Problem Set 4 Solutions Conditional Probability, Bayes Theorem

Size: px
Start display at page:

Download "Problem Set 4 Solutions Conditional Probability, Bayes Theorem"

Transcription

1 ENGI 4421 Dr. Reza Shahidi January 30, 2015 February 1, 2015 Problem Set 4 Solutions Conditional Probability, Bayes Theorem 1. One percent of all individuals in a certain population are carriers of a particular disease. A diagnostic test for this disease has a 90% detection rate for carriers and a 5% detection rate for non-carriers. Suppose the test is applied independently to two different blood samples from the same randomly-selected individual. (a) What is the probability that both tests yield the same result? Let D be the event that the randomly-selected individual carries the disease, and let A1 be the event that the first diagnostic test detects the disease in the individual, and let A2 be the event that the second diagnostic test detects the disease in the individual. Then the probability that both tests yield the same result is: P[A1A2]+P[!A 1 A2! ]=P[A1A2D]+P[A1A2!D ]+P[ A1! A2! D]+P[ A1! A2!!D ] =P[D]P[A1 D]P[A2 A1D]+P[!D ]P[A1 D! ]P[A2 A1 D! ]+ P[D]P[!A 1 D]P[ A2! A1! D]+P[ D! ]P[ A1! D! ]P[ A2! A1! D! ] =P[D]P[A1 D]P[A2 D]+P[!D ]P[A1!D ]P[A2!D ]+ P[D]P[!A 1 D]P[ A2! D]+P[!D ]P[ A1!!D ]P[ A2!!D ] (because A1 and A2 are independent) ENGI 4421 PROBLEM SET 4 SOLUTIONS!1

2 =(0.01)(0.9)(0.9)+(0.99)(0.05)(0.05)+(0.01)(1-0.9)(1-0.9)+(0.99)(1-0.05) (1-0.05)= =90.4% (b) If both tests are positive, what is the probability that the selected individual is a carrier? Using the same notation as in part (a), we wish to find P[D A1A2]. By the definition of conditional probability, P[D A1A2]=P[A1A2D]/P[A1A2] P[A1A2]=P[A1A2D]+P[A1A2!D ] by the law of total probability. In part (a) of this problem, we already found P[A1A2D]=(0.01)(0.9)(0.9) =0.0081, and P[A1A2!D ]=(0.99)(0.05)(0.05)= Therefore the desired probability is.0081/( )=76.6% 2. One box contains six red balls and four green balls, and a second box contains seven red balls and three green balls. A ball is randomly chosen from the first box and placed in the second box. Then a ball is randomly selected from the second box and placed in the first box. (a) What is the probability that a red ball is selected from the first box and a red ball is selected from the second box? The two selections are not independent because a ball is selected from the first box and placed in the second, thus changing the probabilities of selection in the 2nd box. Let R1 be the event that a red ball is selected from the first box and R2 be the event that a red ball is selected from the second box. Then we wish to find P[R1 R2]=P[R1]P[R2 R1]=(6/10)x(8/11)=24/55. Note that the first probability in the product was 6/10 because there were 6 red balls and 10 total balls, while the second probability was 8/11 because a red ball had been moved from the first box to the second, meaning that there were 8 red ball and 11 balls in total. ENGI 4421 PROBLEM SET 4 SOLUTIONS!2

3 (b) At the conclusion of the selection process, what is the probability that the numbers of red and green balls in the first box are identical to the numbers at the beginning? The probability that the numbers of red and green balls in the first box don t change after the selection process is the probability that the same color ball is selected from the first box and the second box. In part (a), we already calculated the probability that a red ball was chosen from both the first and second box. So we need now to only calculate the probability of the event E that a green ball was chosen from both the first and second box. Following the same reasoning as in part (a), and using similar notation, this probability is P[G1 G2]=P[G1]P[G2 G1]=(4/10)x(4/11)=8/55. Therefore, the total probability that the number of red and green balls in the first box remains the same after the selection process is equal to 24/55+8/55=32/ A factory has the following information about the quality control process on its production line. If an item is defective, there is a 99.9% chance that the quality control process will reject it (the correct decision). If an item is good, there is a 2% chance the quality control process will reject it (incorrect decision). It is known that 0.1% of all items on the production line are defective. Given that the quality control process has just rejected the item, find the probability that the decision is correct. Let D be the event that the item is defective and let A be the event that the quality control process rejects the item. From the problem statement, we are given that: P[A D]=0.999, P[A!!D ]=0.02, P[D]=.001. ENGI 4421 PROBLEM SET 4 SOLUTIONS!3

4 We are asked to find the probability that the item was actually defective given that it was rejected by the quality control process. This probability is P[D A]. By Bayes Theorem, P[D A]=P[A D]P[D]/P[A]=! P[A D]P[D] P[A D]P[D]+ P[A! D]P[! D] =(0.999)(.001)/((.999)(.001)+(.02)(.999))= /( )=4.76% Consider the system of components connected as in the picture above. If components work independently of one another, and P[component works]=0.9, calculate P[system works]. ENGI 4421 PROBLEM SET 4 SOLUTIONS!4

