Descriptive statistics deals with the description or simple analysis of population or sample data.


 Clare Chase
 1 years ago
 Views:
Transcription
1 Descriptive statistics Some basic cocepts A populatio is a fiite or ifiite collectio of idividuals or objects. Ofte it is impossible or impractical to get data o all the members of the populatio ad a small part of it or sample is examied istead. If a sample is represetative of the populatio, a lot ca be leared about the populatio by studyig the sample. Descriptive statistics deals with the descriptio or simple aalysis of populatio or sample data. Perhaps the simplest aalysis of data is to classify idividual observatios ito two or more categories accordig to some attribute that they possess, e.g. people ca be classified ito employed/uemployed, or ito several groups accordig to religio, etc. A variable is a measurable characteristic which chages from oe member of a sample or a populatio to aother, e.g. age of a perso, umber of defective items i a stadard box of screws, GDP of a coutry, etc. A cotiuous variable is a measurable characteristic which potetially ca take ay value i a cotiuous rage, without ay breaks or jumps. Height ad icome of a perso are examples of cotiuous variables. A discrete variable is a measurable characteristic which is restricted to a specific set of values. (Which ca be fiite or ifiite). Number of people i a family, umber of defective lightbulbs i a load, score o a die, etc. are examples of discrete variables because, i these cases, oly iteger values are possible. Note that a variable would still be discrete if it could potetially take ay iteger value, however high the importat thig beig there are discrete jumps i the value. The discrete jumps do t have to be iteger, either; a variable that could take the values (say) 0, 0.25, 0.5, 0.75 or ad oe other would still be discrete. Whe observatios are classified ito a umber of class itervals specified i terms of a variable, we have a frequecy distributio showig e.g. that there are 2 people i a class with height below 5, 4 people with height
2 betwee 5 ad 5 2, 7 people with height betwee 5 2 ad 5 4, etc. Such distributios ca be represeted i the form of a table or diagram. Discrete data are ofte represeted by bar charts, showig e.g. umber of families with 0,,2, childre. Cotiuous data are usually represeted as histograms, showig frequecy desity per uit of the variable so for example if we had 8 people with icomes betwee 0,000 ad 4,000, ad 4 people with icomes betwee 4,000 ad 6,000, these two categories would have the same frequecy desity (twice as may people, but twice as wide a category), ad therefore the same height i a histogram. The first category though would have twice the width i the histogram. It is importat to distiguish betwee exact limits of a class iterval ad groupig limits, e.g. icomes are ofte recorder to the earest poud, ad for groupig purposes a class iterval may be specified as cotaiig (say) icome betwee 50 ad 99 p.w. (icludig both values). The exact limits for the iterval are ad p.w. because of roudig. Exact limits are importat for aalytic ad graphical purposes. Measures of Cetral Tedecy For comparative purposes, it is ofte desirable to represet (summarise) a frequecy distributio by a sigle value. Mea, media ad mode are the most commoly used measures of cetral tedecy. The mea (arithmetic mea) or average is defied as: = ( i ) / Where i,,, are idividual observatios, there beig of them. ( is called the sample size). For grouped data we have = r r f i f i i
3 Where i are midpoits of exact class itervals (there beig r of them) ad f i are class frequecies. The mea is easy to uderstad ad has a umber of properties which are importat for aalytical ad empirical work. For example, if is the average icome of people, their total icome is give by *. So ca be see as the icome everyoe would have if all the icome i the group were distributed equally. Also, ( i ) =0, i.e. deviatios aroud the mea sum to zero. A disadvatage of the mea is that it is greatly iflueced by extreme observatios. The media is defied as the middle value whe observatios are arraged i a ascedig or descedig order. Whe the umber of observatios is eve, it is the average of the two middle values. For grouped data (frequecy table), the media is give by Me = m L m + cm fi / 2 f m Where L m = exact lower limit of class iterval, c m = width of the media class iterval, (/2) = rak order of the media, f i =cumulative frequecy up to but ot icludig media category, f m = frequecy of the media class iterval. The media is easy to uderstad, ad it is ot greatly affected by extreme observatios. It is ofte used i preferece to the mea whe extreme observatios are preset or whe a distributio is heavily skewed, e.g. distributio of icome or wealth. The mode is defied as the most commo value of idividually recorder observatios ad as the value of the variable for which the frequecy desity is greatest for grouped data. Media ad Mea m
