halfline the set of all points on a line on a given side of a given point of the line


 Maximillian Hicks
 1 years ago
 Views:
Transcription
1 Geometry Week 3 Sec 2.1 to 2.4 Definition: section 2.1 halfline the set of all points on a line on a given side of a given point of the line notation: is the halfline that contains all points on the same side of as point is. Point is called the origin of the halfline. Important: Point is not part of the halfline. lso, names the same halfline as. 1
2 Postulate: Line Separation Postulate: Every point divides any line through that point into 3 disjoint sets: the point and each of the 2 halflines. Definition: ray the union of a halfline and its origin. It extends infinitely in one direction from a point. notation: is the ray having as its origin. is the ray having as its origin. *Note: The difference between halflines and rays is that rays contain the origin and halflines do not. 2
3 Sample Problem: Find the following. D 1. D D
4 Definitions between is between and if = {} when,, and are collinear. notation:  or  opposite rays and are opposite rays if and only if is between and. segment the set consisting of 2 points and, and all the points in between them. = {,} U {X X} notation: * note about vectors: vector directed line segment ray directed, but infinite length 4
5 section 2.2 Subsets of Planes *Just as a point divides a line into 3 sets, a line divides a plane into 3 sets. Plane Separation Postulate: Every line divides any plane containing the line into 3 disjoint sets: the line and the two halfplanes Definitions: halfplane a subset of a plane consisting of all points on a given side of a line in the plane. If points P and Q are in the same halfplane, then so is the segment joining them. edge of a halfplane the line that separates the plane into two halfplanes. The line is not part of either halfplane. opposite halfplanes the two halfplanes that are separated by a particular line of the plane. If points Y and Z are in opposite halfplanes, the segment joining them must intersect the edge. 5
6 X P 1 Y Z k P 2 is the edge of the halfplane. P 1 and P 2 are halfplanes P 1 and P 2 are opposite halfplanes Definitions: angle the union of two distinct rays with a common endpoint sides of an angle two rays that form the angle vertex of an angle the common endpoint (origin) of the two rays 6
7 interior of an angle the intersection of the two halfplanes each determined by a side of the angle and containing the other side (except for the vertex). exterior of an angle the complement of the union of the angle and its interior K J Point J is in the exterior of the. Point K is in the interior of. 7
8 Practice Problem: G D F E 1. Using the edge FG classify all points according to the Plane Separation Postulate.,D,F,G are points on the line FG is in one halfplane and E are in the other halfplane 2. E is in the interior of what angle? F 3. is a side of what angles? G and F 4. Name 4 angles with vertex D. GDE, EDF, FD, GD 5. Name points in the exterior of D. G and F 8
9 Practice Problem: D True/False: E 1. U D = D False, no rays 2. E DE = E True 3. D E = {} True 4. E interior of E interior of E = halfplane determined by True 9
10 section 2.4 Definitions: triangle the union of segments that connect 3 noncollinear points Notation:,,, etc. The segments are called sides. The corners are called vertices (plural for vertex). Some facts about triangles: is the angle that contains the sides and. ngles are subsets of a plane, but not of a triangle. triangle does not contain any angles. triangle determines 3 angles. Two sides of a triangle are subsets of the rays of each angle. 10
11 Definitions curve a continuous set of points * Note: curve can be straight. closed curve begins and ends at the same point simple curve doesn t intersect itself (unless starting and ending points coincide) simple closed curve a simple curve that is also a closed curve Examples of curves: Simple curve Simple curve urve Simple closed curve Simple closed curve losed curve 11
12 Definitions: circle the set of all points that are given distance from a given point in a given plane E D F Notation: center the given point in the plane radius of a circle a segment that connects a point on the circle with the center (plural = radii) chord of a circle a segment having both endpoints on the circle diameter a chord that passes through the center of a circle arc a curve that is a subset of a circle 12
13 center: E radii: E, D, F D chords: FD, diameter: FD F arc: ED, D, F, etc. Definitions: interior of a circle  the set of all planar points whose distance from the center of the circle is less than the lenth of the radius exterior of a circle the set of all planar points whose distance from the center is greater than the length of the radius Interior of the circle 13
14 Theorem 2.1: Jordon urve Theorem ny simple closed curve divides a plane into three disjoint sets: the curve itself, its interior, and its exterior. Definition: region the union of a simple closed curve and its interior. The curve is the boundary of the region. Question: What is the union of a region and its exterior? Why? nswer: the plane nswer: because of the Jordon urve Theorem 14
Math 366 Lecture Notes Section 11.1 Basic Notions (of Geometry)
Math 366 Lecture Notes Section. Basic Notions (of Geometry) The fundamental building blocks of geometry are points, lines, and planes. These terms are not formally defined, but are described intuitively.