5 Let E be the event that a component works, and L be the event that the subsystem consisting of components 1 and 2 in parallel works. Then P[L]=1-(1-P[E])(1-P[E])=1-(.1)(.1)=0.99. Let M be the event that the subsystem consisting of 3 and 4 in series works. Then P[M]=P[E]P[E]=(.9)(.9) =.81. Then the probability that the system works is the probability of L and M in parallel. This is: P[system works] = 1-P[system does not work] = 1-(1-P[L])(1-P[M])= 1-(.01)(.19)=.9981=99.81%. 5. Alice, Bob and Carol take part in a game where each of them, in turn, rolls a fair die until one of them rolls a six and wins the game. Alice rolls first. If she doesn t roll a six, then Bob rolls next. If he doesn t roll a six then Carol has her first chance to win. If none of them roll a six on the first attempt, then Alice gets a second roll and so on. (a) Find the probability that Carol wins the game in the first round. Let A be the event that Alice rolls a six in a given round, B be the event that Bob rolls a 6 in a given round, and C the event Carol rolls a 6 in a given round. Then the probability that Carol wins the game in the first round is:! P[!A!BC] =P[! A! ]P[! B! ]P[C] (assuming independence) =(1-P[A])(1-P[B])P[C]=(5/6)x(5/6)x(1/6)=25/216 (b) Find the probability that the game lasts for more than two complete rounds. The probability that the game lasts for more than two complete rounds is the probability of the event E that the first six rolls of the die all don t show a 6. The number of possible ways that a die can be rolled 6 times without showing a 6 will ENGI 4421 PROBLEM SET 4 SOLUTIONS!5

6 be 5x5x5x5x5x5=625x25= The total number of ways that a die can be rolled 6 times is 6x6x6x6x6x6= Therefore, the probability that the game lasts more than 2 complete rounds is n(e)/n(s)=15625/46656 = 33.49%. (c) Find the probability that Alice wins. Let A1 be the probability that Alice wins in the first round, A2 be the event that she wins in the second round, etc. Let A be the probability that Alice wins in any round. Then it is easy to verify that P[A] = P[A1]+P[A2]+ The probability that Alice wins in the first round is the probability that she rolls a six, namely 1/6. The probability that she wins in the second round is the probability that all 3 people did not roll a six in the first round, while she rolled a six in the second round. This probability is (5/6)x(5/6)x(5/6)x(1/6)=125/1296. Similarly the probability that she wins in the third round is the probability that the first 6 rolls were all not 6 while Alice s 3rd roll (the 7th roll in total) was a 6. This probability is!. In general, the probability that Alice wins in the kth round is given by 3(k 1)!. 6 So the total probability that Alice wins is the sum of the probabilities that she wins in any round, i.e.,! P[A] = P[A k ] =. = This is a geometric series. In general! a k = 1. 1 a k=1 k=1 So above, P[A]=1/6x(1/(1-125/216))=1/6x1/(91/216)=216/546=36/91. This is slightly greater than 1/3 because Alice has the first roll. k=0 3(k 1) k=0 k ENGI 4421 PROBLEM SET 4 SOLUTIONS!6

7 (d) Find the probability that Carol wins, given that Alice doesn t roll a six on her first roll. Let C be the event that Carol wins and A be the event that Alice does not roll a six on her first roll. Then we are asked to find P[C A]. By Bayes Theorem, this is equal to P[A C]P[C]/P[A]. The first conditional probability, P[A C] can easily be shown to equal 1. This is because given that Carol wins, there is no way that Alice could have rolled a 6 on her first roll (otherwise Alice would have won). Therefore, the conditional probability reduces to P[C]/P[A]. Obviously, P[A] = 5/6, since this is the probability that Alice did not roll a 6 on her first roll. So P[C A]=6/5xP[C]=1.2P[C]. Using the same reasoning as in part (c), we can find P[C], the probability that Carol wins. This will be equal to the probability that she wins in the first round, plus the probability that she wins in the second round, etc. The probability she wins in the first round is the probability that both Alice and Bob did not roll a 6, while Carol did. This is (5/6)x(5/6)x(1/6) = 25/216. Similarly, the probability she wins in the second round is the probability the first 5 rolls are all not 6 s while Carol s second roll (the 6th roll in total) is a 6. This will be (5/6) 5 x(1/6). In general, the probability that Carol wins in the kth round is given by the expression! 3k 1 3k 1. Therefore, P[C]= 3k+2 1!. k=1 6 = 1 6 = 25 k=0 216 = k= = 25 1 k= = So P[C A]=6/5xP[C]=30/91. 3k k ENGI 4421 PROBLEM SET 4 SOLUTIONS!7

Definition and Calculus of Probability

Definition and Calculus of Probability In experiments with multivariate outcome variable, knowledge of the value of one variable may help predict another. For now, the word prediction will mean update the probabilities of events regarding the

More information

Probabilistic Strategies: Solutions

Probabilistic Strategies: Solutions Probability Victor Xu Probabilistic Strategies: Solutions Western PA ARML Practice April 3, 2016 1 Problems 1. You roll two 6-sided dice. What s the probability of rolling at least one 6? There is a 1

More information

Math 141. Lecture 2: More Probability! Albyn Jones 1. jones@reed.edu www.people.reed.edu/ jones/courses/141. 1 Library 304. Albyn Jones Math 141

Math 141. Lecture 2: More Probability! Albyn Jones 1. jones@reed.edu www.people.reed.edu/ jones/courses/141. 1 Library 304. Albyn Jones Math 141 Math 141 Lecture 2: More Probability! Albyn Jones 1 1 Library 304 jones@reed.edu www.people.reed.edu/ jones/courses/141 Outline Law of total probability Bayes Theorem the Multiplication Rule, again Recall

More information

Elementary Statistics and Inference. Elementary Statistics and Inference. 16 The Law of Averages (cont.) 22S:025 or 7P:025.

