Analysis (III) Low Power Design. Kai Huang

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Analysis (III) Low Power Design. Kai Huang"

Transcription

1 Analysis (III) Low Power Design Kai Huang

2 Chinese new year: 1.3 billion urban exodus 1/28/ The interactive map, which is updated hourly The thicker, brighter lines are the busiest routes. Current view am by Baidu

3 Outline General Remarks Power and Energy Basic Techniques o Parallelism o VLIW (parallelism and reduced overhead) o Dynamic Voltage Scaling o Dynamic Power Management 1/28/2014 3

4 Power and Energy Consumption Power is considered as the most important constraint in embedded systems. [in: L. Eggermont (ed): Embedded Systems Roadmap 2002, STW] Power demands are increasing rapidly, yet battery capacity cannot keep up. [in Diztel et al.: Power-Aware Architecting for data-dominated applications, 2007, Springer] 1/28/2014 4

5 Implementation Alternatives Power efficiency 1/28/2014 5

6 Energy Efficiency Hugo De Man, IMEC, Philips, 2007 Necessary to optimize HW and SW. Use heterogeneous architectures. Apply specialization techniques. H. de Man, Keynote, DATE 02; 1/28/2014 6

7 Outline General Remarks Power and Energy Basic Techniques o Parallelism o VLIW (parallelism and reduced overhead) o Dynamic Voltage Scaling o Dynamic Power Management 1/28/2014 7

8 Power and Energy are Related In many cases, faster execution also means less energy, but the opposite may be true if power has to be increased to allow faster execution. 1/28/2014 8

9 Low Power vs. Low Energy Minimizing the power consumption is important for o the design of the power supply o the design of voltage regulators o the dimensioning of interconnect o cooling (short term cooling) high cost (estimated to be rising at $1 to $3 per Watt for heat dissipation [Skadron et al. ISCA 2003]) limited space Minimizing the energy consumption is important due to o restricted availability of energy (mobile systems) o limited battery capacities (only slowly improving) o very high costs of energy (solar panels, in space) o long lifetimes, low temperatures 1/28/2014 9

10 Power Consumption of a CMOS Gate subthreshold and gate-oxide leakage Ileak : leakage current Iint : short circuit current Isw : switching current 1/28/

11 Power Consumption of CMOS Processors Main sources: o Dynamic power consumption charging and discharging capacitors o Short circuit power consumption short circuit path between supply rails during switching o Leakage leaking diodes and translators becomes one of the major factors due to shrinking feature sizes in semiconductor technology 1/28/

12 Dynamic Voltage Scaling (DVS) Power consumption of CMOS circuits (ignoring leakage): Delay for CMOS circuits: V dd α C L f : supply voltage : switching activity : load capacity : clock frequency V dd V T : supply voltage : threshold voltage Decreasing V dd reduces P quadratically (f constant). The gate delay increases only reciprocally. Maximal frequency f max decreases linearly. 1/28/

13 Potential for Energy Optimization: DVS Saving energy for a given task: o Reduce the supply voltage V dd o Reduce switching activity α o Reduce the load capacitance C L o Reduce the number of cycles #cycles 1/28/

14 Example: Voltage Scaling [Courtesy, Yasuura, 2000] 1/28/

15 Power Supply Gating Power gating is one of the most effective ways of minimizing static power consumption (leakage) o Cut-off power supply to inactive units/components o Reduces leakage 1/28/

16 Outline General Remarks Power and Energy Basic Techniques o Parallelism o VLIW (parallelism and reduced overhead) o Dynamic Voltage Scaling o Dynamic Power Management 1/28/

17 Use of Parallelism 1/28/

18 Use of Pipelining 1/28/

19 Outline General Remarks Power and Energy Basic Techniques o Parallelism o VLIW (parallelism and reduced overhead) o Dynamic Voltage Scaling o Dynamic Power Management 1/28/

20 New ideas help... Pentium Crusoe Running the same multimedia application. As published by Transmeta [ 1/28/

21 VLIW Architectures Large degree of parallelism o many computational units, (deeply) pipelined Simple hardware architecture o explicit parallelism (parallel instruction set) o parallelization is done offline (compiler) 1/28/

22 Transmeta is a typical VLIW Architecture 128-bit instructions (bundles): o 4 operations per instruction o 2 combinations of instructions allowed Register files o 64 integer, 32 floating point Some interesting features o 6 stage pipeline (2x fetch, decode, register read, execute, write) o X86 ISA execution using software techniques Skip the binary compatibility problem!! Interpretation and just-in-time binary translation o Speculation support 1/28/

23 Transmeta 1/28/

24 Outline General Remarks Power and Energy Basic Techniques o Parallelism o VLIW (parallelism and reduced overhead) o Dynamic Voltage Scaling o Dynamic Power Management 1/28/

25 Spatial vs. Dynamic Voltage Management 1/28/

26 Potential for Energy Optimization: DVS Saving energy for a given task: o Reduce the supply voltage V dd o Reduce switching activity α o Reduce the load capacitance C L o Reduce the number of cycles #cycles 1/28/

27 Example: INTEL Xscale OS should schedule distribution of the energy budget. 1/28/

28 DVS Example: a) Complete Task ASAP Task that need to execute 10² cycles within 25 seconds. V dd [V] Energy per cycle [nj] f max [MHz] Cycle time [ns] [V²] 5² 4² 10⁹ MHz deadline 9 E a [ J ] 9 2.5² t [s] 1/28/

29 DVS Example: b) Two Voltages Task that need to execute 10² cycles within 25 seconds. V dd [V] Energy per cycle [nj] f max [MHz] Cycle time [ns] [V²] 5² 4² 2.5² 750M MHz + 250M deadline E b [ J ] t [s] 1/28/