More informationSec 1.1 CC Geometry  Constructions Name: 1. [COPY SEGMENT] Construct a segment with an endpoint of C and congruent to the segment AB.
Sec 1.1 CC Geometry  Constructions Name: 1. [COPY SEGMENT] Construct a segment with an endpoint of C and congruent to the segment AB. A B C **Using a ruler measure the two lengths to make sure they have
More informationAxiom A.1. Lines, planes and space are sets of points. Space contains all points.
73 Appendix A.1 Basic Notions We take the terms point, line, plane, and space as undefined. We also use the concept of a set and a subset, belongs to or is an element of a set. In a formal axiomatic approach
More informationChapter 3.1 Angles. Geometry. Objectives: Define what an angle is. Define the parts of an angle.
Chapter 3.1 Angles Define what an angle is. Define the parts of an angle. Recall our definition for a ray. A ray is a line segment with a definite starting point and extends into infinity in only one direction.
More informationChapter 6 Notes: Circles
Chapter 6 Notes: Circles IMPORTANT TERMS AND DEFINITIONS A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center of the circle. Any line segment
More informationChapters 6 and 7 Notes: Circles, Locus and Concurrence
Chapters 6 and 7 Notes: Circles, Locus and Concurrence IMPORTANT TERMS AND DEFINITIONS A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center of
More informationEuclidean Geometry. We start with the idea of an axiomatic system. An axiomatic system has four parts:
Euclidean Geometry Students are often so challenged by the details of Euclidean geometry that they miss the rich structure of the subject. We give an overview of a piece of this structure below. We start
More information1. A student followed the given steps below to complete a construction. Which type of construction is best represented by the steps given above?
1. A student followed the given steps below to complete a construction. Step 1: Place the compass on one endpoint of the line segment. Step 2: Extend the compass from the chosen endpoint so that the width
More informationcircle the set of all points that are given distance from a given point in a given plane
Geometry Week 19 Sec 9.1 to 9.3 Definitions: section 9.1 circle the set of all points that are given distance from a given point in a given plane E D Notation: F center the given point in the plane radius
More informationNCERT. In examples 1 and 2, write the correct answer from the given four options.
MTHEMTIS UNIT 2 GEOMETRY () Main oncepts and Results line segment corresponds to the shortest distance between two points. The line segment joining points and is denoted as or as. ray with initial point
More informationCircle geometry theorems
Circle geometry theorems http://topdrawer.aamt.edu.au/geometricreasoning/bigideas/circlegeometry/angleandchordproperties Theorem Suggested abbreviation Diagram 1. When two circles intersect, the line
More information39 Symmetry of Plane Figures
39 Symmetry of Plane Figures In this section, we are interested in the symmetric properties of plane figures. By a symmetry of a plane figure we mean a motion of the plane that moves the figure so that
More informationCircle Geometry. Properties of a Circle Circle Theorems:! Angles and chords! Angles! Chords! Tangents! Cyclic Quadrilaterals
ircle Geometry Properties of a ircle ircle Theorems:! ngles and chords! ngles! hords! Tangents! yclic Quadrilaterals http://www.geocities.com/fatmuscle/hs/ 1 Properties of a ircle Radius Major Segment
More information1.2 Informal Geometry
1.2 Informal Geometry Mathematical System: (xiomatic System) Undefined terms, concepts: Point, line, plane, space Straightness of a line, flatness of a plane point lies in the interior or the exterior
More informationGEOMETRY FINAL EXAM REVIEW
GEOMETRY FINL EXM REVIEW I. MTHING reflexive. a(b + c) = ab + ac transitive. If a = b & b = c, then a = c. symmetric. If lies between and, then + =. substitution. If a = b, then b = a. distributive E.
