Chapter 3 Process Variables. Mass and Volume

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Chapter 3 Process Variables. Mass and Volume"

Transcription

1 Chapter 3 Process Variables Process: to a chemical engineer, the set of tasks or operations that accomplish a chemical or material transformation to produce a product Feed or inputs: raw materials and energy that go into a process Product or output: the desired outcome (e.g. a material) a process is used to make Process units: hardware used by a process to accomplish specific tasks for example, a mixing tank, a heat exchanger, a reactor, an absorption column, etc. Process streams: the liquid, solid, or gas flows that move material from one process unit to another Process variables: the physical and chemical properties of process streams, such as temperature, pressure, and composition Mass and Volume Density: mass per unit volume of a material (e.g. lb m /ft 3 ); symbol ρ Specific Volume: volume per unit mass (e.g. ft 3 /lb m ), equals 1/ρ ; symbol Vˆ For solids and liquids, changes in temperature (T) and pressure (p) have a relatively small effect on density; for gases, changes in T and p cause large density changes. Solids and liquids, in this course, will be usually assumed to be incompressible, i.e. ρ = constant. Specific Gravity: ratio of density (ρ) of a substance to that (ρ ref ) of a reference substance. The reference substance is often water at 4 o C, whose density is g/cm 3 = lb m /ft 3. Symbol: SG. Note that SG is dimensionless. SG = ρ/ρ ref For clarity, the temperatures at which the density and reference density are evaluated need to be specified. Also, the reference substance must be given. *Example: o o The following data are available for a liquid: SG 1 = 0.95 o, SG2 = 0.94 o 4 4 The reference substance is water. What is the density of the liquid at 25 o C in AES units?

2 *Example One kg of Hg occupies m 3 at 0 o C. Given that the volume of a mass of mercury changes according to V(T) = V 0 ( T( o C) T 2 ( o C)) what is the density of mercury at 100 o C? V 0 is the volume of mercury at 0 o C. Composition Atomic weight: mass of an atom, measured on a scale on which carbon 12 ( 12 C) has a mass of exactly 12. If an atom has twice as much mass as 12 C, what is its atomic weight? Molecular weight: the sum of the atomic weights of all the atoms making up a molecule. Symbol M. *What is the molecular weight of C 6 H 6? (atomic weight of C = 12.01, atomic weight of H = 1.01). gram-mole (g-mole) of a substance: an amount of the substance whose mass, measured in grams, equals its molecular weight. What is the mass of 1 g-mole of C 6 H 6? kg-mole of a substance: an amount of the substance whose mass, measured in kg, equals its molecular weight. What is the mass of 1 kg-mole of C 6 H 6? lb-moles are similarly defined. Example: *How many molecules are in 1 g-mole of O 2? Take the molecular weight of O 2 to be Also, O 2 has 16 protons, 16 neutrons, 16 electrons, for a total mass of about kg. *How many lb-moles are in 150 g of O 2? (1 lb m = g) Mass fraction: the fraction of total mass occupied by a component i of a mixture or solution. Symbol: usually x i or ω i.

3 Given: 100 lb m of solution of NaCl in water. If the mass of NaCl in the solution is 5 lb m, what is its mass fraction? What is the mass percent of NaCl present? Mole (or molar) fraction: the fraction of total moles attributable to a component i of a mixture or solution. Symbol: usually y i or x i. Given: 200 g-moles of a solution that contains 20 g-moles of substance A and 180 g- moles of substance B. What are the mole fractions of A and B? What are the mole percents of A and B? NOTE: For both mass and mole fractions, we must have n x i i= 1 =1 where x i is the mass or mole fraction of species i and there are n species present in the mixture. Mass concentration: mass of a species per unit volume of solution (e.g. 0.3 lb m water/ft 3 of solution). Molar concentration: number of moles of a species per unit volume of solution (e.g. 0.2 kg-mole water/m 3 of solution). Molarity is molar concentration expressed in units of g- mole solute/l of solution. The symbol M is used to indicate units of molarity (e.g. 1 M solution of NaCl in water means 1 g-mole NaCl/1 L of solution). Parts per million (ppm) and parts per billion (ppb): these units are sometimes used when the concentration of a species is low. One needs to specify whether a molar or mass concentration is intended. Ppm of a species equals its mass or mole fraction times one million ( ); ppb of a species equals its mass or mole fraction times one billion ( ). Thus, if x i is mass or mole fraction of i, ppm i = x i 10 6 ppb i = x i 10 9 Example: A solution consists of pure benzene. What are the molar and mass ppm and ppb of benzene in the solution? 1 ng of KOH is present in 1 g of solution. What are the mass ppm and ppb of KOH? A gas mixture contains 1000 moles total, including 1 mole of HCl. What is the molar ppm of HCl? *Example A gas mixture possesses following mass fractions of species:

4 Mass fraction molecular weight (g/g-mol) O CO CO N What is the molar fraction of O 2? Note: the easiest way to start is by assuming a basis of calculation. Average molecular weight: The average molecular weight M of a solution is the mass of solution per mole of particles it contains. If we have a solution of n species that contains moles i of species i, the molecular weight of which is M i, then: M = mass of solution / (moles of particles in solution) = (M 1 moles 1 + M 2 moles 2 + M n moles n ) / (moles 1 + moles 2 + moles n ) Thus: M n = M i= 1 i n molesi = M i y i moles total i= 1 (1)