30 DVS Example: c) Optimal Voltage Task that need to execute 10² cycles within 25 seconds. V dd [V] Energy per cycle [nj] f max [MHz] Cycle time [ns] [V²] 5² 4² 10⁹ MHz deadline 9 E b [ J ] 9 2.5² t [s] 1/28/

31 Outline General Remarks Power and Energy Basic Techniques o Parallelism o VLIW (parallelism and reduced overhead) o Dynamic Voltage Scaling o Dynamic Power Management 1/28/

32 Dynamic Power V.S. Static Power 1/28/

33 1/28/

34 Dynamic Power Management (DPM) 1/28/

35 Reduce Power According to Workload 1/28/

36 Reduce Static Power Example Assumption o Given arrival curve, buffer size and deadline requirement, power parameters Problem statement o To determine the on/off periods such that energy consumption is minimized no deadline violation and buffer overflow Details see the HuangDPMOffline2009 paper 1/28/

37 Basic Idea: Use RTC to Compute Bounds is the service demand to avoid deadline violation is the service demand to avoid buffer overflow 1/28/

38 Basic Idea: Choose the Bound of Min Energy Derive a periodic on/off curve which energy consumption is minimized 1/28/

39 Bounding Delay Approximation From two parameters to only T off 1/28/

Embedded Systems. 9. Low Power Design

Embedded Systems. 9. Low Power Design Embedded Systems 9. Low Power Design Lothar Thiele 9-1 Contents of Course 1. Embedded Systems Introduction 2. Software Introduction 7. System Components 10. Models 3. Real-Time Models 4. Periodic/Aperiodic

More information

Basics of Energy & Power Dissipation

Basics of Energy & Power Dissipation Basics of Energy & Power Dissipation ecture notes S. Yalamanchili, S. Mukhopadhyay. A. Chowdhary Basic Concepts Dynamic power Static power Time, Energy, Power Tradeoffs Activity model for power estimation

More information

VLIW Processors. VLIW Processors

VLIW Processors. VLIW Processors 1 VLIW Processors VLIW ( very long instruction word ) processors instructions are scheduled by the compiler a fixed number of operations are formatted as one big instruction (called a bundle) usually LIW

More information

Silicon Memories. Why store things in silicon? It s fast!!! Compatible with logic devices (mostly) The main goal is to be cheap

Silicon Memories. Why store things in silicon? It s fast!!! Compatible with logic devices (mostly) The main goal is to be cheap Silicon Memories Why store things in silicon? It s fast!!! Compatible with logic devices (mostly) The main goal is to be cheap Dense -- The smaller the bits, the less area you need, and the more bits you

More information

Analysis of Thermal Monitor features of the Intel Pentium M Processor

Analysis of Thermal Monitor features of the Intel Pentium M Processor Analysis of Thermal Monitor features of the Intel Pentium M Processor Efi Rotem, Alon Naveh, Micha Moffie and Avi Mendelson {efraim.rotem, alon.naveh, avi.mendelson} @intel.com Abstract General purpose

More information

Pipelining and Exceptions

Pipelining and Exceptions Pipelining and Exceptions Exceptions represent another form of control dependence. Therefore, they create a potential branch hazard Exceptions must be recognized early enough in the pipeline that subsequent

More information

CMOS Power Consumption

CMOS Power Consumption CMOS Power Consumption Lecture 13 18-322 Fall 2003 Textbook: [Sections 5.5 5.6 6.2 (p. 257-263) 11.7.1 ] Overview Low-power design Motivation Sources of power dissipation in CMOS Power modeling Optimization

More information

Outline. Power and Energy Dynamic Power Static Power. 4th Ed.

Outline. Power and Energy Dynamic Power Static Power. 4th Ed. Lecture 7: Power Outline Power and Energy Dynamic Power Static Power 2 Power and Energy Power is drawn from a voltage source attached to the V DD pin(s) of a chip. Instantaneous Power: Energy: Average

More information

Embedded Systems FS 2016

Embedded Systems FS 2016 Institut für Technische Informatik und Kommunikationsnetze rof. L. Thiele Embedded Systems FS 6 Solution to Exercises 5: Low ower Design Discussion Date:.5.6 Use the formulae for power consumption and

More information

Today s lecture is all about the System Unit, the Motherboard, and the Central Processing Unit, Oh My!

Today s lecture is all about the System Unit, the Motherboard, and the Central Processing Unit, Oh My! Today s lecture is all about the System Unit, the Motherboard, and the Central Processing Unit, Oh My! Or what s happening inside the computer? Computer Architecture CPU Input Memory a.k.a. RAM Output

More information

ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-12: ARM

ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-12: ARM ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-12: ARM 1 The ARM architecture processors popular in Mobile phone systems 2 ARM Features ARM has 32-bit architecture but supports 16 bit

More information

Multicore and Parallel Processing

Multicore and Parallel Processing Multicore and Parallel Processing Hakim Weatherspoon CS 3410, Spring 2012 Computer Science Cornell University P & H Chapter 4.10 11, 7.1 6 Administrivia FlameWar Games Night Next Friday, April 27 th 5pm

More information

Pipelining Review and Its Limitations

Pipelining Review and Its Limitations Pipelining Review and Its Limitations Yuri Baida yuri.baida@gmail.com yuriy.v.baida@intel.com October 16, 2010 Moscow Institute of Physics and Technology Agenda Review Instruction set architecture Basic

More information

CD4029BC Presettable Binary/Decade Up/Down Counter

CD4029BC Presettable Binary/Decade Up/Down Counter Presettable Binary/Decade Up/Down Counter General Description The CD4029BC is a presettable up/down counter which counts in either binary or decade mode depending on the voltage level applied at binary/decade