Elementary Statistics and Inference. Elementary Statistics and Inference. 16 The Law of Averages (cont.) 22S:025 or 7P:025. Elementary Statistics and Inference 22S:025 or 7P:025 Lecture 20 1 Elementary Statistics and Inference 22S:025 or 7P:025 Chapter 16 (cont.) 2 D. Making a Box Model Key Questions regarding box What numbers

More information

Homework 8 Solutions

Homework 8 Solutions CSE 21 - Winter 2014 Homework Homework 8 Solutions 1 Of 330 male and 270 female employees at the Flagstaff Mall, 210 of the men and 180 of the women are on flex-time (flexible working hours). Given that

More information

Math 3C Homework 3 Solutions

Math 3C Homework 3 Solutions Math 3C Homework 3 s Ilhwan Jo and Akemi Kashiwada ilhwanjo@math.ucla.edu, akashiwada@ucla.edu Assignment: Section 2.3 Problems 2, 7, 8, 9,, 3, 5, 8, 2, 22, 29, 3, 32 2. You draw three cards from a standard

More information

AN ANALYSIS OF A WAR-LIKE CARD GAME. Introduction

AN ANALYSIS OF A WAR-LIKE CARD GAME. Introduction AN ANALYSIS OF A WAR-LIKE CARD GAME BORIS ALEXEEV AND JACOB TSIMERMAN Abstract. In his book Mathematical Mind-Benders, Peter Winkler poses the following open problem, originally due to the first author:

More information

3.2 Roulette and Markov Chains

3.2 Roulette and Markov Chains 238 CHAPTER 3. DISCRETE DYNAMICAL SYSTEMS WITH MANY VARIABLES 3.2 Roulette and Markov Chains In this section we will be discussing an application of systems of recursion equations called Markov Chains.

More information

Section 6.1 Discrete Random variables Probability Distribution

Section 6.1 Discrete Random variables Probability Distribution Section 6.1 Discrete Random variables Probability Distribution Definitions a) Random variable is a variable whose values are determined by chance. b) Discrete Probability distribution consists of the values

More information

AMS 5 CHANCE VARIABILITY

AMS 5 CHANCE VARIABILITY AMS 5 CHANCE VARIABILITY The Law of Averages When tossing a fair coin the chances of tails and heads are the same: 50% and 50%. So if the coin is tossed a large number of times, the number of heads and

More information

How to Calculate the Probabilities of Winning the Eight LUCKY MONEY Prize Levels:

How to Calculate the Probabilities of Winning the Eight LUCKY MONEY Prize Levels: How to Calculate the Probabilities of Winning the Eight LUCKY MONEY Prize Levels: LUCKY MONEY numbers are drawn from two sets of numbers. Four numbers are drawn from one set of 47 numbered white balls

More information

Bayesian Tutorial (Sheet Updated 20 March)

Bayesian Tutorial (Sheet Updated 20 March) Bayesian Tutorial (Sheet Updated 20 March) Practice Questions (for discussing in Class) Week starting 21 March 2016 1. What is the probability that the total of two dice will be greater than 8, given that

More information

Factory example D MA ND 0 MB D ND

Factory example D MA ND 0 MB D ND Bayes Theorem Now we look at how we can use information about conditional probabilities to calculate reverse conditional probabilities i.e., how we calculate ( A B when we know ( B A (and some other things.

More information

How to Calculate the Probabilities of Winning the Nine PowerBall Prize Levels:

How to Calculate the Probabilities of Winning the Nine PowerBall Prize Levels: How to Calculate the Probabilities of Winning the Nine PowerBall Prize Levels: Powerball numbers are drawn from two sets of numbers. Five numbers are drawn from one set of 59 numbered white balls and one

More information

Homework 3 Solution, due July 16

Homework 3 Solution, due July 16 Homework 3 Solution, due July 16 Problems from old actuarial exams are marked by a star. Problem 1*. Upon arrival at a hospital emergency room, patients are categorized according to their condition as

More information

ECE302 Spring 2006 HW1 Solutions January 16, 2006 1

ECE302 Spring 2006 HW1 Solutions January 16, 2006 1 ECE302 Spring 2006 HW1 Solutions January 16, 2006 1 Solutions to HW1 Note: These solutions were generated by R. D. Yates and D. J. Goodman, the authors of our textbook. I have added comments in italics

More information

Curriculum Design for Mathematic Lesson Probability

Curriculum Design for Mathematic Lesson Probability Curriculum Design for Mathematic Lesson Probability This curriculum design is for the 8th grade students who are going to learn Probability and trying to show the easiest way for them to go into this class.