5 Flow Rates When materials are transported from one location to another, for example between two process units, the rate at which this transport takes place is quantified by their flow rates. A flow rate can be expressed in mass, molar, or volumetric units. As with all rates, time must be in the denominator. Mass flow rate: symbol m&. Example: 0.5 lb m air/s Molar flow rate: symbol n&. Example: 10 kg-moles toluene/h Volumetric flow rate: symbol V &. Example: 50 ft 3 water/min In future courses, you will also encounter fluxes of materials, which can also be in mass, molar, or volumetric units. Fluxes are flow rates per area. For example, a mass flux of 1 kg/m 2 s means that 1 kg of material passes through an area of 1 m 2 each second. *Given: Fluid flows through a pipe of radius 1 ft. The average volumetric flux is 10 ft 3 /ft 2 s (note that volumetric flux has units of speed). What is the volumetric flow rate of the fluid? Approximate measurement of liquid flow rates can be accomplished with a bucket and a timer - just measure how much liquid (expressed in units of mass, moles, or volume) flows into the bucket within a specified time period. Devices such as rotameters, orifice meters, turbine flow meters, ultrasonic flow meters, and others are available for more sophisticated measurement and control of liquid and gas flow rates. *Example A 0.50 molar solution of sulfuric acid (H 2 SO 4 ) in water flows into a reactor at a rate of 1.25 m 3 /min. The specific gravity of the solution is 1.03 (relative to water at 4 o C). What is the total mass flow rate? What is the mass concentration of H 2 SO 4 in the stream (in kg/m 3 )? (M H2SO4 = 98 g/mol)

6 What is the mass flow rate of H 2 SO 4 (in kg/s)? What is the mass fraction of H 2 SO 4? What is the molar flow rate of H 2 SO 4 (in g-mole/s)?

7 PRESSURE Pressure: pressure is, by definition, force per area. Common units of pressure are: N/m 2, dynes/cm 2, lb f /in 2. N/m 2 is otherwise known as a Pascal (Pa), and lb f /in 2 as psi ( pounds per square inch ). In a static fluid, no part of the fluid is in motion relative to any other part of the fluid. If the only body force acting on a static fluid is that of gravity, then the pressure P at a depth h below the free surface of the fluid is equal to P = P 0 + ρgh (2) where P 0 is the pressure at the free surface of the fluid (i.e. at a depth of 0 ), ρ is the density of the fluid, and g is gravitational acceleration. The pressure inside a static fluid is sometimes referred to as hydrostatic pressure. A "body force" is a force that acts throughout the volume (body) of an object (here, the object is the fluid). An example of a body force is gravity since gravity "pulls" simultaneously on all parts of a body (as opposed to, for example, a surface force which acts only on the surface of a body). How does pressure arise? If we think of a surface immersed in a fluid, the particles (molecules, atoms) of the fluid will push against and therefore exert a force on the surface. This force, divided by the area of the surface, is pressure. In the context of equation (2), the force is due to the weight of the particles plus the force exerted on the fluid particles at the free surface. With this hint, how do we derive equation 2?* Pressure is sometimes expressed as a head P h of a reference fluid. The head is the height h of the reference fluid that would be needed to exert the pressure, according to equation (2), if P 0 is taken as zero. Thus, P h = P/ρg (3) where ρ is the density of the reference fluid.

8 *Example: Express atmospheric pressure ( Pa) as a pressure head of water at 4 o C, in m. *Example 3.4-2: What is the pressure 30.0 m below the surface of a 4 o C lake, assuming the pressure at the free surface is 1 atm ( Pa)? A few more definitions: Absolute pressure: this is total pressure, that is, total force acting on a surface divided by the area of the surface. Gauge pressure: this is pressure relative to atmospheric pressure. Thus: if the absolute pressure is 1.1 atm, and atmospheric pressure is 1.1 atm, gauge pressure = if the absolute pressure is 2 atm, and atmospheric pressure is 0.9 atm, gauge pressure = if the absolute pressure is 0, and atmospheric pressure is 0.95 atm, gauge pressure = Gauge pressure is sometimes reported in units of psig, pounds force per square inch gauge. P gauge = P absolute P atmospheric (4) *Example: Derive an expression for the gauge pressure being measured by the manometer in the below figure at the point indicated.

9 Standard pressure: Chemical engineers often use various reference states for reporting material properties or for performing calculations. The so called standard pressure (often used in calculations involving gases Chapter 5) is, by convention, chosen to be 1 atm.

10 TEMPERATURE Temperature is a measure of the random kinetic motion of the particles (atoms, molecules) of a substance. Aside: how is this different from the kinetic energy of a moving train? Material properties are a function of the random kinetic motion of the material s molecules. For example, if you think of the molecules of a liquid, if their degree of agitation (center of mass motion, vibrations of the molecular bonds) increases, you might suspect that they will not pack as well as at lower degrees of agitation, because of the increased force and frequency of collisions between the molecules. Thus, you may forecast that the density of the liquid will decrease with an increase in temperature (note that the actual trend in density with temperature is more complex to anticipate than the above simple argument suggests for example, see ρ(t) of water at temperatures near 0 o C). Since we can measure physical properties of materials, such as density, we can use such measurements to also specify the temperature (e.g. as in a mercury thermometer). The state of random thermal agitation of matter (temperature) is expressed in terms of temperature scales which, in turn, are most often defined relative to occurrence of phase transitions of certain materials. For example, in the Celsius scale, the temperature T f at which water freezes, under a pressure of 1 atm, is assigned the value zero degrees Celsius (0 o C) while the temperature T b at which water boils, under a pressure of 1 atm, is assigned the value of 100 o C. On the Celsius scale there are thus 100 temperature intervals, or degrees, between T f and T b of water. Note that the Celsius scale is not an absolute temperature scale. An absolute temperature scale is one in which a temperature of zero degrees (0 o ) is assigned to the lowest possible temperature achievable in nature, so called absolute zero. The four common temperature scales, relative to the values of T f and T b of water, are: 1). Celsius scale: T f = 0 o C T b = 100 o C Absolute zero = o C 2). Fahrenheit scale: T f = 32 o F T b = 212 o F Absolute zero = o F 3). Kelvin scale: T f = o K T b = o K Absolute zero = 0 o K 4). Rankine scale: T f = o R T b = o R Absolute zero = 0 o R Note that degrees can be used to specify both temperature intervals as well as temperature magnitudes. For example, the temperature increased by 10 degrees Celsius

11 specifies a temperature interval. On the other hand, the temperature is 30 degrees Celsius specifies a temperature. See *Example in the text.

= 800 kg/m 3 (note that old units cancel out) 4.184 J 1000 g = 4184 J/kg o C

= 800 kg/m 3 (note that old units cancel out) 4.184 J 1000 g = 4184 J/kg o C Units and Dimensions Basic properties such as length, mass, time and temperature that can be measured are called dimensions. Any quantity that can be measured has a value and a unit associated with it.