More information

A Taxonomy and Survey of Energy-Efficient Data Centers and Cloud Computing Systems

A Taxonomy and Survey of Energy-Efficient Data Centers and Cloud Computing Systems A Taxonomy and Survey of Energy-Efficient Data Centers and Cloud Computing Systems Anton Beloglazov, Rajkumar Buyya, Young Choon Lee, and Albert Zomaya Present by Leping Wang 1/25/2012 Outline Background

More information

CD4029BC Presettable Binary/Decade Up/Down Counter

CD4029BC Presettable Binary/Decade Up/Down Counter CD4029BC Presettable Binary/Decade Up/Down Counter General Description The CD4029BC is a presettable up/down counter which counts in either binary or decade mode depending on the voltage level applied

More information

Instruction Level Parallelism Part I - Introduction

Instruction Level Parallelism Part I - Introduction Course on: Advanced Computer Architectures Instruction Level Parallelism Part I - Introduction Prof. Cristina Silvano Politecnico di Milano email: cristina.silvano@polimi.it 1 Outline of Part I Introduction

More information

Computer Architecture TDTS10

Computer Architecture TDTS10 why parallelism? Performance gain from increasing clock frequency is no longer an option. Outline Computer Architecture TDTS10 Superscalar Processors Very Long Instruction Word Processors Parallel computers

More information

Expanding the Synopsys PrimeTime Solution with Power Analysis

Expanding the Synopsys PrimeTime Solution with Power Analysis Expanding the Synopsys PrimeTime Solution with Analysis Gordon Yip, Product Marketing Manager, Synopsys, Inc. June 2006 Introduction Design closure in today s advanced designs requires a delicate balance

More information

Digital Design Chapter 1 Introduction and Methodology 17 February 2010

Digital Design Chapter 1 Introduction and Methodology 17 February 2010 Digital Chapter Introduction and Methodology 7 February 200 Digital : An Embedded Systems Approach Using Chapter Introduction and Methodology Digital Digital: circuits that use two voltage levels to represent

More information

Power-aware Computing Systems

Power-aware Computing Systems Power-aware Computing Systems Dagstuhl Seminar 05141 April 3rd to April 8th 2005 Luca Benini 1, Uli Kremer 2, Christian W. Probst 3, and Peter Schelkens 4 1 Universita di Bologna, DEIS Viale Risorgimento

More information

9 Memory Devices & Chip Area

9 Memory Devices & Chip Area 9 Memory Devices & Chip Area 18-548/15-548 Memory System Architecture Philip Koopman September 30, 1998 Required Reading: Understanding SRAM (App. Note) What s All This Flash Stuff? (App. Note) Assignments

More information

Temperature measurement in the Intel Core TM Duo Processor

Temperature measurement in the Intel Core TM Duo Processor Temperature measurement in the Intel Core TM Duo Processor Efraim Rotem Mobile Platform Group, Intel corporation Jim Hermerding Mobile platform Group, Intel corporation Cohen Aviad - Microprocessor Technology

More information

1. Memory technology & Hierarchy

1. Memory technology & Hierarchy 1. Memory technology & Hierarchy RAM types Advances in Computer Architecture Andy D. Pimentel Memory wall Memory wall = divergence between CPU and RAM speed We can increase bandwidth by introducing concurrency

More information

Low Power AMD Athlon 64 and AMD Opteron Processors

Low Power AMD Athlon 64 and AMD Opteron Processors Low Power AMD Athlon 64 and AMD Opteron Processors Hot Chips 2004 Presenter: Marius Evers Block Diagram of AMD Athlon 64 and AMD Opteron Based on AMD s 8 th generation architecture AMD Athlon 64 and AMD

More information

Microprocessors Fan Speed Control for Dynamic Thermal Management

Microprocessors Fan Speed Control for Dynamic Thermal Management Microprocessors Fan Speed Control for Dynamic Thermal Management DIARY R. SULEIMAN HILMI FADHIL AMIN NURADIN TAHA HUSEIN Electrical Engineering College Salahaddin University Erbil Zanco St., 25Mant.Q,

More information

CHAPTER 4 MARIE: An Introduction to a Simple Computer

CHAPTER 4 MARIE: An Introduction to a Simple Computer CHAPTER 4 MARIE: An Introduction to a Simple Computer 4.1 Introduction 145 4.1.1 CPU Basics and Organization 145 4.1.2 The Bus 147 4.1.3 Clocks 151 4.1.4 The Input/Output Subsystem 153 4.1.5 Memory Organization

More information

Photonic Networks for Data Centres and High Performance Computing

Photonic Networks for Data Centres and High Performance Computing Photonic Networks for Data Centres and High Performance Computing Philip Watts Department of Electronic Engineering, UCL Yury Audzevich, Nick Barrow-Williams, Robert Mullins, Simon Moore, Andrew Moore

More information

CD4029BM CD4029BC Presettable Binary Decade Up Down Counter

CD4029BM CD4029BC Presettable Binary Decade Up Down Counter CD4029BM CD4029BC Presettable Binary Decade Up Down Counter General Description The CD4029BM CD4029BC is a presettable up down counter which counts in either binary or decade mode depending on the voltage

More information

CD4027BC Dual J-K Master/Slave Flip-Flop with Set and Reset

CD4027BC Dual J-K Master/Slave Flip-Flop with Set and Reset October 1987 Revised March 2002 CD4027BC Dual J-K Master/Slave Flip-Flop with Set and Reset General Description The CD4027BC dual J-K flip-flops are monolithic complementary MOS (CMOS) integrated circuits