More information

1 Combinations, Permutations, and Elementary Probability

1 Combinations, Permutations, and Elementary Probability 1 Combinations, Permutations, and Elementary Probability Roughly speaking, Permutations are ways of grouping things where the order is important. Combinations are ways of grouping things where the order

More information

Question 1 Formatted: Formatted: Formatted: Formatted:

Question 1 Formatted: Formatted: Formatted: Formatted: In many situations in life, we are presented with opportunities to evaluate probabilities of events occurring and make judgments and decisions from this information. In this paper, we will explore four

More information

Lesson 1. Basics of Probability. Principles of Mathematics 12: Explained! www.math12.com 314

Lesson 1. Basics of Probability. Principles of Mathematics 12: Explained! www.math12.com 314 Lesson 1 Basics of Probability www.math12.com 314 Sample Spaces: Probability Lesson 1 Part I: Basic Elements of Probability Consider the following situation: A six sided die is rolled The sample space

More information

The Binomial Distribution

The Binomial Distribution The Binomial Distribution James H. Steiger November 10, 00 1 Topics for this Module 1. The Binomial Process. The Binomial Random Variable. The Binomial Distribution (a) Computing the Binomial pdf (b) Computing

More information

Math 202-0 Quizzes Winter 2009

Math 202-0 Quizzes Winter 2009 Quiz : Basic Probability Ten Scrabble tiles are placed in a bag Four of the tiles have the letter printed on them, and there are two tiles each with the letters B, C and D on them (a) Suppose one tile

More information

Discrete Structures for Computer Science

Discrete Structures for Computer Science Discrete Structures for Computer Science Adam J. Lee adamlee@cs.pitt.edu 6111 Sennott Square Lecture #20: Bayes Theorem November 5, 2013 How can we incorporate prior knowledge? Sometimes we want to know

More information

13.0 Central Limit Theorem

13.0 Central Limit Theorem 13.0 Central Limit Theorem Discuss Midterm/Answer Questions Box Models Expected Value and Standard Error Central Limit Theorem 1 13.1 Box Models A Box Model describes a process in terms of making repeated

More information

Section 1.3 P 1 = 1 2. = 1 4 2 8. P n = 1 P 3 = Continuing in this fashion, it should seem reasonable that, for any n = 1, 2, 3,..., = 1 2 4.

Section 1.3 P 1 = 1 2. = 1 4 2 8. P n = 1 P 3 = Continuing in this fashion, it should seem reasonable that, for any n = 1, 2, 3,..., = 1 2 4. Difference Equations to Differential Equations Section. The Sum of a Sequence This section considers the problem of adding together the terms of a sequence. Of course, this is a problem only if more than

More information

Fundamentals of Probability

Fundamentals of Probability Fundamentals of Probability Introduction Probability is the likelihood that an event will occur under a set of given conditions. The probability of an event occurring has a value between 0 and 1. An impossible

More information

Chapter 13 & 14 - Probability PART

Chapter 13 & 14 - Probability PART Chapter 13 & 14 - Probability PART IV : PROBABILITY Dr. Joseph Brennan Math 148, BU Dr. Joseph Brennan (Math 148, BU) Chapter 13 & 14 - Probability 1 / 91 Why Should We Learn Probability Theory? Dr. Joseph

More information

Chapter 5: Discrete Probability Distributions

Chapter 5: Discrete Probability Distributions Chapter 5: Discrete Probability Distributions Section 5.1: Basics of Probability Distributions As a reminder, a variable or what will be called the random variable from now on, is represented by the letter

More information

2. How many ways can the letters in PHOENIX be rearranged? 7! = 5,040 ways.

2. How many ways can the letters in PHOENIX be rearranged? 7! = 5,040 ways. Math 142 September 27, 2011 1. How many ways can 9 people be arranged in order? 9! = 362,880 ways 2. How many ways can the letters in PHOENIX be rearranged? 7! = 5,040 ways. 3. The letters in MATH are

More information

Chapter 4 Lecture Notes

Chapter 4 Lecture Notes Chapter 4 Lecture Notes Random Variables October 27, 2015 1 Section 4.1 Random Variables A random variable is typically a real-valued function defined on the sample space of some experiment. For instance,

More information

Future Value of an Annuity Sinking Fund. MATH 1003 Calculus and Linear Algebra (Lecture 3)

Future Value of an Annuity Sinking Fund. MATH 1003 Calculus and Linear Algebra (Lecture 3) MATH 1003 Calculus and Linear Algebra (Lecture 3) Future Value of an Annuity Definition An annuity is a sequence of equal periodic payments. We call it an ordinary annuity if the payments are made at the

More information

Basic Probability. Probability: The part of Mathematics devoted to quantify uncertainty

Basic Probability. Probability: The part of Mathematics devoted to quantify uncertainty AMS 5 PROBABILITY Basic Probability Probability: The part of Mathematics devoted to quantify uncertainty Frequency Theory Bayesian Theory Game: Playing Backgammon. The chance of getting (6,6) is 1/36.

More information

MA 1125 Lecture 14 - Expected Values. Friday, February 28, 2014. Objectives: Introduce expected values.

MA 1125 Lecture 14 - Expected Values. Friday, February 28, 2014. Objectives: Introduce expected values. MA 5 Lecture 4 - Expected Values Friday, February 2, 24. Objectives: Introduce expected values.. Means, Variances, and Standard Deviations of Probability Distributions Two classes ago, we computed the

More information

Find the indicated probability. 1) If a single fair die is rolled, find the probability of a 4 given that the number rolled is odd.