4 I skewed distributios, these two statistics will differ. For example, i the case of icomes, a few people with very high icomes push up the mea, but do t affect the media, so that the mea is higher. I other words, most people have below average icomes! O the other had if we cosider average life expectacy, a small umber of people who die i ifacy (compared to very, very few ideed who live to, say, 40) push the mea dow. (This will especially be true i developig coutries). So, most people live loger tha the average life expectacy. For symmetric distributios, mea, media ad mode all coicide, assumig middle values are more likely tha extreme values. For skewed distributios, we ca see the relatioship betwee the three measures graphically: Fr Positively skewed distributio Negatively skewed distributio Fr Mode Media Mea Mea Media Mode Measures of variability 2.3 Variability of measuremets is ofte more importat i statistical aalysis tha cetral tedecy. Three measures of variability are discussed below. Mea deviatio is defied as
5 MD = i / (For ugrouped data), where the. sig meas absolute value, that is igorig mius sigs. This measure, while ituitively atural, is ot much use for aalytical work because of the modulus sigs it is ot a smooth measure. (see below) Stadard deviatio is defied as: S = 2 ( i ) (for ugrouped data) S 2 is called the variace. Stadard deviatio avoids the modulus operator, ad is measured i the same uits as the data itself, ad as the mea. It ca be iterpreted as a typical deviatio from the mea. The variace is the average squared deviatio from the mea. The stadard deviatio is its square root. Example Te studets i a class have test scores of 35, 42, 46, 5, 54, 59, 64, 66, 73 ad 78.
6 The mea score is ( )/0=56.8. The deviatios from the mea are therefore 2.8,4.8,2.8,5.8, 2.8,+2.2,+7.2,+9.2,+6.2,+2.2. To fid the variace, we square each of these values (to get ,29.04, ), add them up ad divide by 0, to get a average of Fially to fid the stadard deviatio, we take the square root of the variace, givig a value of Coefficiet of variatio, defied as S/, is a relative measure of dispersio used to compare variability of two or more distributios whose meas ad stadard deviatios differ a great deal; for example, the stadard deviatio of icomes, measured i GB, i the UK would be a lot higher tha i, say, a poor Africa coutry. However, if we scale this by the mea to get the CV, this could be greater or smaller i either coutry. Skewess May distributios are ot symmetrical ad their degree of skewess ca vary quite cosiderably, e.g. the distributio of wealth is more skewed tha the distributio of icome. Asymmetry ca be measured i a umber of ways. Oly oe measure will be metioed here. The Pearso coefficiet of skewess is defied as SK = ( Mo) / S 3( Me) / S The differece Mo, which is approximately equal to Me i a ottooskewed distributio, icreases with skewess. Divisio by S esures that it is ot affected by chages i uits of measuremet ad variability of differet distributios. Note that for positively skewed distributios,  Mo is positive, ad for a egatively skewed distributio it is egative. The absolute value of SK ca be as large as 3, but i practice values larger tha are rare.
NPTEL STRUCTURAL RELIABILITY
NPTEL Course O STRUCTURAL RELIABILITY Module # 0 Lecture 1 Course Format: Web Istructor: Dr. Aruasis Chakraborty Departmet of Civil Egieerig Idia Istitute of Techology Guwahati 1. Lecture 01: Basic Statistics
More informationGCSE STATISTICS. 4) How to calculate the range: The difference between the biggest number and the smallest number.
GCSE STATISTICS You should kow: 1) How to draw a frequecy diagram: e.g. NUMBER TALLY FREQUENCY 1 3 5 ) How to draw a bar chart, a pictogram, ad a pie chart. 3) How to use averages: a) Mea  add up all
More informationThis is arithmetic average of the x values and is usually referred to simply as the mean.