More informationCentroid: The point of intersection of the three medians of a triangle. Centroid
Vocabulary Words Acute Triangles: A triangle with all acute angles. Examples 80 50 50 Angle: A figure formed by two noncollinear rays that have a common endpoint and are not opposite rays. Angle Bisector:
More informationStudent Name: Teacher: Date: District: MiamiDade County Public Schools. Assessment: 9_12 Mathematics Geometry Exam 1
Student Name: Teacher: Date: District: MiamiDade County Public Schools Assessment: 9_12 Mathematics Geometry Exam 1 Description: GEO Topic 1 Test: Tools of Geometry Form: 201 1. A student followed the
More information6. Angles. a = AB and b = AC is called the angle BAC.
6. Angles Two rays a and b are called coterminal if they have the same endpoint. If this common endpoint is A, then there must be points B and C such that a = AB and b = AC. The union of the two coterminal
More informationRadius, diameter, circumference, π (Pi), central angles, Pythagorean relationship. about CIRCLES
Grade 9 Math Unit 8 : CIRCLE GEOMETRY NOTES 1 Chapter 8 in textbook (p. 384 420) 5/50 or 10% on 2011 CRT: 5 Multiple Choice WHAT YOU SHOULD ALREADY KNOW: Radius, diameter, circumference, π (Pi), central
More information1) Perpendicular bisector 2) Angle bisector of a line segment
1) Perpendicular bisector 2) ngle bisector of a line segment 3) line parallel to a given line through a point not on the line by copying a corresponding angle. 1 line perpendicular to a given line through
More informationChapter 4 Circles, TangentChord Theorem, Intersecting Chord Theorem and Tangentsecant Theorem
Tampines Junior ollege H3 Mathematics (9810) Plane Geometry hapter 4 ircles, Tangenthord Theorem, Intersecting hord Theorem and Tangentsecant Theorem utline asic definitions and facts on circles The
More informationcircumscribed circle Vocabulary Flash Cards Chapter 10 (p. 539) Chapter 10 (p. 530) Chapter 10 (p. 538) Chapter 10 (p. 530)
Vocabulary Flash ards adjacent arcs center of a circle hapter 10 (p. 539) hapter 10 (p. 530) central angle of a circle chord of a circle hapter 10 (p. 538) hapter 10 (p. 530) circle circumscribed angle
More informationGeometry: Unit 1 Vocabulary TERM DEFINITION GEOMETRIC FIGURE. Cannot be defined by using other figures.
Geometry: Unit 1 Vocabulary 1.1 Undefined terms Cannot be defined by using other figures. Point A specific location. It has no dimension and is represented by a dot. Line Plane A connected straight path.
More informationof one triangle are congruent to the corresponding parts of the other triangle, the two triangles are congruent.
2901 Clint Moore Road #319, Boca Raton, FL 33496 Office: (561) 4592058 Mobile: (949) 5108153 Email: HappyFunMathTutor@gmail.com www.happyfunmathtutor.com GEOMETRY THEORUMS AND POSTULATES GEOMETRY POSTULATES:
More informationGeometry Unit 1. Basics of Geometry
Geometry Unit 1 Basics of Geometry Using inductive reasoning  Looking for patterns and making conjectures is part of a process called inductive reasoning Conjecture an unproven statement that is based
More informationINCIDENCEBETWEENNESS GEOMETRY
INCIDENCEBETWEENNESS GEOMETRY MATH 410, CSUSM. SPRING 2008. PROFESSOR AITKEN This document covers the geometry that can be developed with just the axioms related to incidence and betweenness. The full
More informationA segment, ray, line, or plane that is perpendicular to a segment at its midpoint is called a perpendicular bisector. Perpendicular Bisector Theorem
Perpendicular Bisector Theorem A segment, ray, line, or plane that is perpendicular to a segment at its midpoint is called a perpendicular bisector. Converse of the Perpendicular Bisector Theorem If a
More informationIntroduction to Voronoi Diagrams
C.S. 252 Prof. Roberto Tamassia Computational Geometry Sem. II, 1992 1993 Lecture 13 Date: March 22, 1993 Scribe: Scott S. Snibbe 1 Introduction Introduction to Voronoi Diagrams This lecture introduces
More informationMath. Analyzing Lines, Rays, Segments and Angles. Answers B C D E F. Name: Use the graphic to the right to find the following (if possible):
nalyzing Lines, Rays, Segments and ngles nswers 1) Line,, 2) Ray,,,,,,, 1. 2. 3) Segment,,,,, 4) Parallel Lines ( & ) 5) Perpendicular Lines ( & ),( & ) 6) Intersecting Lines ( & ),( & ) F 3. 4. ( & )
More informationCircle Theorems. This circle shown is described an OT. As always, when we introduce a new topic we have to define the things we wish to talk about.