More information

WEEK 1. Engineering Calculations Processes Process Variables

WEEK 1. Engineering Calculations Processes Process Variables WEEK 1 Engineering Calculations Processes Process Variables 2.1 Units and Dimensions Units and dimensions are important in science and engineering A measured quantity has a numerical value and a unit (ex:

More information

CHAPTER 2: MOLES, DENSITY, AND CONCENTRATION

CHAPTER 2: MOLES, DENSITY, AND CONCENTRATION CHAPTER 2: MOLES, DENSITY, AND CONCENTRATION 2.1 The Mole mole is a certain amount of material corresponding to a specified number of molecules, atoms, electrons, or any other specified types of particles.

More information

Chemistry 13: States of Matter

Chemistry 13: States of Matter Chemistry 13: States of Matter Name: Period: Date: Chemistry Content Standard: Gases and Their Properties The kinetic molecular theory describes the motion of atoms and molecules and explains the properties

More information

Gases. Gas: fluid, occupies all available volume Liquid: fluid, fixed volume Solid: fixed volume, fixed shape Others?

Gases. Gas: fluid, occupies all available volume Liquid: fluid, fixed volume Solid: fixed volume, fixed shape Others? CHAPTER 5: Gases Chemistry of Gases Pressure and Boyle s Law Temperature and Charles Law The Ideal Gas Law Chemical Calculations of Gases Mixtures of Gases Kinetic Theory of Gases Real Gases Gases The

More information

Gas Laws. The kinetic theory of matter states that particles which make up all types of matter are in constant motion.

Gas Laws. The kinetic theory of matter states that particles which make up all types of matter are in constant motion. Name Period Gas Laws Kinetic energy is the energy of motion of molecules. Gas state of matter made up of tiny particles (atoms or molecules). Each atom or molecule is very far from other atoms or molecules.

More information

Course 2 Mathematical Tools and Unit Conversion Used in Thermodynamic Problem Solving

Course 2 Mathematical Tools and Unit Conversion Used in Thermodynamic Problem Solving Course Mathematical Tools and Unit Conversion Used in Thermodynamic Problem Solving 1 Basic Algebra Computations 1st degree equations - =0 Collect numerical values on one side and unknown to the otherside

More information

Welcome to the World of Chemistry

Welcome to the World of Chemistry Welcome to the World of Chemistry The Language of Chemistry CHEMICAL ELEMENTS - pure substances that cannot be decomposed by ordinary means to other substances. Aluminum Bromine Sodium The Language of

More information

Fluid Mechanics. Fluid Statics [3-1] Dr. Mohammad N. Almasri. [3] Fall 2010 Fluid Mechanics Dr. Mohammad N. Almasri [3-1] Fluid Statics

Fluid Mechanics. Fluid Statics [3-1] Dr. Mohammad N. Almasri. [3] Fall 2010 Fluid Mechanics Dr. Mohammad N. Almasri [3-1] Fluid Statics 1 Fluid Mechanics Fluid Statics [3-1] Dr. Mohammad N. Almasri Fluid Pressure Fluid pressure is the normal force exerted by the fluid per unit area at some location within the fluid Fluid pressure has the

More information

Gases. States of Matter. Molecular Arrangement Solid Small Small Ordered Liquid Unity Unity Local Order Gas High Large Chaotic (random)

Gases. States of Matter. Molecular Arrangement Solid Small Small Ordered Liquid Unity Unity Local Order Gas High Large Chaotic (random) Gases States of Matter States of Matter Kinetic E (motion) Potential E(interaction) Distance Between (size) Molecular Arrangement Solid Small Small Ordered Liquid Unity Unity Local Order Gas High Large

More information

Density, Pressure and Change of State

Density, Pressure and Change of State Density, Pressure and Change of State Syllabus points: 5.1 use the following units: degrees Celsius ( o C), kelvin (K), joule (J), kilogram (kg), kilogram/metre 3 (kg/m 3 ), metre (m), metre 2 (m 2 ),

More information

= 1.038 atm. 760 mm Hg. = 0.989 atm. d. 767 torr = 767 mm Hg. = 1.01 atm

= 1.038 atm. 760 mm Hg. = 0.989 atm. d. 767 torr = 767 mm Hg. = 1.01 atm Chapter 13 Gases 1. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. Gases have volumes that depend on their conditions, and can be compressed or expanded by

More information

Temperature Measure of KE At the same temperature, heavier molecules have less speed Absolute Zero -273 o C 0 K

Temperature Measure of KE At the same temperature, heavier molecules have less speed Absolute Zero -273 o C 0 K Temperature Measure of KE At the same temperature, heavier molecules have less speed Absolute Zero -273 o C 0 K Kinetic Molecular Theory of Gases 1. Large number of atoms/molecules in random motion 2.

More information

Basics and Concepts. 2.1 Introduction Force, Weight, and Mass Density Specific Gravity Pressure...

Basics and Concepts. 2.1 Introduction Force, Weight, and Mass Density Specific Gravity Pressure... 2 Fluids Basics and Concepts TOPIC PAGE 2.1 Introduction... 22 2.2 Force, Weight, and Mass... 22 2.3 Density... 23 2.4 Specific Gravity... 23 2.5 Pressure... 23 2.6 Temperature... 25 2.7 Viscosity... 26

More information

CHAPTER 12. Gases and the Kinetic-Molecular Theory

CHAPTER 12. Gases and the Kinetic-Molecular Theory CHAPTER 12 Gases and the Kinetic-Molecular Theory 1 Gases vs. Liquids & Solids Gases Weak interactions between molecules Molecules move rapidly Fast diffusion rates Low densities Easy to compress Liquids

More information

THERMODYNAMICS. ENGR 103 Lecture 11 Chapter 6 Introduction Pressure Temperature Energy

THERMODYNAMICS. ENGR 103 Lecture 11 Chapter 6 Introduction Pressure Temperature Energy THERMODYNAMICS ENGR 103 Lecture 11 Chapter 6 Introduction Pressure Temperature Energy Day 11 Student Outcomes Students should be able to: Identify the 1 st and 2 nd laws of Thermodynamics Pressure pick

More information

1.1 Thermodynamics and Energy

1.1 Thermodynamics and Energy 1.1 Thermodynamics and Energy What is Thermodynamics? Essentially, thermodynamics can be defined as the study of energy. Granted, this is a pretty broad definition, which suits it well, because thermodynamics

More information

ESSAY. Write your answer in the space provided or on a separate sheet of paper.