More information

TDTS 08 Advanced Computer Architecture

TDTS 08 Advanced Computer Architecture TDTS 08 Advanced Computer Architecture [Datorarkitektur] www.ida.liu.se/~tdts08 Zebo Peng Embedded Systems Laboratory (ESLAB) Dept. of Computer and Information Science (IDA) Linköping University Contact

More information

DESIGN CHALLENGES OF TECHNOLOGY SCALING

DESIGN CHALLENGES OF TECHNOLOGY SCALING DESIGN CHALLENGES OF TECHNOLOGY SCALING IS PROCESS TECHNOLOGY MEETING THE GOALS PREDICTED BY SCALING THEORY? AN ANALYSIS OF MICROPROCESSOR PERFORMANCE, TRANSISTOR DENSITY, AND POWER TRENDS THROUGH SUCCESSIVE

More information

Low-Voltage Switched-OpAmp Circuits. Term Paper

Low-Voltage Switched-OpAmp Circuits. Term Paper University of Toronto Department of Electrical and Computer Engineering Low-Voltage Switched-OpAmp Circuits Analog Circuit Design I ECE1352F Term Paper University of Toronto Electronics Group Toronto,

More information

Solution: start more than one instruction in the same clock cycle CPI < 1 (or IPC > 1, Instructions per Cycle) Two approaches:

Solution: start more than one instruction in the same clock cycle CPI < 1 (or IPC > 1, Instructions per Cycle) Two approaches: Multiple-Issue Processors Pipelining can achieve CPI close to 1 Mechanisms for handling hazards Static or dynamic scheduling Static or dynamic branch handling Increase in transistor counts (Moore s Law):

More information

MEMORY BASICS Dr. Fethullah Karabiber

MEMORY BASICS Dr. Fethullah Karabiber 0113611 COMPUTER HARDWARE MEMORY BASICS Dr. Fethullah Karabiber Overview Memory definitions Random Access Memory (RAM) Static RAM (SRAM) integrated circuits Cells and slices Cell arrays and coincident

More information

Whitepaper. Variable SMP A Multi-Core CPU Architecture for Low Power and High Performance

Whitepaper. Variable SMP A Multi-Core CPU Architecture for Low Power and High Performance Whitepaper Variable SMP A Multi-Core CPU Architecture for Low Power and High Performance 1 Table of Contents... 1 Introduction... 3 Optimized for Key Mobile Use Cases... 3 Silicon Process and its Impact

More information

Testing Low Power Designs with Power-Aware Test Manage Manufacturing Test Power Issues with DFTMAX and TetraMAX

Testing Low Power Designs with Power-Aware Test Manage Manufacturing Test Power Issues with DFTMAX and TetraMAX White Paper Testing Low Power Designs with Power-Aware Test Manage Manufacturing Test Power Issues with DFTMAX and TetraMAX April 2010 Cy Hay Product Manager, Synopsys Introduction The most important trend

More information

Digital Logic Design

Digital Logic Design Digital Logic Design: An Embedded Systems Approach Using VHDL Chapter 1 Introduction and Methodology Portions of this work are from the book, Digital Logic Design: An Embedded Systems Approach Using VHDL,

More information

Dynamic Combinational Circuits

Dynamic Combinational Circuits Dynamic Combinational Circuits Dynamic circuits Charge sharing, charge redistribution Domino logic np-cmos (zipper CMOS) James Morizio 1 Dynamic Logic Dynamic gates use a clocked pmos pullup Two modes:

More information

CD4034BM CD4034BC 8-Stage TRI-STATE Bidirectional Parallel Serial Input Output Bus Register

CD4034BM CD4034BC 8-Stage TRI-STATE Bidirectional Parallel Serial Input Output Bus Register February 1988 CD4034BM CD4034BC 8-Stage TRI-STATE Bidirectional Parallel Serial Input Output Bus Register General Description The CD4034BM CD4034BC is an 8-bit CMOS static shift register with two parallel

More information

Low Power Digital Design using Asynchronous Logic

Low Power Digital Design using Asynchronous Logic San Jose State University SJSU ScholarWorks Master's Theses Master's Theses and Graduate Research 2011 Low Power Digital Design using Asynchronous Logic Sathish Vimalraj Antony Jayasekar San Jose State

More information

Advanced Microprocessors RISC & DSP

Advanced Microprocessors RISC & DSP Advanced Microprocessors RISC & DSP RISC & DSP :: Slide 1 of 23 RISC Processors RISC stands for Reduced Instruction Set Computer Compared to CISC Simpler Faster RISC & DSP :: Slide 2 of 23 Why RISC? Complex

More information

BiCMOS Logic Gates. University of Connecticut 224

BiCMOS Logic Gates. University of Connecticut 224 BiCMOS Logic Gates University of Connecticut 224 BiCMOS - Best of Both Worlds? CMOS circuitry exhibits very low power dissipation, but Bipolar logic achieves higher speed and current drive capability.

More information

CD4001BC/CD4011BC Quad 2-Input NOR Buffered B Series Gate Quad 2-Input NAND Buffered B Series Gate

CD4001BC/CD4011BC Quad 2-Input NOR Buffered B Series Gate Quad 2-Input NAND Buffered B Series Gate CD4001BC/CD4011BC Quad 2-Input NOR Buffered B Series Gate Quad 2-Input NAND Buffered B Series Gate General Description The CD4001BC and CD4011BC quad gates are monolithic complementary MOS (CMOS) integrated

More information

CD40193BC Synchronous 4-Bit Up/Down Binary Counter

CD40193BC Synchronous 4-Bit Up/Down Binary Counter Synchronous 4-Bit Up/Down Binary Counter General Description The CD40193BC up/down counter is monolithic complementary MOS (CMOS) integrated circuits. The CD40193BC is a binary counter. Counting up and

More information

74VHCT574A Octal D-Type Flip-Flop with 3-STATE Outputs

74VHCT574A Octal D-Type Flip-Flop with 3-STATE Outputs 74VHCT574A Octal D-Type Flip-Flop with 3-STATE Outputs General Description The VHCT574A is an advanced high speed CMOS octal flip-flop with 3-STATE output fabricated with silicon gate CMOS technology.