prepared by Dr. Adre Lehre, Dept. of Geology, Humboldt State Uiversity http://www.humboldt.edu/~geodept/geology51/51_hadouts/statistical_aalysis.pdf STATISTICAL ANALYSIS OF HYDROLOGIC DATA This hadout
More informationLesson 17 Pearson s Correlation Coefficient
Outlie Measures of Relatioships Pearso s Correlatio Coefficiet (r) types of data scatter plots measure of directio measure of stregth Computatio covariatio of X ad Y uique variatio i X ad Y measurig
More informationExample Consider the following set of data, showing the number of times a sample of 5 students check their per day:
Sectio 82: Measures of cetral tedecy Whe thikig about questios such as: how may calories do I eat per day? or how much time do I sped talkig per day?, we quickly realize that the aswer will vary from day
More information3.1 Measures of Central Tendency. Introduction 5/28/2013. Data Description. Outline. Objectives. Objectives. Traditional Statistics Average
5/8/013 C H 3A P T E R Outlie 3 1 Measures of Cetral Tedecy 3 Measures of Variatio 3 3 3 Measuresof Positio 3 4 Exploratory Data Aalysis Copyright 013 The McGraw Hill Compaies, Ic. C H 3A P T E R Objectives
More informationTIEE Teaching Issues and Experiments in Ecology  Volume 1, January 2004
TIEE Teachig Issues ad Experimets i Ecology  Volume 1, Jauary 2004 EXPERIMENTS Evirometal Correlates of Leaf Stomata Desity Bruce W. Grat ad Itzick Vatick Biology, Wideer Uiversity, Chester PA, 19013
More informationx : X bar Mean (i.e. Average) of a sample
A quick referece for symbols ad formulas covered i COGS14: MEAN OF SAMPLE: x = x i x : X bar Mea (i.e. Average) of a sample x i : X sub i This stads for each idividual value you have i your sample. For
More informationStatistical Methods. Chapter 1: Overview and Descriptive Statistics
Geeral Itroductio Statistical Methods Chapter 1: Overview ad Descriptive Statistics Statistics studies data, populatio, ad samples. Descriptive Statistics vs Iferetial Statistics. Descriptive Statistics
More informationCorrelation. example 2
Correlatio Iitially developed by Sir Fracis Galto (888) ad Karl Pearso (8) Sir Fracis Galto 8 correlatio is a much abused word/term correlatio is a term which implies that there is a associatio betwee
More informationDefinition. A variable X that takes on values X 1, X 2, X 3,...X k with respective frequencies f 1, f 2, f 3,...f k has mean
1 Social Studies 201 October 13, 2004 Note: The examples i these otes may be differet tha used i class. However, the examples are similar ad the methods used are idetical to what was preseted i class.
More informationAQA STATISTICS 1 REVISION NOTES
AQA STATISTICS 1 REVISION NOTES AVERAGES AND MEASURES OF SPREAD www.mathsbox.org.uk Mode : the most commo or most popular data value the oly average that ca be used for qualitative data ot suitable if
More informationMeasures of Central Tendency
Measures of Cetral Tedecy A studet s grade will be determied by exam grades ( each exam couts twice ad there are three exams, HW average (couts oce, fial exam ( couts three times. Fid the average if the
More informationBiology 171L Environment and Ecology Lab Lab 2: Descriptive Statistics, Presenting Data and Graphing Relationships
Biology 171L Eviromet ad Ecology Lab Lab : Descriptive Statistics, Presetig Data ad Graphig Relatioships Itroductio Log lists of data are ofte ot very useful for idetifyig geeral treds i the data or the
More informationBASIC STATISTICS. Discrete. Mass Probability Function: P(X=x i ) Only one finite set of values is considered {x 1, x 2,...} Prob. t = 1.
BASIC STATISTICS 1.) Basic Cocepts: Statistics: is a sciece that aalyzes iformatio variables (for istace, populatio age, height of a basketball team, the temperatures of summer moths, etc.) ad attempts
More informationNormal Distribution.
Normal Distributio www.icrf.l Normal distributio I probability theory, the ormal or Gaussia distributio, is a cotiuous probability distributio that is ofte used as a first approimatio to describe realvalued
More informationStandard Errors and Confidence Intervals
Stadard Errors ad Cofidece Itervals Itroductio I the documet Data Descriptio, Populatios ad the Normal Distributio a sample had bee obtaied from the populatio of heights of 5yearold boys. If we assume
More informationCHAPTER 7: Central Limit Theorem: CLT for Averages (Means)
CHAPTER 7: Cetral Limit Theorem: CLT for Averages (Meas) X = the umber obtaied whe rollig oe six sided die oce. If we roll a six sided die oce, the mea of the probability distributio is X P(X = x) Simulatio:
More informationConfidence Intervals for One Mean
Chapter 420 Cofidece Itervals for Oe Mea Itroductio This routie calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) at a stated cofidece level for a
More information1 Computing the Standard Deviation of Sample Means
Computig the Stadard Deviatio of Sample Meas Quality cotrol charts are based o sample meas ot o idividual values withi a sample. A sample is a group of items, which are cosidered all together for our aalysis.