Find the indicated probability. 1) If a single fair die is rolled, find the probability of a 4 given that the number rolled is odd. Math 0 Practice Test 3 Fall 2009 Covers 7.5, 8.-8.3 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the indicated probability. ) If a single

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Ch. 4 Discrete Probability Distributions 4.1 Probability Distributions 1 Decide if a Random Variable is Discrete or Continuous 1) State whether the variable is discrete or continuous. The number of cups

More information

Reliability Applications (Independence and Bayes Rule)

Reliability Applications (Independence and Bayes Rule) Reliability Applications (Independence and Bayes Rule ECE 313 Probability with Engineering Applications Lecture 5 Professor Ravi K. Iyer University of Illinois Today s Topics Review of Physical vs. Stochastic

More information

PROBABILITY. SIMPLE PROBABILITY is the likelihood that a specific event will occur, represented by a number between 0 and 1.

PROBABILITY. SIMPLE PROBABILITY is the likelihood that a specific event will occur, represented by a number between 0 and 1. PROBABILITY SIMPLE PROBABILITY SIMPLE PROBABILITY is the likelihood that a specific event will occur, represented by a number between 0 and. There are two categories of simple probabilities. THEORETICAL

More information

Chapter 5 - Practice Problems 1

Chapter 5 - Practice Problems 1 Chapter 5 - Practice Problems 1 Identify the given random variable as being discrete or continuous. 1) The number of oil spills occurring off the Alaskan coast 1) A) Continuous B) Discrete 2) The ph level

More information

Chapter 4 & 5 practice set. The actual exam is not multiple choice nor does it contain like questions.

Chapter 4 & 5 practice set. The actual exam is not multiple choice nor does it contain like questions. Chapter 4 & 5 practice set. The actual exam is not multiple choice nor does it contain like questions. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

More information

We rst consider the game from the player's point of view: Suppose you have picked a number and placed your bet. The probability of winning is

We rst consider the game from the player's point of view: Suppose you have picked a number and placed your bet. The probability of winning is Roulette: On an American roulette wheel here are 38 compartments where the ball can land. They are numbered 1-36, and there are two compartments labeled 0 and 00. Half of the compartments numbered 1-36

More information

3.2 Conditional Probability and Independent Events

3.2 Conditional Probability and Independent Events Ismor Fischer, 5/29/2012 3.2-1 3.2 Conditional Probability and Independent Events Using population-based health studies to estimate probabilities relating potential risk factors to a particular disease,

More information

CASINO GAMING AMENDMENT RULE (No. 1) 2002

CASINO GAMING AMENDMENT RULE (No. 1) 2002 Queensland Subordinate Legislation 2002 No. 100 Casino Control Act 1982 CASINO GAMING AMENDMENT RULE (No. 1) 2002 TABLE OF PROVISIONS Section Page 1 Short title....................................................

More information

Random variables P(X = 3) = P(X = 3) = 1 8, P(X = 1) = P(X = 1) = 3 8.

Random variables P(X = 3) = P(X = 3) = 1 8, P(X = 1) = P(X = 1) = 3 8. Random variables Remark on Notations 1. When X is a number chosen uniformly from a data set, What I call P(X = k) is called Freq[k, X] in the courseware. 2. When X is a random variable, what I call F ()

More information

PERMUTATIONS AND COMBINATIONS

PERMUTATIONS AND COMBINATIONS PERMUTATIONS AND COMBINATIONS Mathematics for Elementary Teachers: A Conceptual Approach New Material for the Eighth Edition Albert B. Bennett, Jr., Laurie J. Burton and L. Ted Nelson Math 212 Extra Credit

More information

Midterm Exam #1 Instructions:

Midterm Exam #1 Instructions: Public Affairs 818 Professor: Geoffrey L. Wallace October 9 th, 008 Midterm Exam #1 Instructions: You have 10 minutes to complete the examination and there are 6 questions worth a total of 10 points. The

More information

Section 7C: The Law of Large Numbers

Section 7C: The Law of Large Numbers Section 7C: The Law of Large Numbers Example. You flip a coin 00 times. Suppose the coin is fair. How many times would you expect to get heads? tails? One would expect a fair coin to come up heads half

More information

Betting systems: how not to lose your money gambling

Betting systems: how not to lose your money gambling Betting systems: how not to lose your money gambling G. Berkolaiko Department of Mathematics Texas A&M University 28 April 2007 / Mini Fair, Math Awareness Month 2007 Gambling and Games of Chance Simple

More information

Pigeonhole Principle Solutions

Pigeonhole Principle Solutions Pigeonhole Principle Solutions 1. Show that if we take n + 1 numbers from the set {1, 2,..., 2n}, then some pair of numbers will have no factors in common. Solution: Note that consecutive numbers (such

More information

Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution

Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution Recall: Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution A variable is a characteristic or attribute that can assume different values. o Various letters of the alphabet (e.g.