Circle s circle is a set of points in a plane that are a given distance from a given point, called the center. The center is often used to name the circle. T This circle shown is described an OT. s always,
More informationA = ½ x b x h or ½bh or bh. Formula Key A 2 + B 2 = C 2. Pythagorean Theorem. Perimeter. b or (b 1 / b 2 for a trapezoid) height
Formula Key b 1 base height rea b or (b 1 / b for a trapezoid) h b Perimeter diagonal P d (d 1 / d for a kite) d 1 d Perpendicular two lines form a angle. Perimeter P = total of all sides (side + side
More informationThe Inscribed Angle Alternate A Tangent Angle
Student Outcomes Students use the inscribed angle theorem to prove other theorems in its family (different angle and arc configurations and an arc intercepted by an angle at least one of whose rays is
More informationMath 330A Class Drills All content copyright October 2010 by Mark Barsamian
Math 330A Class Drills All content copyright October 2010 by Mark Barsamian When viewing the PDF version of this document, click on a title to go to the Class Drill. Drill for Section 1.3.1: Theorems about
More informationChapter One. Points, Lines, Planes, and Angles
Chapter One Points, Lines, Planes, and Angles Objectives A. Use the terms defined in the chapter correctly. B. Properly use and interpret the symbols for the terms and concepts in this chapter. C. Appropriately
More informationThe measure of an arc is the measure of the central angle that intercepts it Therefore, the intercepted arc measures
8.1 Name (print first and last) Per Date: 3/24 due 3/25 8.1 Circles: Arcs and Central Angles Geometry Regents 20132014 Ms. Lomac SLO: I can use definitions & theorems about points, lines, and planes to
More informationMathematics 3301001 Spring 2015 Dr. Alexandra Shlapentokh Guide #3
Mathematics 3301001 Spring 2015 Dr. Alexandra Shlapentokh Guide #3 The problems in bold are the problems for Test #3. As before, you are allowed to use statements above and all postulates in the proofs
More informationFinal Review Geometry A Fall Semester
Final Review Geometry Fall Semester Multiple Response Identify one or more choices that best complete the statement or answer the question. 1. Which graph shows a triangle and its reflection image over
More informationCircle Name: Radius: Diameter: Chord: Secant:
12.1: Tangent Lines Congruent Circles: circles that have the same radius length Diagram of Examples Center of Circle: Circle Name: Radius: Diameter: Chord: Secant: Tangent to A Circle: a line in the plane
More informationGrade 7 & 8 Math Circles Circles, Circles, Circles March 19/20, 2013
Faculty of Mathematics Waterloo, Ontario N2L 3G Introduction Grade 7 & 8 Math Circles Circles, Circles, Circles March 9/20, 203 The circle is a very important shape. In fact of all shapes, the circle is
More informationGeometry Vocabulary. Created by Dani Krejci referencing:
Geometry Vocabulary Created by Dani Krejci referencing: http://mrsdell.org/geometry/vocabulary.html point An exact location in space, usually represented by a dot. A This is point A. line A straight path
More informationCK12 Geometry: Midpoints and Bisectors
CK12 Geometry: Midpoints and Bisectors Learning Objectives Identify the midpoint of line segments. Identify the bisector of a line segment. Understand and the Angle Bisector Postulate. Review Queue Answer
More informationGeometry Review Flash Cards
point is like a star in the night sky. However, unlike stars, geometric points have no size. Think of them as being so small that they take up zero amount of space. point may be represented by a dot on
More informationExploring Spherical Geometry
Exploring Spherical Geometry Introduction The study of plane Euclidean geometry usually begins with segments and lines. In this investigation, you will explore analogous objects on the surface of a sphere,
More informationContents. 2 Lines and Circles 3 2.1 Cartesian Coordinates... 3 2.2 Distance and Midpoint Formulas... 3 2.3 Lines... 3 2.4 Circles...