More informationHypothesis testing. Null and alternative hypotheses
Hypothesis testig Aother importat use of samplig distributios is to test hypotheses about populatio parameters, e.g. mea, proportio, regressio coefficiets, etc. For example, it is possible to stipulate
More informationStat 104 Lecture 2. Variables and their distributions. DJIA: monthly % change, 2000 to Finding the center of a distribution. Median.
Stat 04 Lecture Statistics 04 Lecture (IPS. &.) Outlie for today Variables ad their distributios Fidig the ceter Measurig the spread Effects of a liear trasformatio Variables ad their distributios Variable:
More informationThe following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles
The followig eample will help us uderstad The Samplig Distributio of the Mea Review: The populatio is the etire collectio of all idividuals or objects of iterest The sample is the portio of the populatio
More informationPSYCHOLOGICAL STATISTICS
UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION B Sc. Cousellig Psychology (0 Adm.) IV SEMESTER COMPLEMENTARY COURSE PSYCHOLOGICAL STATISTICS QUESTION BANK. Iferetial statistics is the brach of statistics
More informationsum of all values n x = the number of values = i=1 x = n n. When finding the mean of a frequency distribution the mean is given by
Statistics Module Revisio Sheet The S exam is hour 30 miutes log ad is i two sectios Sectio A 3 marks 5 questios worth o more tha 8 marks each Sectio B 3 marks questios worth about 8 marks each You are
More informationMeasures of Spread and Boxplots Discrete Math, Section 9.4
Measures of Spread ad Boxplots Discrete Math, Sectio 9.4 We start with a example: Example 1: Comparig Mea ad Media Compute the mea ad media of each data set: S 1 = {4, 6, 8, 10, 1, 14, 16} S = {4, 7, 9,
More informationHypothesis Tests Applied to Means
The Samplig Distributio of the Mea Hypothesis Tests Applied to Meas Recall that the samplig distributio of the mea is the distributio of sample meas that would be obtaied from a particular populatio (with
More informationEstimating the Mean and Variance of a Normal Distribution
Estimatig the Mea ad Variace of a Normal Distributio Learig Objectives After completig this module, the studet will be able to eplai the value of repeatig eperimets eplai the role of the law of large umbers
More informationSection 73 Estimating a Population. Requirements
Sectio 73 Estimatig a Populatio Mea: σ Kow Key Cocept This sectio presets methods for usig sample data to fid a poit estimate ad cofidece iterval estimate of a populatio mea. A key requiremet i this sectio
More informationStat 104 Lecture 16. Statistics 104 Lecture 16 (IPS 6.1) Confidence intervals  the general concept
Statistics 104 Lecture 16 (IPS 6.1) Outlie for today Cofidece itervals Cofidece itervals for a mea, µ (kow σ) Cofidece itervals for a proportio, p Margi of error ad sample size Review of mai topics for
More informationChapter 7: Confidence Interval and Sample Size
Chapter 7: Cofidece Iterval ad Sample Size Learig Objectives Upo successful completio of Chapter 7, you will be able to: Fid the cofidece iterval for the mea, proportio, ad variace. Determie the miimum
More information5: Introduction to Estimation
5: Itroductio to Estimatio Cotets Acroyms ad symbols... 1 Statistical iferece... Estimatig µ with cofidece... 3 Samplig distributio of the mea... 3 Cofidece Iterval for μ whe σ is kow before had... 4 Sample
More informationAlternatives To Pearson s and Spearman s Correlation Coefficients
Alteratives To Pearso s ad Spearma s Correlatio Coefficiets Floreti Smaradache Chair of Math & Scieces Departmet Uiversity of New Mexico Gallup, NM 8730, USA Abstract. This article presets several alteratives
More information3. Continuous Random Variables
Statistics ad probability: 31 3. Cotiuous Radom Variables A cotiuous radom variable is a radom variable which ca take values measured o a cotiuous scale e.g. weights, stregths, times or legths. For ay
More informationExploratory Data Analysis
1 Exploratory Data Aalysis Exploratory data aalysis is ofte the rst step i a statistical aalysis, for it helps uderstadig the mai features of the particular sample that a aalyst is usig. Itelliget descriptios
More informationCenter, Spread, and Shape in Inference: Claims, Caveats, and Insights