ESSAY. Write your answer in the space provided or on a separate sheet of paper. Test 1 General Chemistry CH116 Summer, 2012 University of Massachusetts, Boston Name ESSAY. Write your answer in the space provided or on a separate sheet of paper. 1) Sodium hydride reacts with excess

More information

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. Assessment Chapter Test A Chapter: States of Matter In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. The kinetic-molecular

More information

TEMPERATURE AND MOLECULAR MOTION

TEMPERATURE AND MOLECULAR MOTION From http://www.physchem.co.za/heat/temperature.htm, http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/spht.html and http://www.efunda.com/formulae/heat_transfer/home/overview.cfm TEMPERATURE AND MOLECULAR

More information

7. 1.00 atm = 760 torr = 760 mm Hg = 101.325 kpa = 14.70 psi. = 0.446 atm. = 0.993 atm. = 107 kpa 760 torr 1 atm 760 mm Hg = 790.

7. 1.00 atm = 760 torr = 760 mm Hg = 101.325 kpa = 14.70 psi. = 0.446 atm. = 0.993 atm. = 107 kpa 760 torr 1 atm 760 mm Hg = 790. CHATER 3. The atmosphere is a homogeneous mixture (a solution) of gases.. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. have volumes that depend on their conditions,

More information

Chapter II Matter, Mass, Force, Weight, Density, Pressure, and Temperature

Chapter II Matter, Mass, Force, Weight, Density, Pressure, and Temperature Chapter II Matter, Mass, Force, Weight, Density, Pressure, and Temperature Matter Scientists for a long time suspected that all substances were composed of small particles which they called atoms. However,

More information

F321 MOLES. Example If 1 atom has a mass of 1.241 x 10-23 g 1 mole of atoms will have a mass of 1.241 x 10-23 g x 6.02 x 10 23 = 7.

F321 MOLES. Example If 1 atom has a mass of 1.241 x 10-23 g 1 mole of atoms will have a mass of 1.241 x 10-23 g x 6.02 x 10 23 = 7. Moles 1 MOLES The mole the standard unit of amount of a substance (mol) the number of particles in a mole is known as Avogadro s constant (N A ) Avogadro s constant has a value of 6.02 x 10 23 mol -1.

More information

13.1 The Nature of Gases. What is Kinetic Theory? Kinetic Theory and a Model for Gases. Chapter 13: States of Matter. Principles of Kinetic Theory

13.1 The Nature of Gases. What is Kinetic Theory? Kinetic Theory and a Model for Gases. Chapter 13: States of Matter. Principles of Kinetic Theory Chapter 13: States of Matter The Nature of Gases The Nature of Gases kinetic molecular theory (KMT), gas pressure (pascal, atmosphere, mm Hg), kinetic energy The Nature of Liquids vaporization, evaporation,

More information

Assignment 6 Solutions. Chapter 6, #6.4, 6.12, 6.32, 6.36, 6.43, 6.60, 6.70, 6.80, 6.88, 6.90, 6.100, 6.104,

Assignment 6 Solutions. Chapter 6, #6.4, 6.12, 6.32, 6.36, 6.43, 6.60, 6.70, 6.80, 6.88, 6.90, 6.100, 6.104, Assignment 6 Solutions Chapter 6, #6.4, 6.12, 6.32, 6.36, 6.43, 6.60, 6.70, 6.80, 6.88, 6.90, 6.100, 6.104, 6.108. 6.4. Collect and Organize When the temperature of the balloon Figure P6.3 increases, does

More information

Gases and Pressure SECTION 1. Main Ideas

Gases and Pressure SECTION 1. Main Ideas SECTION 1 Gases and Pressure Key Terms pressure millimeters of mercury partial pressure newton atmosphere of pressure Dalton s law of partial pressures barometer pascal In the chapter States of Matter,

More information

THE BIG IDEA: KINETIC THEORY. 1. Use the kinetic-molecular theory to account for the physical properties of states of matter. (13.

THE BIG IDEA: KINETIC THEORY. 1. Use the kinetic-molecular theory to account for the physical properties of states of matter. (13. HONORS CHEMISTRY - CHAPTER 13 STATES OF MATTER OBJECTIVES AND NOTES - V15 NAME: DATE: PAGE: THE BIG IDEA: KINETIC THEORY Essential Questions 1. What factors determine the physical state of a substance?

More information

Chapter 5 The Gaseous State

Chapter 5 The Gaseous State Chapter 5 The Gaseous State I) Pressure Pressure is the force exerted per unit area. A) Devices used to measure pressure 1) barometer used to measure the atmospheric pressure at seal level and 0 o C, P

More information

Basic Concepts of Thermodynamics

Basic Concepts of Thermodynamics Basic Concepts of Thermodynamics Every science has its own unique vocabulary associated with it. recise definition of basic concepts forms a sound foundation for development of a science and prevents possible

More information

Laboratory 11. Fluid Statics, Pressure, and Buoyant Forces

Laboratory 11. Fluid Statics, Pressure, and Buoyant Forces Laboratory 11 Fluid Statics, Pressure, and Buoyant Forces I. Introduction In this exercise we will investigate some properties of non-moving fluids and the forces they exert on objects immersed in them.

More information

Chapter 15 Temperature, Heat, and Expansion

Chapter 15 Temperature, Heat, and Expansion Chapter 15 Temperature, Heat, and Expansion Although the temperature of these sparks exceeds 2000ºC, the heat they impart when striking my skin is very small. Temperature and heat are different concepts.