Contents Lines and Circles 3.1 Cartesian Coordinates.......................... 3. Distance and Midpoint Formulas.................... 3.3 Lines.................................. 3.4 Circles..................................
More informationAngles that are between parallel lines, but on opposite sides of a transversal.
GLOSSARY Appendix A Appendix A: Glossary Acute Angle An angle that measures less than 90. Acute Triangle Alternate Angles A triangle that has three acute angles. Angles that are between parallel lines,
More informationReflex Vertices A 2. A 1 Figure 2a
Reflex Vertices For any integer n 3, the polygon determined by the n points 1,..., n (1) in the plane consists of the n segments 1 2, 2 3,..., n1 n, n 1, (2) provided that we never pass through a point
More informationFor the circle above, EOB is a central angle. So is DOE. arc. The (degree) measure of ù DE is the measure of DOE.
efinition: circle is the set of all points in a plane that are equidistant from a given point called the center of the circle. We use the symbol to represent a circle. The a line segment from the center
More informationA geometric construction is a drawing of geometric shapes using a compass and a straightedge.
Geometric Construction Notes A geometric construction is a drawing of geometric shapes using a compass and a straightedge. When performing a geometric construction, only a compass (with a pencil) and a
More information2006 Geometry Form A Page 1
2006 Geometry Form Page 1 1. he hypotenuse of a right triangle is 12" long, and one of the acute angles measures 30 degrees. he length of the shorter leg must be: () 4 3 inches () 6 3 inches () 5 inches
More informationChapter 1. Foundations of Geometry: Points, Lines, and Planes
Chapter 1 Foundations of Geometry: Points, Lines, and Planes Objectives(Goals) Identify and model points, lines, and planes. Identify collinear and coplanar points and intersecting lines and planes in
More informationGeometry Chapter 10 Study Guide Name
eometry hapter 10 Study uide Name Terms and Vocabulary: ill in the blank and illustrate. 1. circle is defined as the set of all points in a plane that are equidistant from a fixed point called the center.
More informationTransversals. 1, 3, 5, 7, 9, 11, 13, 15 are all congruent by vertical angles, corresponding angles,
Transversals In the following explanation and drawing, an example of the angles created by two parallel lines and two transversals are shown and explained: 1, 3, 5, 7, 9, 11, 13, 15 are all congruent by
More informationGrade 4  Module 4: Angle Measure and Plane Figures
Grade 4  Module 4: Angle Measure and Plane Figures Acute angle (angle with a measure of less than 90 degrees) Angle (union of two different rays sharing a common vertex) Complementary angles (two angles
More information**The Ruler Postulate guarantees that you can measure any segment. **The Protractor Postulate guarantees that you can measure any angle.
Geometry Week 7 Sec 4.2 to 4.5 section 4.2 **The Ruler Postulate guarantees that you can measure any segment. **The Protractor Postulate guarantees that you can measure any angle. Protractor Postulate:
More informationSurface Area of Rectangular & Right Prisms Surface Area of Pyramids. Geometry
Surface Area of Rectangular & Right Prisms Surface Area of Pyramids Geometry Finding the surface area of a prism A prism is a rectangular solid with two congruent faces, called bases, that lie in parallel
More informationA Foundation for Geometry
MODULE 4 A Foundation for Geometry There is no royal road to geometry Euclid 1. Points and Lines We are ready (finally!) to talk about geometry. Our first task is to say something about points and lines.
More informationAngles are what trigonometry is all about. This is where it all started, way back when.