Ceter, Spread, ad Shape i Iferece: Claims, Caveats, ad Isights Dr. Nacy Pfeig (Uiversity of Pittsburgh) AMATYC November 2008 Prelimiary Activities 1. I would like to produce a iterval estimate for the
More informationCase Study. Normal and t Distributions. Density Plot. Normal Distributions
Case Study Normal ad t Distributios Bret Halo ad Bret Larget Departmet of Statistics Uiversity of Wiscosi Madiso October 11 13, 2011 Case Study Body temperature varies withi idividuals over time (it ca
More informationZTEST / ZSTATISTIC: used to test hypotheses about. µ when the population standard deviation is unknown
ZTEST / ZSTATISTIC: used to test hypotheses about µ whe the populatio stadard deviatio is kow ad populatio distributio is ormal or sample size is large TTEST / TSTATISTIC: used to test hypotheses about
More information1 Correlation and Regression Analysis
1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio
More informationDetermining the sample size
Determiig the sample size Oe of the most commo questios ay statisticia gets asked is How large a sample size do I eed? Researchers are ofte surprised to fid out that the aswer depeds o a umber of factors
More informationConfidence Intervals for One Mean with Tolerance Probability
Chapter 421 Cofidece Itervals for Oe Mea with Tolerace Probability Itroductio This procedure calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) with
More informationTHE ARITHMETIC OF INTEGERS.  multiplication, exponentiation, division, addition, and subtraction
THE ARITHMETIC OF INTEGERS  multiplicatio, expoetiatio, divisio, additio, ad subtractio What to do ad what ot to do. THE INTEGERS Recall that a iteger is oe of the whole umbers, which may be either positive,
More informationORDERS OF GROWTH KEITH CONRAD
ORDERS OF GROWTH KEITH CONRAD Itroductio Gaiig a ituitive feel for the relative growth of fuctios is importat if you really wat to uderstad their behavior It also helps you better grasp topics i calculus
More informationOverview of some probability distributions.
Lecture Overview of some probability distributios. I this lecture we will review several commo distributios that will be used ofte throughtout the class. Each distributio is usually described by its probability
More informationDescriptive Statistics
2 Descriptive Statistics Cosider a batchof data, cosistig of observatios o a sigle variable. We represet the data by the array z 1 ;:::;z. We are ot cocered, at this stage, with the way the data have bee
More information1. C. The formula for the confidence interval for a population mean is: x t, which was
s 1. C. The formula for the cofidece iterval for a populatio mea is: x t, which was based o the sample Mea. So, x is guarateed to be i the iterval you form.. D. Use the rule : pvalue
More informationProperties of MLE: consistency, asymptotic normality. Fisher information.
Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout
More informationAnalyzing Longitudinal Data from Complex Surveys Using SUDAAN
Aalyzig Logitudial Data from Complex Surveys Usig SUDAAN Darryl Creel Statistics ad Epidemiology, RTI Iteratioal, 312 Trotter Farm Drive, Rockville, MD, 20850 Abstract SUDAAN: Software for the Statistical
More informationThe frequency relationship can also be written in term of logarithms
Pitch ad Frequecy by Mark Frech Departmet of Mechaical Egieerig Techology Purdue Uiversity rmfrech@purdue.edu There are two differet kids of scales importat to a guitar player, eve tempered ad diatoic.
More informationI. Chisquared Distributions
1 M 358K Supplemet to Chapter 23: CHISQUARED DISTRIBUTIONS, TDISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad tdistributios, we first eed to look at aother family of distributios, the chisquared distributios.
More informationOverview. Learning Objectives. Point Estimate. Estimation. Estimating the Value of a Parameter Using Confidence Intervals
Overview Estimatig the Value of a Parameter Usig Cofidece Itervals We apply the results about the sample mea the problem of estimatio Estimatio is the process of usig sample data estimate the value of
More informationChapter 5 Discrete Probability Distributions
Slides Prepared by JOHN S. LOUCKS St. Edward s Uiversity Slide Chapter 5 Discrete Probability Distributios Radom Variables Discrete Probability Distributios Epected Value ad Variace Poisso Distributio
More informationME 101 Measurement Demonstration (MD 1) DEFINITIONS Precision  A measure of agreement between repeated measurements (repeatability).
