-10.2 Rotational Dynamics (some more) Last time we saw that the rotational analog of

### Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting

### Solution: F = kx is Hooke s law for a mass and spring system. Angular frequency of this system is: k m therefore, k

Physics 1C Midterm 1 Summer Session II, 2011 Solutions 1. If F = kx, then k m is (a) A (b) ω (c) ω 2 (d) Aω (e) A 2 ω Solution: F = kx is Hooke s law for a mass and spring system. Angular frequency of

### Mechanical Vibrations

Mechanical Vibrations A mass m is suspended at the end of a spring, its weight stretches the spring by a length L to reach a static state (the equilibrium position of the system). Let u(t) denote the displacement,

### Prelab Exercises: Hooke's Law and the Behavior of Springs

59 Prelab Exercises: Hooke's Law and the Behavior of Springs Study the description of the experiment that follows and answer the following questions.. (3 marks) Explain why a mass suspended vertically

### 9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J

1. If the kinetic energy of an object is 16 joules when its speed is 4.0 meters per second, then the mass of the objects is (1) 0.5 kg (3) 8.0 kg (2) 2.0 kg (4) 19.6 kg Base your answers to questions 9

### Lab 8: Ballistic Pendulum

Lab 8: Ballistic Pendulum Equipment: Ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale. Caution In this experiment a steel ball is projected horizontally

### Exercises on Oscillations and Waves

Exercises on Oscillations and Waves Exercise 1.1 You find a spring in the laboratory. When you hang 100 grams at the end of the spring it stretches 10 cm. You pull the 100 gram mass 6 cm from its equilibrium

### HW Set VI page 1 of 9 PHYSICS 1401 (1) homework solutions

HW Set VI page 1 of 9 10-30 A 10 g bullet moving directly upward at 1000 m/s strikes and passes through the center of mass of a 5.0 kg block initially at rest (Fig. 10-33 ). The bullet emerges from the

### Chapter 9. is gradually increased, does the center of mass shift toward or away from that particle or does it remain stationary.

Chapter 9 9.2 Figure 9-37 shows a three particle system with masses m 1 3.0 kg, m 2 4.0 kg, and m 3 8.0 kg. The scales are set by x s 2.0 m and y s 2.0 m. What are (a) the x coordinate and (b) the y coordinate

### VELOCITY, ACCELERATION, FORCE

VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how

### STUDY PACKAGE. Available Online : www.mathsbysuhag.com

fo/u fopkjr Hkh# tu] ugha vkjehks dke] foifr ns[k NksM+s rqjar e/;e eu dj ';kea iq#"k flag ladyi dj] lgrs foifr vusd] ^cuk^ u NksM+s /;s; dks] j?kqcj jk[ks VsdAA jfpr% ekuo /kez iz.ksrk ln~xq# Jh j.knksm+nklth

### Linear Motion vs. Rotational Motion

Linear Motion vs. Rotational Motion Linear motion involves an object moving from one point to another in a straight line. Rotational motion involves an object rotating about an axis. Examples include a

### ANALYTICAL METHODS FOR ENGINEERS

UNIT 1: Unit code: QCF Level: 4 Credit value: 15 ANALYTICAL METHODS FOR ENGINEERS A/601/1401 OUTCOME - TRIGONOMETRIC METHODS TUTORIAL 1 SINUSOIDAL FUNCTION Be able to analyse and model engineering situations

### F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26

Physics 23 Exam 2 Spring 2010 Dr. Alward Page 1 1. A 250-N force is directed horizontally as shown to push a 29-kg box up an inclined plane at a constant speed. Determine the magnitude of the normal force,

### Practice Exam Three Solutions

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01T Fall Term 2004 Practice Exam Three Solutions Problem 1a) (5 points) Collisions and Center of Mass Reference Frame In the lab frame,

### Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case.

HW1 Possible Solutions Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case. Tipler 14.P.003 An object attached to a spring has simple

### Center of Gravity. We touched on this briefly in chapter 7! x 2

Center of Gravity We touched on this briefly in chapter 7! x 1 x 2 cm m 1 m 2 This was for what is known as discrete objects. Discrete refers to the fact that the two objects separated and individual.

### Unit 4 Practice Test: Rotational Motion

Unit 4 Practice Test: Rotational Motion Multiple Guess Identify the letter of the choice that best completes the statement or answers the question. 1. How would an angle in radians be converted to an angle

### Objective: Equilibrium Applications of Newton s Laws of Motion I

Type: Single Date: Objective: Equilibrium Applications of Newton s Laws of Motion I Homework: Assignment (1-11) Read (4.1-4.5, 4.8, 4.11); Do PROB # s (46, 47, 52, 58) Ch. 4 AP Physics B Mr. Mirro Equilibrium,

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level *0123456789* PHYSICS 9702/02 Paper 2 AS Level Structured Questions For Examination from 2016 SPECIMEN

### Rotation: Moment of Inertia and Torque

Rotation: Moment of Inertia and Torque Every time we push a door open or tighten a bolt using a wrench, we apply a force that results in a rotational motion about a fixed axis. Through experience we learn

### Work, Power, Energy Multiple Choice. PSI Physics. Multiple Choice Questions

Work, Power, Energy Multiple Choice PSI Physics Name Multiple Choice Questions 1. A block of mass m is pulled over a distance d by an applied force F which is directed in parallel to the displacement.