More information

Why Study Fluids? Solids and How They Respond to Forces. Solids and How They Respond to Forces. Crystal lattice structure:

Why Study Fluids? Solids and How They Respond to Forces. Solids and How They Respond to Forces. Crystal lattice structure: States of Matter Gas In a gas, the molecules are far apart and the forces between them are very small Solid In a solid, the molecules are very close together, and the form of the solid depends on the details

More information

The Gas, Liquid, and Solid Phase

The Gas, Liquid, and Solid Phase The Gas, Liquid, and Solid Phase When are interparticle forces important? Ron Robertson Kinetic Theory A. Principles Matter is composed of particles in constant, random, motion Particles collide elastically

More information

1 of 6 12/3/2009 4:47 PM

1 of 6 12/3/2009 4:47 PM 1 of 6 12/3/2009 4:47 PM Chapter 16 Homework Due: 9:00am on Tuesday December 1 2009 Note: To understand how points are awarded read your instructor's Grading Policy. [Return to Standard Assignment View]

More information

General Properties of Gases. Properties of Gases. K is for Kelvin. C is for degrees Celsius. F is for degrees Fahrenheit PROPERTIES OF GASES GAS LAWS

General Properties of Gases. Properties of Gases. K is for Kelvin. C is for degrees Celsius. F is for degrees Fahrenheit PROPERTIES OF GASES GAS LAWS PROPERTIES OF GASES or GAS LAWS 1 General Properties of Gases There is a lot of empty space in a gas. Gases can be expanded infinitely. Gases fill containers uniformly and completely. Gases diffuse and

More information

A. Kinetic Molecular Theory (KMT) = the idea that particles of matter are always in motion and that this motion has consequences.

A. Kinetic Molecular Theory (KMT) = the idea that particles of matter are always in motion and that this motion has consequences. I. MOLECULES IN MOTION: A. Kinetic Molecular Theory (KMT) = the idea that particles of matter are always in motion and that this motion has consequences. 1) theory developed in the late 19 th century to

More information

Chapter 5. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Chapter 5. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Class: Date: Chapter 5 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What is the pressure of the sample of gas trapped in the open-tube mercury manometer

More information

EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor

EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor Purpose: In this experiment you will use the ideal gas law to calculate the molecular weight of a volatile liquid compound by measuring the mass,

More information

Fluids: Liquids & Gases

Fluids: Liquids & Gases Chapter 7: Fluids Fluids: Liquids & Gases Fluids are substances that are free to flow. Atoms and molecules are free to move. They take the shape of their containers. Cannot withstand or exert shearing

More information

CHEMISTRY GAS LAW S WORKSHEET

CHEMISTRY GAS LAW S WORKSHEET Boyle s Law Charles Law Guy-Lassac's Law Combined Gas Law For a given mass of gas at constant temperature, the volume of a gas varies inversely with pressure PV = k The volume of a fixed mass of gas is

More information

3-1 Copyright Richard M. Felder, Lisa G. Bullard, and Michael D. Dickey (2014)

3-1 Copyright Richard M. Felder, Lisa G. Bullard, and Michael D. Dickey (2014) EQUATIONS OF STATE FOR GASES Questions A gas enters a reactor at a rate of 255 SCMH. What does that mean? An orifice meter mounted in a process gas line indicates a flow rate of 24 ft 3 /min. The gas temperature

More information

The Gas Laws. Our Atmosphere. Pressure = Units of Pressure. Barometer. Chapter 10

The Gas Laws. Our Atmosphere. Pressure = Units of Pressure. Barometer. Chapter 10 Our Atmosphere The Gas Laws 99% N 2 and O 2 78% N 2 80 70 Nitrogen Chapter 10 21% O 2 1% CO 2 and the Noble Gases 60 50 40 Oxygen 30 20 10 0 Gas Carbon dioxide and Noble Gases Pressure Pressure = Force

More information

Consistency of units. Units of Common Physical Properties

Consistency of units. Units of Common Physical Properties Introduction to Chemical Engineering Processes/Units Sept. 5 th, 2012 Consistency of units Most values that you'll run across as an engineer will consist of a number and a unit. Some do not have a unit

More information

Gas Thermometer and Absolute Zero

Gas Thermometer and Absolute Zero Chapter 1 Gas Thermometer and Absolute Zero Name: Lab Partner: Section: 1.1 Purpose Construct a temperature scale and determine absolute zero temperature (the temperature at which molecular motion ceases).

More information

Applied Fluid Mechanics

Applied Fluid Mechanics Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

More information

1-1 Richard M. Felder, Lisa G. Bullard, and Michael D. Dickey (2014)

1-1 Richard M. Felder, Lisa G. Bullard, and Michael D. Dickey (2014) Air Conditioner Sizing Exercise On an uncomfortable summer day, the air is at 87 o F and 80% relative humidity. A laboratory air conditioner is to deliver 1000 ft 3 /min of air at 55 o F in order to maintain

More information

Gas - a substance that is characterized by widely separated molecules in rapid motion.

Gas - a substance that is characterized by widely separated molecules in rapid motion. Chapter 10 - Gases Gas - a substance that is characterized by widely separated molecules in rapid motion. Mixtures of gases are uniform. Gases will expand to fill containers (compare with solids and liquids

More information

AS1 MOLES. oxygen molecules have the formula O 2 the relative mass will be 2 x 16 = 32 so the molar mass will be 32g mol -1

AS1 MOLES. oxygen molecules have the formula O 2 the relative mass will be 2 x 16 = 32 so the molar mass will be 32g mol -1 Moles 1 MOLES The mole the standard unit of amount of a substance the number of particles in a mole is known as Avogadro s constant (L) Avogadro s constant has a value of 6.023 x 10 23 mol -1. Example

More information

CHEMISTRY. Matter and Change. Section 13.1 Section 13.2 Section 13.3. The Gas Laws The Ideal Gas Law Gas Stoichiometry

CHEMISTRY. Matter and Change. Section 13.1 Section 13.2 Section 13.3. The Gas Laws The Ideal Gas Law Gas Stoichiometry CHEMISTRY Matter and Change 13 Table Of Contents Chapter 13: Gases Section 13.1 Section 13.2 Section 13.3 The Gas Laws The Ideal Gas Law Gas Stoichiometry State the relationships among pressure, temperature,

More information

Chapter 17 Temperature, Thermal Expansion, and the Ideal Gas Law. Copyright 2009 Pearson Education, Inc.