INTRODUCTION This laboratory ivestigatio ivolves makig both legth ad mass measuremets of a populatio, ad the assessig statistical parameters to describe that populatio. For example, oe may wat to determie
More informationCompare Multiple Response Variables
Compare Multiple Respose Variables STATGRAPHICS Mobile Rev. 4/7/006 This procedure compares the data cotaied i three or more Respose colums. It performs a oeway aalysis of variace to determie whether
More informationConfidence Intervals and Sample Size
8/7/015 C H A P T E R S E V E N Cofidece Itervals ad Copyright 015 The McGrawHill Compaies, Ic. Permissio required for reproductio or display. 1 Cofidece Itervals ad Outlie 71 Cofidece Itervals for the
More informationOMG! Excessive Texting Tied to Risky Teen Behaviors
BUSIESS WEEK: EXECUTIVE EALT ovember 09, 2010 OMG! Excessive Textig Tied to Risky Tee Behaviors Kids who sed more tha 120 a day more likely to try drugs, alcohol ad sex, researchers fid TUESDAY, ov. 9
More informationThis document contains a collection of formulas and constants useful for SPC chart construction. It assumes you are already familiar with SPC.
SPC Formulas ad Tables 1 This documet cotais a collectio of formulas ad costats useful for SPC chart costructio. It assumes you are already familiar with SPC. Termiology Geerally, a bar draw over a symbol
More informationUniversity of California, Los Angeles Department of Statistics. Distributions related to the normal distribution
Uiversity of Califoria, Los Ageles Departmet of Statistics Statistics 100B Istructor: Nicolas Christou Three importat distributios: Distributios related to the ormal distributio Chisquare (χ ) distributio.
More informationGregory Carey, 1998 Linear Transformations & Composites  1. Linear Transformations and Linear Composites
Gregory Carey, 1998 Liear Trasformatios & Composites  1 Liear Trasformatios ad Liear Composites I Liear Trasformatios of Variables Meas ad Stadard Deviatios of Liear Trasformatios A liear trasformatio
More informationNonlife insurance mathematics. Nils F. Haavardsson, University of Oslo and DNB Skadeforsikring
Nolife isurace mathematics Nils F. Haavardsso, Uiversity of Oslo ad DNB Skadeforsikrig Mai issues so far Why does isurace work? How is risk premium defied ad why is it importat? How ca claim frequecy
More informationConfidence Intervals for the Population Mean
Cofidece Itervals Math 283 Cofidece Itervals for the Populatio Mea Recall that from the empirical rule that the iterval of the mea plus/mius 2 times the stadard deviatio will cotai about 95% of the observatios.
More informationDescriptive Statistics Summary Tables
Chapter 201 Descriptive Statistics Summary Tables Itroductio This procedure is used to summarize cotiuous data. Large volumes of such data may be easily summarized i statistical tables of meas, couts,
More informationDescriptive Statistics
Descriptive Statistics We leared to describe data sets graphically. We ca also describe a data set umerically. Measures of Locatio Defiitio The sample mea is the arithmetic average of values. We deote
More informationOnesample test of proportions
Oesample test of proportios The Settig: Idividuals i some populatio ca be classified ito oe of two categories. You wat to make iferece about the proportio i each category, so you draw a sample. Examples:
More informationMEI Structured Mathematics. Module Summary Sheets. Statistics 2 (Version B: reference to new book)
MEI Mathematics i Educatio ad Idustry MEI Structured Mathematics Module Summary Sheets Statistics (Versio B: referece to ew book) Topic : The Poisso Distributio Topic : The Normal Distributio Topic 3:
More informationhp calculators HP 12C Statistics  average and standard deviation Average and standard deviation concepts HP12C average and standard deviation
HP 1C Statistics  average ad stadard deviatio Average ad stadard deviatio cocepts HP1C average ad stadard deviatio Practice calculatig averages ad stadard deviatios with oe or two variables HP 1C Statistics
More informationCHAPTER 3 DIGITAL CODING OF SIGNALS
CHAPTER 3 DIGITAL CODING OF SIGNALS Computers are ofte used to automate the recordig of measuremets. The trasducers ad sigal coditioig circuits produce a voltage sigal that is proportioal to a quatity
More informationLesson 15 ANOVA (analysis of variance)