Chapter 1 Tackling Technical Trig In This Chapter Acquainting yourself with angles Identifying angles in triangles Taking apart circles Angles are what trigonometry is all about. This is where it all started,
More informationGeometry Chapter 1 Review
Name: lass: ate: I: Geometry hapter 1 Review Multiple hoice Identify the choice that best completes the statement or answers the question. 1. Name two lines in the figure. a. and T c. W and R b. WR and
More informationDefinitions, Postulates and Theorems
Definitions, s and s Name: Definitions Complementary Angles Two angles whose measures have a sum of 90 o Supplementary Angles Two angles whose measures have a sum of 180 o A statement that can be proven
More informationPoints, Lines, Angles, and Parallel Lines
Section 3.1 Prectivity Preparation Points, Lines, ngles, and Parallel Lines Several new types of games illustrate and make use of the basic geometric concepts of points, lines, and planes. Whether the
More informationGEOMETRY. Constructions OBJECTIVE #: G.CO.12
GEOMETRY Constructions OBJECTIVE #: G.CO.12 OBJECTIVE Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic
More informationLesson 2: Circles, Chords, Diameters, and Their Relationships
Circles, Chords, Diameters, and Their Relationships Student Outcomes Identify the relationships between the diameters of a circle and other chords of the circle. Lesson Notes Students are asked to construct
More informationPOTENTIAL REASONS: Definition of Congruence:
Sec 6 CC Geometry Triangle Pros Name: POTENTIAL REASONS: Definition Congruence: Having the exact same size and shape and there by having the exact same measures. Definition Midpoint: The point that divides
More informationThe Basics: Geometric Structure
Trinity University Digital Commons @ Trinity Understanding by Design: Complete Collection Understanding by Design Summer 62015 The Basics: Geometric Structure Danielle Kendrick Trinity University Follow
More informationConjunction is true when both parts of the statement are true. (p is true, q is true. p^q is true)
Mathematical Sentence  a sentence that states a fact or complete idea Open sentence contains a variable Closed sentence can be judged either true or false Truth value true/false Negation not (~) * Statement
More informationChapter 1: Points, Lines, Planes, and Angles
Chapter 1: Points, Lines, Planes, and Angles (page 1) 11: A Game and Some Geometry (page 1) In the figure below, you see five points: A,B,C,D, and E. Use a centimeter ruler to find the requested distances.
More informationContent Area: GEOMETRY Grade 9 th Quarter 1 st Curso Serie Unidade
Content Area: GEOMETRY Grade 9 th Quarter 1 st Curso Serie Unidade Standards/Content Padrões / Conteúdo Learning Objectives Objetivos de Aprendizado Vocabulary Vocabulário Assessments Avaliações Resources
More informationA quick review of elementary Euclidean geometry
C H P T E R 0 quick review of elementary Euclidean geometry 0.1 MESUREMENT ND CONGRUENCE 0.2 PSCH S XIOM ND THE CROSSR THEOREM 0.3 LINER PIRS ND VERTICL PIRS 0.4 TRINGLE CONGRUENCE CONDITIONS 0.5 THE EXTERIOR
More informationChapter 1 Basics of Geometry Geometry. For questions 15, draw and label an image to fit the descriptions.