More information

Midterm Exam #1 Instructions:

Midterm Exam #1 Instructions: Public Affairs 818 Professor: Geoffrey L. Wallace October 9 th, 008 Midterm Exam #1 Instructions: You have 10 minutes to complete the examination and there are 6 questions worth a total of 10 points. The

More information

Chapter 5 A Survey of Probability Concepts

Chapter 5 A Survey of Probability Concepts Chapter 5 A Survey of Probability Concepts True/False 1. Based on a classical approach, the probability of an event is defined as the number of favorable outcomes divided by the total number of possible

More information

Chapter 16. Law of averages. Chance. Example 1: rolling two dice Sum of draws. Setting up a. Example 2: American roulette. Summary.

Chapter 16. Law of averages. Chance. Example 1: rolling two dice Sum of draws. Setting up a. Example 2: American roulette. Summary. Overview Box Part V Variability The Averages Box We will look at various chance : Tossing coins, rolling, playing Sampling voters We will use something called s to analyze these. Box s help to translate

More information

Chapter 4 - Practice Problems 1

Chapter 4 - Practice Problems 1 Chapter 4 - Practice Problems SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Provide an appropriate response. ) Compare the relative frequency formula

More information

Unit 19: Probability Models

Unit 19: Probability Models Unit 19: Probability Models Summary of Video Probability is the language of uncertainty. Using statistics, we can better predict the outcomes of random phenomena over the long term from the very complex,

More information

Remarks on the Concept of Probability

Remarks on the Concept of Probability 5. Probability A. Introduction B. Basic Concepts C. Permutations and Combinations D. Poisson Distribution E. Multinomial Distribution F. Hypergeometric Distribution G. Base Rates H. Exercises Probability

More information

Chapter 16: law of averages

Chapter 16: law of averages Chapter 16: law of averages Context................................................................... 2 Law of averages 3 Coin tossing experiment......................................................

More information

AP Statistics 7!3! 6!

AP Statistics 7!3! 6! Lesson 6-4 Introduction to Binomial Distributions Factorials 3!= Definition: n! = n( n 1)( n 2)...(3)(2)(1), n 0 Note: 0! = 1 (by definition) Ex. #1 Evaluate: a) 5! b) 3!(4!) c) 7!3! 6! d) 22! 21! 20!

More information

Unit 4 The Bernoulli and Binomial Distributions

Unit 4 The Bernoulli and Binomial Distributions PubHlth 540 4. Bernoulli and Binomial Page 1 of 19 Unit 4 The Bernoulli and Binomial Distributions Topic 1. Review What is a Discrete Probability Distribution... 2. Statistical Expectation.. 3. The Population

More information

Ready, Set, Go! Math Games for Serious Minds

Ready, Set, Go! Math Games for Serious Minds Math Games with Cards and Dice presented at NAGC November, 2013 Ready, Set, Go! Math Games for Serious Minds Rande McCreight Lincoln Public Schools Lincoln, Nebraska Math Games with Cards Close to 20 -

More information

Statistics 100A Homework 2 Solutions

Statistics 100A Homework 2 Solutions Statistics Homework Solutions Ryan Rosario Chapter 9. retail establishment accepts either the merican Express or the VIS credit card. total of percent of its customers carry an merican Express card, 6

More information

Basic Probability Theory II

Basic Probability Theory II RECAP Basic Probability heory II Dr. om Ilvento FREC 408 We said the approach to establishing probabilities for events is to Define the experiment List the sample points Assign probabilities to the sample

More information

Solutions for Practice problems on proofs

Solutions for Practice problems on proofs Solutions for Practice problems on proofs Definition: (even) An integer n Z is even if and only if n = 2m for some number m Z. Definition: (odd) An integer n Z is odd if and only if n = 2m + 1 for some

More information

Mathematics Pre-Test Sample Questions A. { 11, 7} B. { 7,0,7} C. { 7, 7} D. { 11, 11}

Mathematics Pre-Test Sample Questions A. { 11, 7} B. { 7,0,7} C. { 7, 7} D. { 11, 11} Mathematics Pre-Test Sample Questions 1. Which of the following sets is closed under division? I. {½, 1,, 4} II. {-1, 1} III. {-1, 0, 1} A. I only B. II only C. III only D. I and II. Which of the following

More information

7.S.8 Interpret data to provide the basis for predictions and to establish

7.S.8 Interpret data to provide the basis for predictions and to establish 7 th Grade Probability Unit 7.S.8 Interpret data to provide the basis for predictions and to establish experimental probabilities. 7.S.10 Predict the outcome of experiment 7.S.11 Design and conduct an

More information

WORKED EXAMPLES 1 TOTAL PROBABILITY AND BAYES THEOREM

WORKED EXAMPLES 1 TOTAL PROBABILITY AND BAYES THEOREM WORKED EXAMPLES 1 TOTAL PROBABILITY AND BAYES THEOREM EXAMPLE 1. A biased coin (with probability of obtaining a Head equal to p > 0) is tossed repeatedly and independently until the first head is observed.