Outlie Variability betwee group variability withi group variability total variability Fratio Computatio sums of squares (betwee/withi/total degrees of freedom (betwee/withi/total mea square (betwee/withi
More informationConfidence Intervals for the Mean of Nonnormal Data Class 23, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom
Cofidece Itervals for the Mea of Noormal Data Class 23, 8.05, Sprig 204 Jeremy Orloff ad Joatha Bloom Learig Goals. Be able to derive the formula for coservative ormal cofidece itervals for the proportio
More informationARITHMETIC AND GEOMETRIC PROGRESSIONS
Arithmetic Ad Geometric Progressios Sequeces Ad ARITHMETIC AND GEOMETRIC PROGRESSIONS Successio of umbers of which oe umber is desigated as the first, other as the secod, aother as the third ad so o gives
More informationSECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES
SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,
More informationDefinition. Definition. 72 Estimating a Population Proportion. Definition. Definition
7 stimatig a Populatio Proportio I this sectio we preset methods for usig a sample proportio to estimate the value of a populatio proportio. The sample proportio is the best poit estimate of the populatio
More informationUSING STATISTICAL FUNCTIONS ON A SCIENTIFIC CALCULATOR
USING STATISTICAL FUNCTIONS ON A SCIENTIFIC CALCULATOR Objective:. Improve calculator skills eeded i a multiple choice statistical eamiatio where the eam allows the studet to use a scietific calculator..
More information3.2 Introduction to Infinite Series
3.2 Itroductio to Ifiite Series May of our ifiite sequeces, for the remaider of the course, will be defied by sums. For example, the sequece S m := 2. () is defied by a sum. Its terms (partial sums) are
More informationCovariance and correlation
Covariace ad correlatio The mea ad sd help us summarize a buch of umbers which are measuremets of just oe thig. A fudametal ad totally differet questio is how oe thig relates to aother. Stat 0: Quatitative
More informationRecursion and Recurrences
Chapter 5 Recursio ad Recurreces 5.1 Growth Rates of Solutios to Recurreces Divide ad Coquer Algorithms Oe of the most basic ad powerful algorithmic techiques is divide ad coquer. Cosider, for example,
More information1 The Binomial Theorem: Another Approach
The Biomial Theorem: Aother Approach Pascal s Triagle I class (ad i our text we saw that, for iteger, the biomial theorem ca be stated (a + b = c a + c a b + c a b + + c ab + c b, where the coefficiets
More informationChapter 6: Variance, the law of large numbers and the MonteCarlo method
Chapter 6: Variace, the law of large umbers ad the MoteCarlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value
More informationTHE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n
We will cosider the liear regressio model i matrix form. For simple liear regressio, meaig oe predictor, the model is i = + x i + ε i for i =,,,, This model icludes the assumptio that the ε i s are a sample
More information7818 Interval estimation and hypothesis testing  Set
7 7818 Iterval estimatio ad hypothesis testig  Set revised Nov 9, 010 You might wat to read some of the chapter i MGB o Parametric Iterval Estimatio. There are subtle di ereces across questios. uderstad
More informationMathematical goals. Starting points. Materials required. Time needed
Level A1 of challege: C A1 Mathematical goals Startig poits Materials required Time eeded Iterpretig algebraic expressios To help learers to: traslate betwee words, symbols, tables, ad area represetatios
More informationStatistics Lecture 14. Introduction to Inference. Administrative Notes. Hypothesis Tests. Last Class: Confidence Intervals
Statistics 111  Lecture 14 Itroductio to Iferece Hypothesis Tests Admiistrative Notes Sprig Break! No lectures o Tuesday, March 8 th ad Thursday March 10 th Exteded Sprig Break! There is o Stat 111 recitatio
More informationBasic Measurement Issues. Sampling Theory and AnalogtoDigital Conversion
Theory ad AalogtoDigital Coversio Itroductio/Defiitios Aalogtodigital coversio Rate Frequecy Aalysis Basic Measuremet Issues Reliability the extet to which a measuremet procedure yields the same results
More informationWe have seen that the physically observable properties of a quantum system are represented