More information

COMP/ELEC 525 Advanced Microprocessor Architecture. Goals

COMP/ELEC 525 Advanced Microprocessor Architecture. Goals COMP/ELEC 525 Advanced Microprocessor Architecture Prof. Scott Rixner Duncan Hall 3028 rixner@rice.edu January 9, 2007 Goals 4 Introduction to research topics in processor design 4 Solid understanding

More information

CISC, RISC, and DSP Microprocessors

CISC, RISC, and DSP Microprocessors CISC, RISC, and DSP Microprocessors Douglas L. Jones ECE 497 Spring 2000 4/6/00 CISC, RISC, and DSP D.L. Jones 1 Outline Microprocessors circa 1984 RISC vs. CISC Microprocessors circa 1999 Perspective:

More information

Embedded Systems Lecture 15: HW & SW Optimisations. Björn Franke University of Edinburgh

Embedded Systems Lecture 15: HW & SW Optimisations. Björn Franke University of Edinburgh Embedded Systems Lecture 15: HW & SW Optimisations Björn Franke University of Edinburgh Overview SW Optimisations Floating-Point to Fixed-Point Conversion HW Optimisations Application-Specific Instruction

More information

Sample Final Exam FinalDay, FinalMonth, FinalYear ELEC4708: Advanced Digital Electronics Department of Electronics, Carleton University

Sample Final Exam FinalDay, FinalMonth, FinalYear ELEC4708: Advanced Digital Electronics Department of Electronics, Carleton University 0 0 Sample Final Exam FinalDay, FinalMonth, FinalYear ELEC4708: Advanced Digital Electronics Department of Electronics, Carleton University Instructor: Maitham Shams Exam Duration: 3 hour Booklets: None

More information

CPU Performance. Lecture 8 CAP 3103 06-11-2014

CPU Performance. Lecture 8 CAP 3103 06-11-2014 CPU Performance Lecture 8 CAP 3103 06-11-2014 Defining Performance Which airplane has the best performance? 1.6 Performance Boeing 777 Boeing 777 Boeing 747 BAC/Sud Concorde Douglas DC-8-50 Boeing 747

More information

EVALUATING POWER MANAGEMENT CAPABILITIES OF LOW-POWER CLOUD PLATFORMS. Jens Smeds

EVALUATING POWER MANAGEMENT CAPABILITIES OF LOW-POWER CLOUD PLATFORMS. Jens Smeds EVALUATING POWER MANAGEMENT CAPABILITIES OF LOW-POWER CLOUD PLATFORMS Jens Smeds Master of Science Thesis Supervisor: Prof. Johan Lilius Advisor: Dr. Sébastien Lafond Embedded Systems Laboratory Department

More information

74HC193; 74HCT General description. Presettable synchronous 4-bit binary up/down counter. Product data sheet

74HC193; 74HCT General description. Presettable synchronous 4-bit binary up/down counter. Product data sheet Product data sheet 1. General description The 74HC193 and 74HCT193 are high-speed Si-gate CMOS devices and are pin compatible with Low power Schottky TTL (LSTTL). They are specified in compliance with

More information

Pass-Transistor Logic. Topics. NMOS-Only Logic. Pass-Transistor Logic. Resistance of Transmission Gate. Pass-Transistor Logic.

Pass-Transistor Logic. Topics. NMOS-Only Logic. Pass-Transistor Logic. Resistance of Transmission Gate. Pass-Transistor Logic. Topics Transmission Gate Pass-transistor Logic 3 March 2009 1 3 March 2009 2 NMOS-Only Logic Example: AND Gate 3 March 2009 3 3 March 2009 4 Resistance of Transmission Gate XOR 3 March 2009 5 3 March 2009

More information

CD4008BM CD4008BC 4-Bit Full Adder

CD4008BM CD4008BC 4-Bit Full Adder CD4008BM CD4008BC 4-Bit Full Adder General Description The CD4008B types consist of four full-adder stages with fast look-ahead carry provision from stage to stage Circuitry is included to provide a fast

More information

Computer Architecture

Computer Architecture Wider instruction pipelines 2016. május 13. Budapest Gábor Horváth associate professor BUTE Dept. Of Networked Systems and Services ghorvath@hit.bme.hu How to make the CPU faster Option 1: Make the pipeline

More information

CD40192BC CD40193BC Synchronous 4-Bit Up/Down Decade Counter Synchronous 4-Bit Up/Down Binary Counter

CD40192BC CD40193BC Synchronous 4-Bit Up/Down Decade Counter Synchronous 4-Bit Up/Down Binary Counter Synchronous 4-Bit Up/Down Decade Counter Synchronous 4-Bit Up/Down Binary Counter General Description The CD40192BC and CD40193BC up/down counters are monolithic complementary MOS (CMOS) integrated circuits.