More information

Expected Value and the Game of Craps

Expected Value and the Game of Craps Expected Value and the Game of Craps Blake Thornton Craps is a gambling game found in most casinos based on rolling two six sided dice. Most players who walk into a casino and try to play craps for the

More information

Section 5-3 Binomial Probability Distributions

Section 5-3 Binomial Probability Distributions Section 5-3 Binomial Probability Distributions Key Concept This section presents a basic definition of a binomial distribution along with notation, and methods for finding probability values. Binomial

More information

Some special discrete probability distributions

Some special discrete probability distributions University of California, Los Angeles Department of Statistics Statistics 100A Instructor: Nicolas Christou Some special discrete probability distributions Bernoulli random variable: It is a variable that

More information

V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPECTED VALUE

V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPECTED VALUE V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPETED VALUE A game of chance featured at an amusement park is played as follows: You pay $ to play. A penny and a nickel are flipped. You win $ if either

More information

Final Mathematics 5010, Section 1, Fall 2004 Instructor: D.A. Levin

Final Mathematics 5010, Section 1, Fall 2004 Instructor: D.A. Levin Final Mathematics 51, Section 1, Fall 24 Instructor: D.A. Levin Name YOU MUST SHOW YOUR WORK TO RECEIVE CREDIT. A CORRECT ANSWER WITHOUT SHOWING YOUR REASONING WILL NOT RECEIVE CREDIT. Problem Points Possible

More information

Lecture 1 Introduction Properties of Probability Methods of Enumeration Asrat Temesgen Stockholm University

Lecture 1 Introduction Properties of Probability Methods of Enumeration Asrat Temesgen Stockholm University Lecture 1 Introduction Properties of Probability Methods of Enumeration Asrat Temesgen Stockholm University 1 Chapter 1 Probability 1.1 Basic Concepts In the study of statistics, we consider experiments

More information

Comparing Two Groups. Standard Error of ȳ 1 ȳ 2. Setting. Two Independent Samples

Comparing Two Groups. Standard Error of ȳ 1 ȳ 2. Setting. Two Independent Samples Comparing Two Groups Chapter 7 describes two ways to compare two populations on the basis of independent samples: a confidence interval for the difference in population means and a hypothesis test. The

More information

AP Stats - Probability Review

AP Stats - Probability Review AP Stats - Probability Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. I toss a penny and observe whether it lands heads up or tails up. Suppose

More information

Review for Test 2. Chapters 4, 5 and 6

Review for Test 2. Chapters 4, 5 and 6 Review for Test 2 Chapters 4, 5 and 6 1. You roll a fair six-sided die. Find the probability of each event: a. Event A: rolling a 3 1/6 b. Event B: rolling a 7 0 c. Event C: rolling a number less than

More information

Bayesian Updating with Discrete Priors Class 11, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom

Bayesian Updating with Discrete Priors Class 11, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom 1 Learning Goals Bayesian Updating with Discrete Priors Class 11, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom 1. Be able to apply Bayes theorem to compute probabilities. 2. Be able to identify

More information

STA 371G: Statistics and Modeling

STA 371G: Statistics and Modeling STA 371G: Statistics and Modeling Decision Making Under Uncertainty: Probability, Betting Odds and Bayes Theorem Mingyuan Zhou McCombs School of Business The University of Texas at Austin http://mingyuanzhou.github.io/sta371g

More information

Ch. 13.2: Mathematical Expectation

Ch. 13.2: Mathematical Expectation Ch. 13.2: Mathematical Expectation Random Variables Very often, we are interested in sample spaces in which the outcomes are distinct real numbers. For example, in the experiment of rolling two dice, we

More information

Department of Industrial Engineering IE 202: Engineering Statistics Example Questions Spring 2012

Department of Industrial Engineering IE 202: Engineering Statistics Example Questions Spring 2012 Department of Industrial Engineering IE 202: Engineering Statistics Example Questions Spring 202. Twenty workers are to be assigned to 20 different jobs, one to each job. How many different assignments

More information

Contemporary Mathematics- MAT 130. Probability. a) What is the probability of obtaining a number less than 4?

Contemporary Mathematics- MAT 130. Probability. a) What is the probability of obtaining a number less than 4? Contemporary Mathematics- MAT 30 Solve the following problems:. A fair die is tossed. What is the probability of obtaining a number less than 4? What is the probability of obtaining a number less than

More information

Notes on Probability. Peter J. Cameron

Notes on Probability. Peter J. Cameron Notes on Probability Peter J. Cameron ii Preface Here are the course lecture notes for the course MAS108, Probability I, at Queen Mary, University of London, taken by most Mathematics students and some

More information

Math/Stats 425 Introduction to Probability. 1. Uncertainty and the axioms of probability

Math/Stats 425 Introduction to Probability. 1. Uncertainty and the axioms of probability Math/Stats 425 Introduction to Probability 1. Uncertainty and the axioms of probability Processes in the real world are random if outcomes cannot be predicted with certainty. Example: coin tossing, stock

More information

Colored Hats and Logic Puzzles

Colored Hats and Logic Puzzles Colored Hats and Logic Puzzles Alex Zorn January 21, 2013 1 Introduction In this talk we ll discuss a collection of logic puzzles/games in which a number of people are given colored hats, and they try

More information

Feb 7 Homework Solutions Math 151, Winter 2012. Chapter 4 Problems (pages 172-179)

Feb 7 Homework Solutions Math 151, Winter 2012. Chapter 4 Problems (pages 172-179) Feb 7 Homework Solutions Math 151, Winter 2012 Chapter Problems (pages 172-179) Problem 3 Three dice are rolled. By assuming that each of the 6 3 216 possible outcomes is equally likely, find the probabilities

More information

DC Circuits (Combination of resistances)

DC Circuits (Combination of resistances) Name: Partner: Partner: Partner: DC Circuits (Combination of resistances) EQUIPMENT NEEDED: Circuits Experiment Board One Dcell Battery Wire leads Multimeter 100, 330, 1k resistors Purpose The purpose

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Practice Test Chapter 9 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the odds. ) Two dice are rolled. What are the odds against a sum

More information

E3: PROBABILITY AND STATISTICS lecture notes

E3: PROBABILITY AND STATISTICS lecture notes E3: PROBABILITY AND STATISTICS lecture notes 2 Contents 1 PROBABILITY THEORY 7 1.1 Experiments and random events............................ 7 1.2 Certain event. Impossible event............................

