Homework 4. problems: 5.61, 5.67, 6.63, 13.21


 Jonas Stephens
 1 years ago
 Views:
Transcription
1 Homework 4 problems: 5.6, 5.67, 6.6,.
2 Problem 5.6 An object of mass M is held in place by an applied force F. and a pulley system as shown in the figure. he pulleys are massless and frictionless. Find (a) the tension is each section of rope,,,, 4, and, and (b) the magnitude of F. Suggestion: Draw a freebody diagram for each pulley M F Mg Only the vertical components of the vectors result in a nontrivial equation. Symmetry of the arrangement that and. Also the definition of tension (magnitude of the force exerted on each side of the rope) F. Since the acceleration of the block and each pulley is zero, from Newton s second law (for the vertical component) we obtain additional three equations relating the tensions. In the following equations, the terms are aligned is such a way that it is easy to use a calculators to find the solution F Mg here are six unknowns in this set of six linear equations. he rest is simple algebra. Solving the equations simultaneously for the unknowns leads to Mg / ; 4 Mg / ; 5 Mg F
3 Problem 5.67 What horizontal force must be applied to the cart shown in Figure P5.6 in order that the blocks remain stationary relative to the cart? Assume that all surfaces, wheels, and the pulley are frictionless. N M f hree forces are exerted block : C  C y gravitational force exerted by earth W  C W, tensile force exerted by the cord m C, and the normal force N M exerted C by block M. See the free body diagram F N M m M included in the figure. W x hree forces are also exerted on the second block: gravitational force N exerted by earth W, tensile force N M F exerted by the cord C, and the normal force N M exerted by block M. N M Six objects interact with block M: the f W earth exerts a gravitational force W, the table and the other two blocks exert normal forces (N, N M, N M ), the source on force F, and the cord at the pulley with normal force f  C  C. It is required in the problem that all three blocks move with the same acceleration a (unknown). We obtain three vector equations (one for each block): ) NM + W + C ma ) NM + W + C ma ) N N + N + W + F + f Ma M M he rest is math. We can write these three equations in scalar components using the information about the directions. 4) [, N m g] m [ a,] M
4 5) [ N M, mg + ] m[ a,] 6) [ N + F, N + N Mg ] M[ a,] M M Solving by substitution, we can find the horizontal component F of the force. F Ma + N M ( M + m + m ) ( M + m + m ) + Ma + m m a + m a mg m Note that we can find more information about the system. he six equations have six unknowns which we can find: the tension in the cord, all three normal forces, force F, and the acceleration of the system. Comment. In fact, three of the six equations lead to the answer. With better skills, you will be able to solve it without writing all the general relations. You could just relate the magnitude F of the applied force with the acceleration of the system. hen relate this acceleration with the required tension in the cord, necessary to accelerate block, and finally relate the tension in the cord with the weight of block. 7) F ( M m m )a 8) ma 9) m g
5 Problem 6.6 A model airplane of a mass.75 kg flies in a horizontal circle at the end of a 6m control wire, with a speed of 5 m/s. Compute the tension in the wire if it makes a constant angle of with the horizontal. he forces exerted on the airplane are the pull in the control wire, its own weight, and the aerodynamic lift, which acts at inward from the vertical as shown in the Figure P6.7. r F lift y α x l 6m α mg he plane moves in a uniform circular motion. Consider the forces and the acceleration for the plane at the instant it passes the origin of the inertial reference frame indicated in the figure. here are three forces exerted on the airplane: the gravitational force exerted by the earth ) W [, mg], the aerodynamic lift exerted by the air ) F F[ sin α, cosα], and the tension force exerted by the control wire ) [ cosα, sin α]. We can also figure out the components of the acceleration d v v 4) a ( ω r) ω ( ω r) ω r r, dt r l cosα (Note that we know quite a lot about the acceleration. Its two scalar components are zero.)