More information

Features Y Typical propagation delay. Count up to Q 28 ns. Y Typical operating frequency 27 MHz. Y Wide power supply range 2 6V

Features Y Typical propagation delay. Count up to Q 28 ns. Y Typical operating frequency 27 MHz. Y Wide power supply range 2 6V MM54HC192 MM74HC192 Synchronous Decade Up Down Counters MM54HC193 MM74HC193 Synchronous Binary Up Down Counters General Description These high speed synchronous counters utilize advanced silicon-gate CMOS

More information

INTEGRATED CIRCUITS. PCK2002PL 533 MHz PCI-X clock buffer. Product data Supersedes data of 2002 Mar Oct 10

INTEGRATED CIRCUITS. PCK2002PL 533 MHz PCI-X clock buffer. Product data Supersedes data of 2002 Mar Oct 10 INTEGRATED CIRCUITS Supersedes data of 2002 Mar 15 2002 Oct 10 FEATURES General purpose and PCI-X 1:4 clock buffer 8-pin TSSOP 3.1 4.4 mm package Same form, fit, and function as CDCV304 See PCK2001P for

More information

Real-Time Operating Systems for ehealth Wearable Devices Mauro Marinoni, Gianluca Franchino and Giorgio Buttazzo

Real-Time Operating Systems for ehealth Wearable Devices Mauro Marinoni, Gianluca Franchino and Giorgio Buttazzo Real-Time Operating Systems for ehealth Wearable Devices Mauro Marinoni, Gianluca Franchino and Giorgio Buttazzo ReTiS Lab, TeCIP Institute Scuola superiore Sant Anna - Pisa 1 Outline Embedded systems

More information

TPN4R712MD TPN4R712MD. 1. Applications. 2. Features. 3. Packaging and Internal Circuit. 2014-12 2015-04-21 Rev.4.0. Silicon P-Channel MOS (U-MOS )

TPN4R712MD TPN4R712MD. 1. Applications. 2. Features. 3. Packaging and Internal Circuit. 2014-12 2015-04-21 Rev.4.0. Silicon P-Channel MOS (U-MOS ) MOSFETs Silicon P-Channel MOS (U-MOS) TPN4R712MD TPN4R712MD 1. Applications Lithium-Ion Secondary Batteries Power Management Switches 2. Features (1) Low drain-source on-resistance: R DS(ON) = 3.8 mω (typ.)

More information

MM74HC273 Octal D-Type Flip-Flops with Clear

MM74HC273 Octal D-Type Flip-Flops with Clear MM74HC273 Octal D-Type Flip-Flops with Clear General Description The MM74HC273 edge triggered flip-flops utilize advanced silicon-gate CMOS technology to implement D-type flipflops. They possess high noise

More information

Dual Core Architecture: The Itanium 2 (9000 series) Intel Processor

Dual Core Architecture: The Itanium 2 (9000 series) Intel Processor Dual Core Architecture: The Itanium 2 (9000 series) Intel Processor COE 305: Microcomputer System Design [071] Mohd Adnan Khan(246812) Noor Bilal Mohiuddin(237873) Faisal Arafsha(232083) DATE: 27 th November

More information

Digital Integrated Circuits EECS 312

Digital Integrated Circuits EECS 312 14 12 10 8 6 Fujitsu VP2000 IBM 3090S Pulsar 4 IBM 3090 IBM RY6 CDC Cyber 205 IBM 4381 IBM RY4 2 IBM 3081 Apache Fujitsu M380 IBM 370 Merced IBM 360 IBM 3033 Vacuum Pentium II(DSIP) 0 1950 1960 1970 1980

More information

CMOS, the Ideal Logic Family

CMOS, the Ideal Logic Family CMOS, the Ideal Logic Family INTRODUCTION Let s talk about the characteristics of an ideal logic family. It should dissipate no power, have zero propagation delay, controlled rise and fall times, and have

More information

MM74HC4046 CMOS Phase Lock Loop

MM74HC4046 CMOS Phase Lock Loop CMOS Phase Lock Loop General Description The MM74HC4046 is a low power phase lock loop utilizing advanced silicon-gate CMOS technology to obtain high frequency operation both in the phase comparator and

More information

SSM3K335R SSM3K335R. 1. Applications. 2. Features. 3. Packaging and Pin Configuration. 2012-07-19 Rev.3.0. Silicon N-Channel MOS (U-MOS -H)

SSM3K335R SSM3K335R. 1. Applications. 2. Features. 3. Packaging and Pin Configuration. 2012-07-19 Rev.3.0. Silicon N-Channel MOS (U-MOS -H) MOSFETs Silicon N-Channel MOS (U-MOS-H) SSM3K335R SSM3K335R 1. Applications Power Management Switches DC-DC Converters 2. Features (1) 4.5-V gate drive voltage. (2) Low drain-source on-resistance : R DS(ON)

More information

Lecture 11: Multi-Core and GPU. Multithreading. Integration of multiple processor cores on a single chip.

Lecture 11: Multi-Core and GPU. Multithreading. Integration of multiple processor cores on a single chip. Lecture 11: Multi-Core and GPU Multi-core computers Multithreading GPUs General Purpose GPUs Zebo Peng, IDA, LiTH 1 Multi-Core System Integration of multiple processor cores on a single chip. To provide

More information

NC7SV86 TinyLogic ULP-A 2-Input Exclusive-OR Gate

NC7SV86 TinyLogic ULP-A 2-Input Exclusive-OR Gate TinyLogic ULP-A 2-Input Exclusive-OR Gate General Description The NC7SV86 is a single 2-Input Exclusive-OR Gate from Fairchild s Ultra Low Power-A (ULP-A) Series of TinyLogic. ULP-A is ideal for applications

More information

Power Analysis of Link Level and End-to-end Protection in Networks on Chip

Power Analysis of Link Level and End-to-end Protection in Networks on Chip Power Analysis of Link Level and End-to-end Protection in Networks on Chip Axel Jantsch, Robert Lauter, Arseni Vitkowski Royal Institute of Technology, tockholm May 2005 ICA 2005 1 ICA 2005 2 Overview