Chapter 14 Probability, Expectatio Value ad Ucertaity We have see that the physically observable properties of a quatum system are represeted by Hermitea operators (also referred to as observables ) such
More informationNow here is the important step
LINEST i Excel The Excel spreadsheet fuctio "liest" is a complete liear least squares curve fittig routie that produces ucertaity estimates for the fit values. There are two ways to access the "liest"
More informationChapter 14 Nonparametric Statistics
Chapter 14 Noparametric Statistics A.K.A. distributiofree statistics! Does ot deped o the populatio fittig ay particular type of distributio (e.g, ormal). Sice these methods make fewer assumptios, they
More informationThe Euler Totient, the Möbius and the Divisor Functions
The Euler Totiet, the Möbius ad the Divisor Fuctios Rosica Dieva July 29, 2005 Mout Holyoke College South Hadley, MA 01075 1 Ackowledgemets This work was supported by the Mout Holyoke College fellowship
More informationQuadrat Sampling in Population Ecology
Quadrat Samplig i Populatio Ecology Backgroud Estimatig the abudace of orgaisms. Ecology is ofte referred to as the "study of distributio ad abudace". This beig true, we would ofte like to kow how may
More information7. Sample Covariance and Correlation
1 of 8 7/16/2009 6:06 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 7. Sample Covariace ad Correlatio The Bivariate Model Suppose agai that we have a basic radom experimet, ad that X ad Y
More information3 Basic Definitions of Probability Theory
3 Basic Defiitios of Probability Theory 3defprob.tex: Feb 10, 2003 Classical probability Frequecy probability axiomatic probability Historical developemet: Classical Frequecy Axiomatic The Axiomatic defiitio
More informationJoint Probability Distributions and Random Samples
STAT5 Sprig 204 Lecture Notes Chapter 5 February, 204 Joit Probability Distributios ad Radom Samples 5. Joitly Distributed Radom Variables Chapter Overview Joitly distributed rv Joit mass fuctio, margial
More informationTILE PATTERNS & GRAPHING
TILE PATTERNS & GRAPHING LESSON 1 THE BIG IDEA Tile patters provide a meaigful cotext i which to geerate equivalet algebraic expressios ad develop uderstadig of the cocept of a variable. Such patters are
More informationKey Ideas Section 81: Overview hypothesis testing Hypothesis Hypothesis Test Section 82: Basics of Hypothesis Testing Null Hypothesis
Chapter 8 Key Ideas Hypothesis (Null ad Alterative), Hypothesis Test, Test Statistic, Pvalue Type I Error, Type II Error, Sigificace Level, Power Sectio 81: Overview Cofidece Itervals (Chapter 7) are
More informationA Brief Study about Nonparametric Adherence Tests
A Brief Study about Noparametric Adherece Tests Viicius R. Domigues, Lua C. S. M. Ozelim Abstract The statistical study has become idispesable for various fields of kowledge. Not ay differet, i Geotechics
More informationA collection of tools & techniques that are used to convert data into meaningful information in a business environment.
Lecture 5/9/5 3:34: PM What is this class about? Here s a descriptio from aother textbook ad our textbook A collectio of tools & techiques that are used to covert data ito meaigful iformatio i a busiess
More informationSimple linear regression
Simple liear regressio Tro Aders Moger 3..7 Example 6: Populatio proportios Oe sample X Assume X ~ Bi(, P, so that P ˆ is a frequecy. P The ~ N(, P( P / (approximately, for large P Thus ~ N(, ( / (approximately,
More informationSoving Recurrence Relations
Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree
More informationSpss Lab 7: Ttests Section 1
Spss Lab 7: Ttests Sectio I this lab, we will be usig everythig we have leared i our text ad applyig that iformatio to uderstad ttests for parametric ad oparametric data. THERE WILL BE TWO SECTIONS FOR
More informationThe Poisson Distribution
Lecture 5 The Poisso Distributio 5.1 Itroductio Example 5.1: Drowigs i Malta The book [Mou98] cites data from the St. Luke s Hospital Gazette, o the mothly umber of drowigs o Malta, over a period of early
More informationSummary & Graphic Display of Data
Biostatistics Summary/Display of Data ORIGIN Summary & Graphic Display of Data It is stadard practice to summarize data with descriptive statistics, ad to display a dataset i the form of aotated graphs
More information