Chapter 1 Basics of Geometry Geometry Name For questions 15, draw and label an image to fit the descriptions. 1. intersecting and Plane P containing but not. 2. Three collinear points A, B, and C such
More informationTImath.com. Geometry. Points on a Perpendicular Bisector
Points on a Perpendicular Bisector ID: 8868 Time required 40 minutes Activity Overview In this activity, students will explore the relationship between a line segment and its perpendicular bisector. Once
More informationAB divides the plane. Then for any α R, 0 < α < π there exists a unique ray. AC in the halfplane H such that m BAC = α. (4) If ray
4. Protractor xiom In this section, we give axioms relevant to measurement of angles. However, before we do it we need to introduce a technical axiom which introduces the notion of a halfplane. 4.. Plane
More informationPractical Geometry. Chapter Introduction
Practical Geometry Chapter 14 14.1 Introduction We see a number of shapes with which we are familiar. We also make a lot of pictures. These pictures include different shapes. We have learnt about some
More informationGEOMETRY CONCEPT MAP. Suggested Sequence:
CONCEPT MAP GEOMETRY August 2011 Suggested Sequence: 1. Tools of Geometry 2. Reasoning and Proof 3. Parallel and Perpendicular Lines 4. Congruent Triangles 5. Relationships Within Triangles 6. Polygons
More informationGeometry: Euclidean. Through a given external point there is at most one line parallel to a
Geometry: Euclidean MATH 3120, Spring 2016 The proofs of theorems below can be proven using the SMSG postulates and the neutral geometry theorems provided in the previous section. In the SMSG axiom list,
More informationUnknown Angle Problems with Inscribed Angles in Circles
: Unknown Angle Problems with Inscribed Angles in Circles Student Outcomes Use the inscribed angle theorem to find the measures of unknown angles. Prove relationships between inscribed angles and central
More informationObjectives. Cabri Jr. Tools
^Åíáîáíó=NO Objectives To learn how to construct all types of triangles using the Cabri Jr. application To reinforce the difference between a construction and a drawing Cabri Jr. Tools fåíêççìåíáçå `çåëíêìåíáåö
More informationGEOMETRY. Chapter 1: Foundations for Geometry. Name: Teacher: Pd:
GEOMETRY Chapter 1: Foundations for Geometry Name: Teacher: Pd: Table of Contents Lesson 1.1: SWBAT: Identify, name, and draw points, lines, segments, rays, and planes. Pgs: 14 Lesson 1.2: SWBAT: Use
More informationDEFINITIONS. Perpendicular Two lines are called perpendicular if they form a right angle.
DEFINITIONS Degree A degree is the 1 th part of a straight angle. 180 Right Angle A 90 angle is called a right angle. Perpendicular Two lines are called perpendicular if they form a right angle. Congruent
More information37 Basic Geometric Shapes and Figures
37 Basic Geometric Shapes and Figures In this section we discuss basic geometric shapes and figures such as points, lines, line segments, planes, angles, triangles, and quadrilaterals. The three pillars
More informationCK12 Geometry: Parts of Circles and Tangent Lines
CK12 Geometry: Parts of Circles and Tangent Lines Learning Objectives Define circle, center, radius, diameter, chord, tangent, and secant of a circle. Explore the properties of tangent lines and circles.
More informationInscribed Angle Theorem and Its Applications
: Student Outcomes Prove the inscribed angle theorem: The measure of a central angle is twice the measure of any inscribed angle that intercepts the same arc as the central angle. Recognize and use different
More information15. Appendix 1: List of Definitions
page 321 15. Appendix 1: List of Definitions Definition 1: Interpretation of an axiom system (page 12) Suppose that an axiom system consists of the following four things an undefined object of one type,
More informationFLC Ch 1 & 3.1. A ray AB, denoted, is the union of and all points on such that is between and. The endpoint of the ray AB is A.
Math 335 Trigonometry Sec 1.1: Angles Definitions A line is an infinite set of points where between any two points, there is another point on the line that lies between them. Line AB, A line segment is
More informationLines, Segments, Rays, and Angles
Line and Angle Review Thursday, July 11, 2013 10:22 PM Lines, Segments, Rays, and Angles Slide Notes Title Lines, Segment, Ray A line goes on forever, so we use an arrow on each side to indicate that.