More information

MM74HC174 Hex D-Type Flip-Flops with Clear

MM74HC174 Hex D-Type Flip-Flops with Clear Hex D-Type Flip-Flops with Clear General Description The MM74HC174 edge triggered flip-flops utilize advanced silicon-gate CMOS technology to implement D-type flipflops. They possess high noise immunity,

More information

Power Reduction Techniques in the SoC Clock Network. Clock Power

Power Reduction Techniques in the SoC Clock Network. Clock Power Power Reduction Techniques in the SoC Network Low Power Design for SoCs ASIC Tutorial SoC.1 Power Why clock power is important/large» Generally the signal with the highest frequency» Typically drives a

More information

CMOS Power Consumption and C pd Calculation

CMOS Power Consumption and C pd Calculation CMOS Power Consumption and C pd Calculation SCAA035B June 1997 1 IMPORTANT NOTICE Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or

More information

CD40174BC CD40175BC Hex D-Type Flip-Flop Quad D-Type Flip-Flop

CD40174BC CD40175BC Hex D-Type Flip-Flop Quad D-Type Flip-Flop Hex D-Type Flip-Flop Quad D-Type Flip-Flop General Description The CD40174BC consists of six positive-edge triggered D- type flip-flops; the true outputs from each flip-flop are externally available. The

More information

Lecture 2 : Advanced Processors Part 1: The Road Map of Intel Microprocessors: Current and Future Trends. Lessons Learned so far:

Lecture 2 : Advanced Processors Part 1: The Road Map of Intel Microprocessors: Current and Future Trends. Lessons Learned so far: Lessons Learned so far: Lecture 2 : Advanced Processors Part 1: The Road Map of Intel Microprocessors: Current and Future Trends Kai Hwang, August 31, 2007 Evolution of Instruction Set Architectures :

More information

Energy-Efficient Manycore Architectures for Big Data

Energy-Efficient Manycore Architectures for Big Data Energy-Efficient Manycore Architectures for Big Data Department of Computer Science University of Illinois at Urbana-Champaign http://iacoma.cs.uiuc.edu BPOE April 2015 Wanted: Energy-Efficient Computing

More information

Embedded System Hardware - Processing (Part II)

Embedded System Hardware - Processing (Part II) 12 Embedded System Hardware - Processing (Part II) Jian-Jia Chen (Slides are based on Peter Marwedel) Informatik 12 TU Dortmund Germany Springer, 2010 2014 年 11 月 11 日 These slides use Microsoft clip arts.

More information

Optimizing Power Consumption of Automotive Systems Requiring Periodic Wake Up

Optimizing Power Consumption of Automotive Systems Requiring Periodic Wake Up June, 2007 Optimizing Power Consumption of Automotive Systems Requiring Periodic Wake Up AA303 Carl Culshaw, Automotive Systems Engineer Armin Winter, Automotive Field Applications Engineer Agenda Introduction

More information

CD4027BM CD4027BC Dual J-K Master Slave Flip-Flop with Set and Reset

CD4027BM CD4027BC Dual J-K Master Slave Flip-Flop with Set and Reset CD4027BM CD4027BC Dual J-K Master Slave Flip-Flop with Set and Reset General Description These dual J-K flip-flops are monolithic complementary MOS (CMOS) integrated circuits constructed with N- and P-

More information

Chapter 10 Advanced CMOS Circuits

Chapter 10 Advanced CMOS Circuits Transmission Gates Chapter 10 Advanced CMOS Circuits NMOS Transmission Gate The active pull-up inverter circuit leads one to thinking about alternate uses of NMOS devices. Consider the circuit shown in

More information

on an system with an infinite number of processors. Calculate the speedup of

on an system with an infinite number of processors. Calculate the speedup of 1. Amdahl s law Three enhancements with the following speedups are proposed for a new architecture: Speedup1 = 30 Speedup2 = 20 Speedup3 = 10 Only one enhancement is usable at a time. a) If enhancements

More information

MM74C150 MM82C19 16-Line to 1-Line Multiplexer 3-STATE 16-Line to 1-Line Multiplexer

MM74C150 MM82C19 16-Line to 1-Line Multiplexer 3-STATE 16-Line to 1-Line Multiplexer MM74C150 MM82C19 16-Line to 1-Line Multiplexer 3-STATE 16-Line to 1-Line Multiplexer General Description The MM74C150 and MM82C19 multiplex 16 digital lines to 1 output. A 4-bit address code determines

More information

Noninverting Buffer / CMOS Logic Level Shifter

Noninverting Buffer / CMOS Logic Level Shifter Noninverting Buffer / CMOS Logic Level Shifter with LSTTL Compatible Inputs The is a single gate noninverting buffer fabricated with silicon gate CMOS technology. It achieves high speed operation similar

More information

Components of the System Unit

Components of the System Unit Components of the System Unit The System Unit A case that contains the electronic components of the computer used to process data. The System Unit The case of the system unit, or chassis, is made of metal

More information

Contents. Electric Double Layer Capacitors

Contents. Electric Double Layer Capacitors Electric Double Layer Capacitors A battery is a device which can temporarily store and discharge electric energy. The Electric Double Layer Capacitor (EDLC) can replace or supplement batteries due to its

More information

Intel s Revolutionary 22 nm Transistor Technology

Intel s Revolutionary 22 nm Transistor Technology Intel s Revolutionary 22 nm Transistor Technology Mark Bohr Intel Senior Fellow Kaizad Mistry 22 nm Program Manager May, 2011 1 Key Messages Intel is introducing revolutionary Tri-Gate transistors on its