Chapter 17 Temperature, Thermal Expansion, and the Ideal Gas Law. Copyright 2009 Pearson Education, Inc. Chapter 17 Temperature, Thermal Expansion, and the Ideal Gas Law Units of Chapter 17 Atomic Theory of Matter Temperature and Thermometers Thermal Equilibrium and the Zeroth Law of Thermodynamics Thermal

More information

Chapter 14 - Fluids. -Archimedes, On Floating Bodies. David J. Starling Penn State Hazleton PHYS 213. Chapter 14 - Fluids. Objectives (Ch 14)

Chapter 14 - Fluids. -Archimedes, On Floating Bodies. David J. Starling Penn State Hazleton PHYS 213. Chapter 14 - Fluids. Objectives (Ch 14) Any solid lighter than a fluid will, if placed in the fluid, be so far immersed that the weight of the solid will be equal to the weight of the fluid displaced. -Archimedes, On Floating Bodies David J.

More information

SOLUTION MANUAL ENGLISH UNIT PROBLEMS CHAPTER 2 SONNTAG BORGNAKKE VAN WYLEN. FUNDAMENTALS of. Thermodynamics. Sixth Edition

SOLUTION MANUAL ENGLISH UNIT PROBLEMS CHAPTER 2 SONNTAG BORGNAKKE VAN WYLEN. FUNDAMENTALS of. Thermodynamics. Sixth Edition SOLUTION MANUAL ENGLISH UNIT PROBLEMS CHAPTER 2 SONNTAG BORGNAKKE VAN WYLEN FUNDAMENTALS of Thermodynamics Sixth Edition CHAPTER 2 SUBSECTION PROB NO. Concept-Study Guide Problems 87-91 Properties and

More information

Gases and Kinetic-Molecular Theory: Chapter 12. Chapter Outline. Chapter Outline

Gases and Kinetic-Molecular Theory: Chapter 12. Chapter Outline. Chapter Outline Gases and Kinetic-Molecular heory: Chapter Chapter Outline Comparison of Solids, Liquids, and Gases Composition of the Atmosphere and Some Common Properties of Gases Pressure Boyle s Law: he Volume-Pressure

More information

PRESSURE Gas Pressure

PRESSURE Gas Pressure PRESSURE Gas Pressure 1 Gas molecules inside a volume (e.g. a balloon) are constantly moving around freely. They frequently collide with each other and with the surface of any enclosure. Figure 1: The

More information

Gas Properties and Balloons & Buoyancy SI M Homework Answer K ey

Gas Properties and Balloons & Buoyancy SI M Homework Answer K ey Gas Properties and Balloons & Buoyancy SI M Homework Answer K ey 1) In class, we have been discussing how gases behave and how we observe this behavior in our daily lives. In this homework assignment,

More information

Review - After School Matter Name: Review - After School Matter Tuesday, April 29, 2008

Review - After School Matter Name: Review - After School Matter Tuesday, April 29, 2008 Name: Review - After School Matter Tuesday, April 29, 2008 1. Figure 1 The graph represents the relationship between temperature and time as heat was added uniformly to a substance starting at a solid

More information

Test 5 Review questions. 1. As ice cools from 273 K to 263 K, the average kinetic energy of its molecules will

Test 5 Review questions. 1. As ice cools from 273 K to 263 K, the average kinetic energy of its molecules will Name: Thursday, December 13, 2007 Test 5 Review questions 1. As ice cools from 273 K to 263 K, the average kinetic energy of its molecules will 1. decrease 2. increase 3. remain the same 2. The graph below

More information

Lecture 9 Solving Material Balances Problems Involving Non-Reactive Processes

Lecture 9 Solving Material Balances Problems Involving Non-Reactive Processes CHE 31. INTRODUCTION TO CHEMICAL ENGINEERING CALCULATIONS Lecture 9 Solving Material Balances Problems Involving Non-Reactive Processes Component and Overall Material Balances Consider a steady-state distillation

More information

Grade 8 Science Vocabulary

Grade 8 Science Vocabulary Grade 8 Science Vocabulary The Florida Comprehensive Assessment Test Specifications for Science provides a glossary of vocabulary words identified by Florida educators as essential to assessing the Science

More information

CHEMISTRY 101 Hour Exam I. Adams/Le Section

CHEMISTRY 101 Hour Exam I. Adams/Le Section CHEMISTRY 101 Hour Exam I September 25, 2006 Adams/Le Name KEY Signature Section Iron rusts from disuse; stagnant water loses its purity and in cold weather becomes frozen; even so does inaction sap the

More information

PHYS-2010: General Physics I Course Lecture Notes Section XIII

PHYS-2010: General Physics I Course Lecture Notes Section XIII PHYS-2010: General Physics I Course Lecture Notes Section XIII Dr. Donald G. Luttermoser East Tennessee State University Edition 2.5 Abstract These class notes are designed for use of the instructor and

More information

Fluids flow conform to shape of container. Mass: mass density, Forces: Pressure Statics: Human body 50-75% water, live in a fluid (air)

Fluids flow conform to shape of container. Mass: mass density, Forces: Pressure Statics: Human body 50-75% water, live in a fluid (air) Chapter 11 - Fluids Fluids flow conform to shape of container liquids OR gas Mass: mass density, Forces: Pressure Statics: pressure, buoyant force Dynamics: motion speed, energy friction: viscosity Human

More information

Temperature and Heat

Temperature and Heat Temperature and Heat Foundation Physics Lecture 2.4 26 Jan 10 Temperature, Internal Energy and Heat What is temperature? What is heat? What is internal energy? Temperature Does a glass of water sitting

More information

Abbreviations Conversions Standard Conditions Boyle s Law

Abbreviations Conversions Standard Conditions Boyle s Law Gas Law Problems Abbreviations Conversions atm - atmosphere K = C + 273 mmhg - millimeters of mercury 1 cm 3 (cubic centimeter) = 1 ml (milliliter) torr - another name for mmhg 1 dm 3 (cubic decimeter)