More informationCIRCLE DEFINITIONS AND THEOREMS
DEFINITIONS Circle The set of points in a plane equidistant from a given point(the center of the circle). Radius A segment from the center of the circle to a point on the circle(the distance from the
More informationThe Geometry of Piles of Salt Thinking Deeply About Simple Things
The Geometry of Piles of Salt Thinking Deeply About Simple Things PCMI SSTP Tuesday, July 15 th, 2008 By Troy Jones Willowcreek Middle School Important Terms (the word line may be replaced by the word
More informationThe Next Step. Mathematics Applications for Adults. Book Geometry
The Next Step Mathematics Applications for Adults Book 14018  Geometry OUTLINE Mathematics  Book 14018 Geometry Lines and Angles identify parallel lines and perpendicular lines in a given selection of
More informationAngle  a figure formed by two rays or two line segments with a common endpoint called the vertex of the angle; angles are measured in degrees
Angle  a figure formed by two rays or two line segments with a common endpoint called the vertex of the angle; angles are measured in degrees Apex in a pyramid or cone, the vertex opposite the base; in
More informationMATH STUDENT BOOK. 8th Grade Unit 6
MATH STUDENT BOOK 8th Grade Unit 6 Unit 6 Measurement Math 806 Measurement Introduction 3 1. Angle Measures and Circles 5 Classify and Measure Angles 5 Perpendicular and Parallel Lines, Part 1 12 Perpendicular
More informationGeometry SOL G.11 G.12 Circles Study Guide
Geometry SOL G.11 G.1 Circles Study Guide Name Date Block Circles Review and Study Guide Things to Know Use your notes, homework, checkpoint, and other materials as well as flashcards at quizlet.com (http://quizlet.com/4776937/chapter10circlesflashcardsflashcards/).
More informationGeo 9 1 Circles 91 Basic Terms associated with Circles and Spheres. Radius. Chord. Secant. Diameter. Tangent. Point of Tangency.
Geo 9 1 ircles 91 asic Terms associated with ircles and Spheres ircle Given Point = Given distance = Radius hord Secant iameter Tangent Point of Tangenc Sphere Label ccordingl: ongruent circles or spheres
More informationTriangle. A triangle is a geometrical figure. Tri means three. So Triangle is a geometrical figure having 3 angles.
Triangle A triangle is a geometrical figure. Tri means three. So Triangle is a geometrical figure having 3 angles. A triangle is consisting of three line segments linked end to end. As the figure linked
More informationGeometry Course Summary Department: Math. Semester 1
Geometry Course Summary Department: Math Semester 1 Learning Objective #1 Geometry Basics Targets to Meet Learning Objective #1 Use inductive reasoning to make conclusions about mathematical patterns Give
More informationChapter 1: Essentials of Geometry
Section Section Title 1.1 Identify Points, Lines, and Planes 1.2 Use Segments and Congruence 1.3 Use Midpoint and Distance Formulas Chapter 1: Essentials of Geometry Learning Targets I Can 1. Identify,
More informationINFORMATION FOR TEACHERS
INFORMATION FOR TEACHERS The math behind DragonBox Elements  explore the elements of geometry  Includes exercises and topics for discussion General information DragonBox Elements Teaches geometry through
More informationLesson 1: Introducing Circles
IRLES N VOLUME Lesson 1: Introducing ircles ommon ore Georgia Performance Standards M9 12.G..1 M9 12.G..2 Essential Questions 1. Why are all circles similar? 2. What are the relationships among inscribed
More informationGeometry Chapter 1. 1.1 Point (pt) 1.1 Coplanar (1.1) 1.1 Space (1.1) 1.2 Line Segment (seg) 1.2 Measure of a Segment
Geometry Chapter 1 Section Term 1.1 Point (pt) Definition A location. It is drawn as a dot, and named with a capital letter. It has no shape or size. undefined term 1.1 Line A line is made up of points
More information#2. Isosceles Triangle Theorem says that If a triangle is isosceles, then its BASE ANGLES are congruent.
1 Geometry Proofs Reference Sheet Here are some of the properties that we might use in our proofs today: #1. Definition of Isosceles Triangle says that If a triangle is isosceles then TWO or more sides
More informationc.) If RN = 2, find RP. N
Geometry 101 ircles and ircumference. Parts of ircles 1. circle is the locus of all points equidistant from a given point called the center of the circle.. circle is usually named by its point. 3. The
More informationacute angle adjacent angles angle bisector between axiom Vocabulary Flash Cards Chapter 1 (p. 39) Chapter 1 (p. 48) Chapter 1 (p.38) Chapter 1 (p.
Vocabulary Flash ards acute angle adjacent angles hapter 1 (p. 39) hapter 1 (p. 48) angle angle bisector hapter 1 (p.38) hapter 1 (p. 42) axiom between hapter 1 (p. 12) hapter 1 (p. 14) collinear points
More information