6 From Newton's second law we can relate the forces exerted on the airplane with its acceleration. v 5) [ ] [ ] [ ], mg + F sin α,cosα + cosα, sin α m, l cosα he rest is math. We obtained two equations (for each scalar component) with two unknowns (the magnitude of the lift F and the tension ). mv Fsin α + cos α l cos α mg + Fcos α sin α Eliminating, by substitution, the magnitude of the lift force we find the tension in the wire v m l m 5 s gsin α.75kg 6m m 9.8 sin s o.8n
7 Problem. A synchronous satellite, which always remains above the same point on a planet s equator, is put into orbit around Jupiter so that scientists can study the famous red spot. Jupiter rotates once every 9.84 h. Use the data of able. (Jupiter: mass M.9 7 kg, mean radius R 7 7 m ) to find the altitude of the satellite. A stationary satellite must move with the same angular velocity ω at which the planet rotates. From information given in the problem it should not be difficult to find the magnitude of that angular velocity. a Jupiter rotates at a constant rate, ω therefore we can express the magnitude of the angular velocity in terms of the given quantities dα π ) ω dt where is the time of one revolution of the planet. Angular velocity and the acceleration of a particle in a circular motion are related. Remembering the (simple) equation relating velocity with angular velocity v ω r, we can derive the expression relating acceleration to angular velocity dv ) a ω v ω (ω r) ω r dt where r is the position vector of the satellite with respect to the center of the orbit. In terms of the magnitude of the vectors the above equation reads ) a ω r ω (R+h) where R is Jupiter s mean radius and h is the altitude of the satellite above Jupiter s surface.
8 here is only one force exerted on the satellite  the gravitational force F g exerted by the planet. he net force F net is therefore equal to the gravitational force. Using Newton s law of gravity, we can relate the magnitude of the net force with the mass (m) of the satellite and altitude (h) above the planet 4) F F G Mm net g ( R+ h) where M is Jupiter s mass. he acceleration and the net force exerted on an object are related by Newton s second law. In terms of magnitudes 5) F net ma he rest is math. Eliminating all unknowns not relevant to the question, we get an equation for the altitude Solving h G GM π 7 Mm ( R + h) R Nm kg.9 m 89,km π m 7 ( R + h) 9.84h kg π 6s h 7 7 m
C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N
Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a
More informationVersion PREVIEW Practice 8 carroll (11108) 1
Version PREVIEW Practice 8 carroll 11108 1 This printout should have 12 questions. Multiplechoice questions may continue on the net column or page find all choices before answering. Inertia of Solids
More informationTwoBody System: Two Hanging Masses
Specific Outcome: i. I can apply Newton s laws of motion to solve, algebraically, linear motion problems in horizontal, vertical and inclined planes near the surface of Earth, ignoring air resistance.
More informationRotational Mechanics  1
Rotational Mechanics  1 The Radian The radian is a unit of angular measure. The radian can be defined as the arc length s along a circle divided by the radius r. s r Comparing degrees and radians 360
More informationPhysics 2101, First Exam, Fall 2007
Physics 2101, First Exam, Fall 2007 September 4, 2007 Please turn OFF your cell phone and MP3 player! Write down your name and section number in the scantron form. Make sure to mark your answers in the
More information5. Forces and MotionI. Force is an interaction that causes the acceleration of a body. A vector quantity.
5. Forces and MotionI 1 Force is an interaction that causes the acceleration of a body. A vector quantity. Newton's First Law: Consider a body on which no net force acts. If the body is at rest, it will
More informationChapter 4. Forces and Newton s Laws of Motion. continued
Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting
More informationPhysics 211 Week 12. Simple Harmonic Motion: Equation of Motion
Physics 11 Week 1 Simple Harmonic Motion: Equation of Motion A mass M rests on a frictionless table and is connected to a spring of spring constant k. The other end of the spring is fixed to a vertical
More informationGround Rules. PC1221 Fundamentals of Physics I. Force. Zero Net Force. Lectures 9 and 10 The Laws of Motion. Dr Tay Seng Chuan
PC1221 Fundamentals of Physics I Lectures 9 and 10 he Laws of Motion Dr ay Seng Chuan 1 Ground Rules Switch off your handphone and pager Switch off your laptop computer and keep it No talking while lecture
More informationPHY121 #8 Midterm I 3.06.2013
PHY11 #8 Midterm I 3.06.013 AP Physics Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension
More informationf max s = µ s N (5.1)
Chapter 5 Forces and Motion II 5.1 The Important Stuff 5.1.1 Friction Forces Forces which are known collectively as friction forces are all around us in daily life. In elementary physics we discuss the
More informationRotational Motion. Description of the motion. is the relation between ω and the speed at which the body travels along the circular path.