More information

3.2 Units of Measurement > Chapter 3 Scientific Measurement. 3.2 Units of Measurement. 3.1 Using and Expressing Measurements

3.2 Units of Measurement > Chapter 3 Scientific Measurement. 3.2 Units of Measurement. 3.1 Using and Expressing Measurements Chapter 3 Scientific Measurement 3.1 Using and Expressing Measurements 3.2 Units of Measurement 3.3 Solving Conversion Problems 1 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

More information

Electromagnetic Radiation

Electromagnetic Radiation Forms of Energy There are many types of energy. Kinetic energy is the energy of motion. Potential energy is energy that results from position, such as the energy in water going over a dam. Electrical energy

More information

1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion

1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion Physical Science Period: Name: ANSWER KEY Date: Practice Test for Unit 3: Ch. 3, and some of 15 and 16: Kinetic Theory of Matter, States of matter, and and thermodynamics, and gas laws. 1. The Kinetic

More information

Gas particles move in straight line paths. As they collide, they create a force, pressure.

Gas particles move in straight line paths. As they collide, they create a force, pressure. #28 notes Unit 4: Gases Ch. Gases I. Pressure and Manometers Gas particles move in straight line paths. As they collide, they create a force, pressure. Pressure = Force / Area Standard Atmospheric Pressure

More information

Gases. Macroscopic Properties. Petrucci, Harwood and Herring: Chapter 6

Gases. Macroscopic Properties. Petrucci, Harwood and Herring: Chapter 6 Gases Petrucci, Harwood and Herring: Chapter 6 CHEM 1000A 3.0 Gases 1 We will be looking at Macroscopic and Microscopic properties: Macroscopic Properties of bulk gases Observable Pressure, volume, mass,

More information

General Physics (PHY 2130)

General Physics (PHY 2130) General Physics (PHY 2130) Lecture 30 Thermal physics Thermal expansion Gases. Absolute temperature Ideal Gas law Exam 3 review http://www.physics.wayne.edu/~apetrov/phy2130/ Lightning Review Last lecture:

More information

Chapter 4 The Properties of Gases

Chapter 4 The Properties of Gases Chapter 4 The Properties of Gases Significant Figure Convention At least one extra significant figure is displayed in all intermediate calculations. The final answer is expressed with the correct number

More information

Assignment 1 SOLUTIONS

Assignment 1 SOLUTIONS Assignment 1 SOLUTIONS 1. 18k Gold The overall density is the total mass divided by the total volume, so let s think about the volume fo 1 gram of 18k gold, which I ll call V 1g 18k. The volume 1 gm of

More information

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking INTRODUCTORY CHEMISTRY Concepts and Critical Thinking Sixth Edition by Charles H. Corwin Chapter 9 The Mole Concept by Christopher Hamaker 2011 Pearson Education, Inc. Chapter 9 1 Avogadro s Number Avogadro

More information

THE IDEAL GAS LAW AND KINETIC THEORY

THE IDEAL GAS LAW AND KINETIC THEORY Chapter 14 he Ideal Gas Law and Kinetic heory Chapter 14 HE IDEAL GAS LAW AND KINEIC HEORY REIEW Kinetic molecular theory involves the study of matter, particularly gases, as very small particles in constant

More information

CHAPTER : 1 SOME BASIC CONCEPTS OF CHEMISTRY. 1 mark questions

CHAPTER : 1 SOME BASIC CONCEPTS OF CHEMISTRY. 1 mark questions CHAPTER : 1 SOME BASIC CONCEPTS OF CHEMISTRY 1 mark questions 1. What is Chemistry? Ans: It is a Branch of science deals with the study of composition, properties and interaction of matter. 2. What are

More information

Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten. Chapter 10 Gases

Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten. Chapter 10 Gases Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 10 Gases A Gas Has neither a definite volume nor shape. Uniformly fills any container.

More information

Chapter 12 - Liquids and Solids

Chapter 12 - Liquids and Solids Chapter 12 - Liquids and Solids 12-1 Liquids I. Properties of Liquids and the Kinetic Molecular Theory A. Fluids 1. Substances that can flow and therefore take the shape of their container B. Relative

More information

Kinetic Molecular Theory. A theory is a collection of ideas that attempts to explain certain phenomena.

Kinetic Molecular Theory. A theory is a collection of ideas that attempts to explain certain phenomena. Kinetic Molecular Theory A theory is a collection of ideas that attempts to explain certain phenomena. A law is a statement of specific relationships or conditions in nature. After centuries of questioning

More information

Type: Double Date: Kinetic Energy of an Ideal Gas II. Homework: Read 14.3, Do Concept Q. # (15), Do Problems # (28, 29, 31, 37)

Type: Double Date: Kinetic Energy of an Ideal Gas II. Homework: Read 14.3, Do Concept Q. # (15), Do Problems # (28, 29, 31, 37) Type: Double Date: Objective: Kinetic Energy of an Ideal Gas I Kinetic Energy of an Ideal Gas II Homework: Read 14.3, Do Concept Q. # (15), Do Problems # (8, 9, 31, 37) AP Physics Mr. Mirro Kinetic Energy

More information

More Kinetic Theory of Gases

More Kinetic Theory of Gases More Kinetic Theory of Gases Physics 1425 Lecture 32 Michael Fowler, UVa Vapor Pressure and Humidity The H 2 O molecules in liquid water strongly attract each other, holding the liquid together. But these

More information

PHASE CHEMISTRY AND COLLIGATIVE PROPERTIES

PHASE CHEMISTRY AND COLLIGATIVE PROPERTIES PHASE CHEMISTRY AND COLLIGATIVE PROPERTIES Phase Diagrams Solutions Solution Concentrations Colligative Properties Brown et al., Chapter 10, 385 394, Chapter 11, 423-437 CHEM120 Lecture Series Two : 2011/01

More information

The concept of concentration exists to answer the question: How much of the stuff is there?

The concept of concentration exists to answer the question: How much of the stuff is there? Concentrations and Other Units of Measure (Nazaroff & Alvarez-Cohen, Section 1.C.1) The concept of concentration exists to answer the question: How much of the stuff is there? Definition: The concentration

More information

States of Matter CHAPTER 10 REVIEW SECTION 1. Name Date Class. Answer the following questions in the space provided.