More information

Multi-Core Processor Technology Maximizing CPU Performance in a Power-Constrained World

Multi-Core Processor Technology Maximizing CPU Performance in a Power-Constrained World Multi-Core Processor Technology Maximizing CPU Performance in a Power-Constrained World Paul Teich Business Strategy CPG Server/Workstation paul.teich@amd.com AMD The Issues Silicon designers can choose

More information

CMOS Inverter. Metal-Oxide Semiconductor Field Effect Transistor. N-Channel MOS (NMOS) Transistor. P-Channel MOS (PMOS) Transistor

CMOS Inverter. Metal-Oxide Semiconductor Field Effect Transistor. N-Channel MOS (NMOS) Transistor. P-Channel MOS (PMOS) Transistor Metal-Oxide Semiconductor Field Effect Transistor N-Channel MOS (NMOS) Transistor P-Channel MOS (PMOS) Transistor Complementary Metal-Oxide Semiconductor CMOS Inverter 1 CMOS Inverter : Low Input ON OFF

More information

ARM Microprocessor and ARM-Based Microcontrollers

ARM Microprocessor and ARM-Based Microcontrollers ARM Microprocessor and ARM-Based Microcontrollers Nguatem William 24th May 2006 A Microcontroller-Based Embedded System Roadmap 1 Introduction ARM ARM Basics 2 ARM Extensions Thumb Jazelle NEON & DSP Enhancement

More information

MM74HC14 Hex Inverting Schmitt Trigger

MM74HC14 Hex Inverting Schmitt Trigger MM74HC14 Hex Inverting Schmitt Trigger General Description The MM74HC14 utilizes advanced silicon-gate CMOS technology to achieve the low power dissipation and high noise immunity of standard CMOS, as

More information

What are embedded systems? Challenges in embedded computing system design. Design methodologies.

What are embedded systems? Challenges in embedded computing system design. Design methodologies. Embedded Systems Sandip Kundu 1 ECE 354 Lecture 1 The Big Picture What are embedded systems? Challenges in embedded computing system design. Design methodologies. Sophisticated functionality. Real-time

More information

Parallel Computing and Performance Evaluation -- Amdahl s Law

Parallel Computing and Performance Evaluation -- Amdahl s Law Parallel Computing and Performance Evaluation -- Amdahl s Law 9/29/205 Yinong Chen Chapter 7 Roadmap: Evaluation in Design Process Amdahl s Law 2 Multi-Core and HyperThreading 3 4 Application of Amdahl

More information

Semiconductor Memories

Semiconductor Memories Chapter 8 Semiconductor Memories (based on Kang, Leblebici. CMOS Digital Integrated Circuits 8.1 General concepts Data storage capacity available on a single integrated circuit grows exponentially being

More information

IA-64 & x86-64 ISA s

IA-64 & x86-64 ISA s IA-64 & x86-64 ISA s Competing specifications for the 64-bit microprocessor market 2 February 2005 /mtu/ee5970/f02/btd 1 Divergence approaches The x86 ISA has been the dominant ISA for many years INTEL,

More information

CD4094BC 8-Bit Shift Register/Latch with 3-STATE Outputs

CD4094BC 8-Bit Shift Register/Latch with 3-STATE Outputs 8-Bit Shift Register/Latch with 3-STATE Outputs General Description The CD4094BC consists of an 8-bit shift register and a 3-STATE 8-bit latch. Data is shifted serially through the shift register on the

More information

Alpha CPU and Clock Design Evolution

Alpha CPU and Clock Design Evolution Alpha CPU and Clock Design Evolution This lecture uses two papers that discuss the evolution of the Alpha CPU and clocking strategy over three CPU generations Gronowski, Paul E., et.al., High Performance

More information

MADR-009269-0001TR. Single Driver for GaAs FET or PIN Diode Switches and Attenuators Rev. V1. Functional Schematic. Features.

MADR-009269-0001TR. Single Driver for GaAs FET or PIN Diode Switches and Attenuators Rev. V1. Functional Schematic. Features. Features High Voltage CMOS Technology Complementary Outputs Positive Voltage Control CMOS device using TTL input levels Low Power Dissipation Low Cost Plastic SOIC-8 Package 100% Matte Tin Plating over

More information

MC74VHC1GT50. Noninverting Buffer / CMOS Logic Level Shifter. TTL Compatible Inputs

MC74VHC1GT50. Noninverting Buffer / CMOS Logic Level Shifter. TTL Compatible Inputs MC7CGT0 Noninverting Buffer / CMOS Logic Level Shifter TTL Compatible Inputs The MC7CGT0 is a single gate noninverting buffer fabricated with silicon gate CMOS technology. It achieves high speed operation

More information

EL7240, EL7241. Features. High Speed Coil Drivers. Applications. Pinouts. Ordering Information. Operating Voltage Range FN7284 OBSOLETE PRODUCT

EL7240, EL7241. Features. High Speed Coil Drivers. Applications. Pinouts. Ordering Information. Operating Voltage Range FN7284 OBSOLETE PRODUCT OBSOLETE PRODUCT NO RECOMMENDED REPLACEMENT contact our Technical Support Center at 1-888-INTERSIL or www.intersil.com/tsc Data Sheet January 1996, Rev A EL7240, EL7241 FN7284 High Speed Coil Drivers The

More information

Q. Consider a dynamic instruction execution (an execution trace, in other words) that consists of repeats of code in this pattern:

Q. Consider a dynamic instruction execution (an execution trace, in other words) that consists of repeats of code in this pattern: Pipelining HW Q. Can a MIPS SW instruction executing in a simple 5-stage pipelined implementation have a data dependency hazard of any type resulting in a nop bubble? If so, show an example; if not, prove

More information