### LAB 6: GRAVITATIONAL AND PASSIVE FORCES

55 Name Date Partners LAB 6: GRAVITATIONAL AND PASSIVE FORCES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies by the attraction

### PENDULUM PERIODS. First Last. Partners: student1, student2, and student3

PENDULUM PERIODS First Last Partners: student1, student2, and student3 Governor s School for Science and Technology 520 Butler Farm Road, Hampton, VA 23666 April 13, 2011 ABSTRACT The effect of amplitude,

### Unit - 6 Vibrations of Two Degree of Freedom Systems

Unit - 6 Vibrations of Two Degree of Freedom Systems Dr. T. Jagadish. Professor for Post Graduation, Department of Mechanical Engineering, Bangalore Institute of Technology, Bangalore Introduction A two

### TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 1111, Exam 3 Section 1 Version 1 December 6, 2005 Total Weight: 100 points

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES PHYS 1111, Exam 3 Section 1 Version 1 December 6, 2005 Total Weight: 100 points 1. Check your examination for completeness prior to starting.

### Lesson 11. Luis Anchordoqui. Physics 168. Tuesday, December 8, 15

Lesson 11 Physics 168 1 Oscillations and Waves 2 Simple harmonic motion If an object vibrates or oscillates back and forth over same path each cycle taking same amount of time motion is called periodic

### Applications of Second-Order Differential Equations

Applications of Second-Order Differential Equations Second-order linear differential equations have a variety of applications in science and engineering. In this section we explore two of them: the vibration

### Chapter 11 Equilibrium

11.1 The First Condition of Equilibrium The first condition of equilibrium deals with the forces that cause possible translations of a body. The simplest way to define the translational equilibrium of

### AP Physics Applying Forces

AP Physics Applying Forces This section of your text will be very tedious, very tedious indeed. (The Physics Kahuna is just as sorry as he can be.) It s mostly just a bunch of complicated problems and

### LAB 6 - GRAVITATIONAL AND PASSIVE FORCES

L06-1 Name Date Partners LAB 6 - GRAVITATIONAL AND PASSIVE FORCES OBJECTIVES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies

### Two-Body System: Two Hanging Masses

Specific Outcome: i. I can apply Newton s laws of motion to solve, algebraically, linear motion problems in horizontal, vertical and inclined planes near the surface of Earth, ignoring air resistance.

### Conceptual Questions: Forces and Newton s Laws

Conceptual Questions: Forces and Newton s Laws 1. An object can have motion only if a net force acts on it. his statement is a. true b. false 2. And the reason for this (refer to previous question) is

### Weight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N)

Gravitational Field A gravitational field as a region in which an object experiences a force due to gravitational attraction Gravitational Field Strength The gravitational field strength at a point in

### PHYSICS 111 HOMEWORK SOLUTION, week 4, chapter 5, sec 1-7. February 13, 2013

PHYSICS 111 HOMEWORK SOLUTION, week 4, chapter 5, sec 1-7 February 13, 2013 0.1 A 2.00-kg object undergoes an acceleration given by a = (6.00î + 4.00ĵ)m/s 2 a) Find the resultatnt force acting on the object

### Rotational Inertia Demonstrator

WWW.ARBORSCI.COM Rotational Inertia Demonstrator P3-3545 BACKGROUND: The Rotational Inertia Demonstrator provides an engaging way to investigate many of the principles of angular motion and is intended

### EXPERIMENT 2 Measurement of g: Use of a simple pendulum

EXPERIMENT 2 Measurement of g: Use of a simple pendulum OBJECTIVE: To measure the acceleration due to gravity using a simple pendulum. Textbook reference: pp10-15 INTRODUCTION: Many things in nature wiggle

### State Newton's second law of motion for a particle, defining carefully each term used.

5 Question 1. [Marks 20] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding

### 3 Work, Power and Energy

3 Work, Power and Energy At the end of this section you should be able to: a. describe potential energy as energy due to position and derive potential energy as mgh b. describe kinetic energy as energy

### E X P E R I M E N T 8

E X P E R I M E N T 8 Torque, Equilibrium & Center of Gravity Produced by the Physics Staff at Collin College Copyright Collin College Physics Department. All Rights Reserved. University Physics, Exp 8:

### Angular acceleration α

Angular Acceleration Angular acceleration α measures how rapidly the angular velocity is changing: Slide 7-0 Linear and Circular Motion Compared Slide 7- Linear and Circular Kinematics Compared Slide 7-

### PHYS 2425 Engineering Physics I EXPERIMENT 9 SIMPLE HARMONIC MOTION

PHYS 2425 Engineering Physics I EXPERIMENT 9 SIMPLE HARMONIC MOTION I. INTRODUCTION The objective of this experiment is the study of oscillatory motion. In particular the springmass system and the simple

### Chapter 8: Potential Energy and Conservation of Energy. Work and kinetic energy are energies of motion.

Chapter 8: Potential Energy and Conservation of Energy Work and kinetic energy are energies of motion. Consider a vertical spring oscillating with mass m attached to one end. At the extreme ends of travel

### Standing Waves on a String

1 of 6 Standing Waves on a String Summer 2004 Standing Waves on a String If a string is tied between two fixed supports, pulled tightly and sharply plucked at one end, a pulse will travel from one end

### FXA 2008. UNIT G484 Module 2 4.2.3 Simple Harmonic Oscillations 11. frequency of the applied = natural frequency of the

11 FORCED OSCILLATIONS AND RESONANCE POINTER INSTRUMENTS Analogue ammeter and voltmeters, have CRITICAL DAMPING so as to allow the needle pointer to reach its correct position on the scale after a single

### CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From

### Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc.

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces Units of Chapter 5 Applications of Newton s Laws Involving Friction Uniform Circular Motion Kinematics Dynamics of Uniform Circular