States of Matter CHAPTER 10 REVIEW SECTION 1. Name Date Class. Answer the following questions in the space provided. CHAPTER 10 REVIEW States of Matter SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Identify whether the descriptions below describe an ideal gas or a real gas. ideal gas

More information

Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten. Chapter 10 Gases.

Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten. Chapter 10 Gases. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 10 The things we will cover in this chapter: How differ from solids and liquids Pressure,

More information

Physics Courseware Physics I Ideal Gases

Physics Courseware Physics I Ideal Gases Physics Courseware Physics I Ideal Gases Problem 1.- How much mass of helium is contained in a 0.0 L cylinder at a pressure of.0 atm and a temperature of.0 C? [The atomic mass of helium is 4 amu] PV (

More information

Final Exam Review Questions PHY Final Chapters

Final Exam Review Questions PHY Final Chapters Final Exam Review Questions PHY 2425 - Final Chapters Section: 17 1 Topic: Thermal Equilibrium and Temperature Type: Numerical 12 A temperature of 14ºF is equivalent to A) 10ºC B) 7.77ºC C) 25.5ºC D) 26.7ºC

More information

δy θ Pressure is used to indicate the normal force per unit area at a given point acting on a given plane.

δy θ Pressure is used to indicate the normal force per unit area at a given point acting on a given plane. 2 FLUID PRESSURES By definition, a fluid must deform continuously when a shear stress of any magnitude is applied. Therefore when a fluid is either at rest or moving in such a manner that there is no relative

More information

Force. Pressure = ; Area. Force = Mass times Acceleration;

Force. Pressure = ; Area. Force = Mass times Acceleration; Force Pressure = ; Area Force = Mass times Acceleration; If mass = kg, and acceleration = m/s 2, Force = kg.m/s 2 = Newton (N) If Area = m 2, Pressure = (kg.m/s 2 )/m 2 = N/m 2 = Pascal; (1 Pa = 1 N/m

More information

9460218_CH06_p069-080.qxd 1/20/10 9:44 PM Page 69 GAS PROPERTIES PURPOSE

9460218_CH06_p069-080.qxd 1/20/10 9:44 PM Page 69 GAS PROPERTIES PURPOSE 9460218_CH06_p069-080.qxd 1/20/10 9:44 PM Page 69 6 GAS PROPERTIES PURPOSE The purpose of this lab is to investigate how properties of gases pressure, temperature, and volume are related. Also, you will

More information

CHEM 120 Online Chapter 7

CHEM 120 Online Chapter 7 CHEM 120 Online Chapter 7 Date: 1. Which of the following statements is not a part of kinetic molecular theory? A) Matter is composed of particles that are in constant motion. B) Particle velocity increases

More information

Chem 1A Exam 2 Review Problems

Chem 1A Exam 2 Review Problems Chem 1A Exam 2 Review Problems 1. At 0.967 atm, the height of mercury in a barometer is 0.735 m. If the mercury were replaced with water, what height of water (in meters) would be supported at this pressure?

More information

AP2 Fluids. Kinetic Energy (A) stays the same stays the same (B) increases increases (C) stays the same increases (D) increases stays the same

AP2 Fluids. Kinetic Energy (A) stays the same stays the same (B) increases increases (C) stays the same increases (D) increases stays the same A cart full of water travels horizontally on a frictionless track with initial velocity v. As shown in the diagram, in the back wall of the cart there is a small opening near the bottom of the wall that

More information

Chapter 1. Matter, Measurement and Problem Solving. Chapter 1. Helleur. Principles of Chemistry: A Molecular Approach 1 st Ed.

Chapter 1. Matter, Measurement and Problem Solving. Chapter 1. Helleur. Principles of Chemistry: A Molecular Approach 1 st Ed. Why Clickers? to refresh the students during the lecture to assess student understanding of a topic to increase student participation in class to encourage student interaction in large lectures peer teaching

More information

Chapter 13 Fluids. Copyright 2009 Pearson Education, Inc.

Chapter 13 Fluids. Copyright 2009 Pearson Education, Inc. Chapter 13 Fluids 13-1 Phases of Matter The three common phases of matter are solid, liquid, and gas. A solid has a definite shape and size. A liquid has a fixed volume but can be any shape. A gas can

More information

Study the following diagrams of the States of Matter. Label the names of the Changes of State between the different states.

Study the following diagrams of the States of Matter. Label the names of the Changes of State between the different states. Describe the strength of attractive forces between particles. Describe the amount of space between particles. Can the particles in this state be compressed? Do the particles in this state have a definite

More information

Surface Analysis Maps

Surface Analysis Maps Notes 1 Weather Maps The purpose of a weather map is to give a graphical or pictorial image of weather to a meteorologist. As a forecasting tool, weather maps allow a meteorologist to see what is happening

More information

7. Gases, Liquids, and Solids 7.1 Kinetic Molecular Theory of Matter

7. Gases, Liquids, and Solids 7.1 Kinetic Molecular Theory of Matter 7. Gases, Liquids, and Solids 7.1 Kinetic Molecular Theory of Matter Kinetic Molecular Theory of Matter The Kinetic Molecular Theory of Matter is a concept that basically states that matter is composed

More information

Sample Exercise 10.1 Converting Pressure Units

Sample Exercise 10.1 Converting Pressure Units Sample Exercise 10.1 Converting Pressure Units (a) Convert 0.357 atm to torr. (b) Convert 6.6 10 2 torr to atmospheres. (c) Convert 147.2 kpa to torr. Solution Analyze In each case we are given the pressure

More information

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING Essential Standard: STUDENTS WILL UNDERSTAND THAT THE PROPERTIES OF MATTER AND THEIR INTERACTIONS ARE A CONSEQUENCE OF THE STRUCTURE OF MATTER,

More information

Kinetic Theory of Gases

Kinetic Theory of Gases Kinetic Theory of Gases Important Points:. Assumptions: a) Every gas consists of extremely small particles called molecules. b) The molecules of a gas are identical, spherical, rigid and perfectly elastic

More information