Rotational Motion We are now going to study one of the most common types of motion, that of a body constrained to move on a circular path. Description of the motion Let s first consider only the description
More informationF N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26
Physics 23 Exam 2 Spring 2010 Dr. Alward Page 1 1. A 250N force is directed horizontally as shown to push a 29kg box up an inclined plane at a constant speed. Determine the magnitude of the normal force,
More informationVELOCITY, ACCELERATION, FORCE
VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how
More informationv v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )
Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution
More informationPhysics1 Recitation3
Physics1 Recitation3 The Laws of Motion 1) The displacement of a 2 kg particle is given by x = At 3/2. In here, A is 6.0 m/s 3/2. Find the net force acting on the particle. (Note that the force is time
More informationNewton s Law of Motion
chapter 5 Newton s Law of Motion Static system 1. Hanging two identical masses Context in the textbook: Section 5.3, combination of forces, Example 4. Vertical motion without friction 2. Elevator: Decelerating
More informationChapter 5 Problems. = 9ˆ i + 0 ˆ j F 2 F 1. = 8cos62 ˆ i + 8sin62 ˆ j. = (9 8cos62 ) i ˆ + (8sin62 ) ˆ j = i ˆ ˆ j =
Chapter 5 Problems 5.1 Only two horizontal forces act on a 3.0 kg body. One force is 9.0N, acting due east, and the other is 8.0N act 62 degrees North of west. What is the magnitude of the body s acceleration?
More informationphysics 111N rotational motion
physics 111N rotational motion rotations of a rigid body! suppose we have a body which rotates about some axis! we can define its orientation at any moment by an angle, θ (any point P will do) θ P physics
More informationIMPORTANT NOTE ABOUT WEBASSIGN:
Week 8 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution
More informationLesson 5 Rotational and Projectile Motion
Lesson 5 Rotational and Projectile Motion Introduction: Connecting Your Learning The previous lesson discussed momentum and energy. This lesson explores rotational and circular motion as well as the particular
More informationNewton s Laws of Motion
Chapter 4 Newton s Laws of Motion PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 4 To understand the meaning
More informationPHYSICS 111 HOMEWORK SOLUTION #10. April 8, 2013
PHYSICS HOMEWORK SOLUTION #0 April 8, 203 0. Find the net torque on the wheel in the figure below about the axle through O, taking a = 6.0 cm and b = 30.0 cm. A torque that s produced by a force can be
More informationPhysics Notes Class 11 CHAPTER 5 LAWS OF MOTION
1 P a g e Inertia Physics Notes Class 11 CHAPTER 5 LAWS OF MOTION The property of an object by virtue of which it cannot change its state of rest or of uniform motion along a straight line its own, is
More informationNewton s Third Law. object 1 on object 2 is equal in magnitude and opposite in direction to the force exerted by object 2 on object 1
Newton s Third Law! If two objects interact, the force exerted by object 1 on object 2 is equal in magnitude and opposite in direction to the force exerted by object 2 on object 1!! Note on notation: is
More informationLinear Centripetal Tangential speed acceleration acceleration A) Rω Rω 2 Rα B) Rω Rα Rω 2 C) Rω 2 Rα Rω D) Rω Rω 2 Rω E) Rω 2 Rα Rω 2 Ans: A
1. Two points, A and B, are on a disk that rotates about an axis. Point A is closer to the axis than point B. Which of the following is not true? A) Point B has the greater speed. B) Point A has the lesser
More informationRotational Dynamics. Luis Anchordoqui
Rotational Dynamics Angular Quantities In purely rotational motion, all points on the object move in circles around the axis of rotation ( O ). The radius of the circle is r. All points on a straight line
More informationObjective: Equilibrium Applications of Newton s Laws of Motion I
Type: Single Date: Objective: Equilibrium Applications of Newton s Laws of Motion I Homework: Assignment (111) Read (4.14.5, 4.8, 4.11); Do PROB # s (46, 47, 52, 58) Ch. 4 AP Physics B Mr. Mirro Equilibrium,
More informationSolution Derivations for Capa #10
Solution Derivations for Capa #10 1) The flywheel of a steam engine runs with a constant angular speed of 172 rev/min. When steam is shut off, the friction of the bearings and the air brings the wheel
More informationTIME OF COMPLETION DEPARTMENT OF NATURAL SCIENCES. PHYS 2212, Exam 2 Section 1 Version 1 April 16, 2014 Total Weight: 100 points
TIME OF COMPLETION NAME DEPARTMENT OF NATURAL SCIENCES PHYS 2212, Exam 2 Section 1 Version 1 April 16, 2014 Total Weight: 100 points 1. Check your examination for completeness prior to starting. There
More informationChapter 4 Dynamics: Newton s Laws of Motion. Copyright 2009 Pearson Education, Inc.