More information

Solving Quadratic Equations

Solving Quadratic Equations 9.3 Solving Quadratic Equations by Using the Quadratic Formula 9.3 OBJECTIVES 1. Solve a quadratic equation by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation

More information

MAT 155. Key Concept. September 22, 2010. 155S5.3_3 Binomial Probability Distributions. Chapter 5 Probability Distributions

MAT 155. Key Concept. September 22, 2010. 155S5.3_3 Binomial Probability Distributions. Chapter 5 Probability Distributions MAT 155 Dr. Claude Moore Cape Fear Community College Chapter 5 Probability Distributions 5 1 Review and Preview 5 2 Random Variables 5 3 Binomial Probability Distributions 5 4 Mean, Variance, and Standard

More information

Introduction to the Practice of Statistics Fifth Edition Moore, McCabe

Introduction to the Practice of Statistics Fifth Edition Moore, McCabe Introduction to the Practice of Statistics Fifth Edition Moore, McCabe Section 4.2 Homework Answers 4.17 Choose a young adult (age 25 to 34 years) at random. The probability is 0.12 that the person chosen

More information

Chapter 4: Probability and Counting Rules

Chapter 4: Probability and Counting Rules Chapter 4: Probability and Counting Rules Learning Objectives Upon successful completion of Chapter 4, you will be able to: Determine sample spaces and find the probability of an event using classical

More information

Exam 3 Review/WIR 9 These problems will be started in class on April 7 and continued on April 8 at the WIR.

Exam 3 Review/WIR 9 These problems will be started in class on April 7 and continued on April 8 at the WIR. Exam 3 Review/WIR 9 These problems will be started in class on April 7 and continued on April 8 at the WIR. 1. Urn A contains 6 white marbles and 4 red marbles. Urn B contains 3 red marbles and two white

More information

That s Not Fair! ASSESSMENT #HSMA20. Benchmark Grades: 9-12

That s Not Fair! ASSESSMENT #HSMA20. Benchmark Grades: 9-12 That s Not Fair! ASSESSMENT # Benchmark Grades: 9-12 Summary: Students consider the difference between fair and unfair games, using probability to analyze games. The probability will be used to find ways

More information

36 Odds, Expected Value, and Conditional Probability

36 Odds, Expected Value, and Conditional Probability 36 Odds, Expected Value, and Conditional Probability What s the difference between probabilities and odds? To answer this question, let s consider a game that involves rolling a die. If one gets the face

More information

Week 5: Expected value and Betting systems

Week 5: Expected value and Betting systems Week 5: Expected value and Betting systems Random variable A random variable represents a measurement in a random experiment. We usually denote random variable with capital letter X, Y,. If S is the sample

More information

Linear Algebra Notes for Marsden and Tromba Vector Calculus

Linear Algebra Notes for Marsden and Tromba Vector Calculus Linear Algebra Notes for Marsden and Tromba Vector Calculus n-dimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of

More information

Additional Probability Problems

Additional Probability Problems Additional Probability Problems 1. A survey has shown that 52% of the women in a certain community work outside the home. Of these women, 64% are married, while 86% of the women who do not work outside

More information

Chapter 5 Section 2 day 1 2014f.notebook. November 17, 2014. Honors Statistics

Chapter 5 Section 2 day 1 2014f.notebook. November 17, 2014. Honors Statistics Chapter 5 Section 2 day 1 2014f.notebook November 17, 2014 Honors Statistics Monday November 17, 2014 1 1. Welcome to class Daily Agenda 2. Please find folder and take your seat. 3. Review Homework C5#3

More information

Lecture 6: Discrete & Continuous Probability and Random Variables

Lecture 6: Discrete & Continuous Probability and Random Variables Lecture 6: Discrete & Continuous Probability and Random Variables D. Alex Hughes Math Camp September 17, 2015 D. Alex Hughes (Math Camp) Lecture 6: Discrete & Continuous Probability and Random September

More information

H/wk 13, Solutions to selected problems

H/wk 13, Solutions to selected problems H/wk 13, Solutions to selected problems Ch. 4.1, Problem 5 (a) Find the number of roots of x x in Z 4, Z Z, any integral domain, Z 6. (b) Find a commutative ring in which x x has infinitely many roots.

More information

2004 Solutions Ga lois Contest (Grade 10)

2004 Solutions Ga lois Contest (Grade 10) Canadian Mathematics Competition An activity of The Centre for Education in Ma thematics and Computing, University of W aterloo, Wa terloo, Ontario 2004 Solutions Ga lois Contest (Grade 10) 2004 Waterloo

More information