Chapter 4 Dynamics: Newton s Laws of Motion Force Units of Chapter 4 Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal
More information2. (P2.1 A) a) A car travels 150 km in 3 hours, what is the cars average speed?
Physics: Review for Final Exam 1 st Semester Name Hour P2.1A Calculate the average speed of an object using the change of position and elapsed time 1. (P2.1 A) What is your average speed if you run 140
More informationChapter 4. Forces I. 4.1 The Important Stuff Newton s First Law Newton s Second Law
Chapter 4 Forces I 4.1 The Important Stuff 4.1.1 Newton s First Law With Newton s Laws we begin the study of how motion occurs in the real world. The study of the causes of motion is called dynamics, or
More informationcircular motion & gravitation physics 111N
circular motion & gravitation physics 111N uniform circular motion an object moving around a circle at a constant rate must have an acceleration always perpendicular to the velocity (else the speed would
More informationChapter 5 Newton s Laws of Motion
Chapter 5 Newton s Laws of Motion Sir Isaac Newton (1642 1727) Developed a picture of the universe as a subtle, elaborate clockwork slowly unwinding according to welldefined rules. The book Philosophiae
More informationAP Physics Newton's Laws Practice Test
AP Physics Newton's Laws Practice Test Answers: A,D,C,D,C,E,D,B,A,B,C,C,A,A 15. (b) both are 2.8 m/s 2 (c) 22.4 N (d) 1 s, 2.8 m/s 16. (a) 12.5 N, 3.54 m/s 2 (b) 5.3 kg 1. Two blocks are pushed along a
More informationTOP VIEW. FBD s TOP VIEW. Examination No. 2 PROBLEM NO. 1. Given:
RLEM N. 1 Given: Find: vehicle having a mass of 500 kg is traveling on a banked track on a path with a constant radius of R = 1000 meters. t the instant showing, the vehicle is traveling with a speed of
More informationChapter 5: Circular Motion
Page 1 Chapter 5: Circular Motion Rotating Objects: Wheels, moon, earth, CDs, DVDs etc. Rigid bodies. Description of circular motion. Angular Position, Angular Displacement θ r s Angle (in radians) θ =
More informationPhysics 2A, Sec B00: Mechanics  Winter 2011 Instructor: B. Grinstein Final Exam
Physics 2A, Sec B00: Mechanics  Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry
More informationPHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?
1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always
More informationNewton s Laws of Motion
Physics Newton s Laws of Motion Newton s Laws of Motion 4.1 Objectives Explain Newton s first law of motion. Explain Newton s second law of motion. Explain Newton s third law of motion. Solve problems
More informationPHY231 Section 1, Form B March 22, 2012
1. A car enters a horizontal, curved roadbed of radius 50 m. The coefficient of static friction between the tires and the roadbed is 0.20. What is the maximum speed with which the car can safely negotiate
More informationCenter of Mass/Momentum
Center of Mass/Momentum 1. 2. An Lshaped piece, represented by the shaded area on the figure, is cut from a metal plate of uniform thickness. The point that corresponds to the center of mass of the Lshaped
More informationInClass Problems 1416: Uniform Circular Motion and Gravitation Solutions
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01T Fall Term 2004 InClass Problems 1416: Uniform Circular Motion and Gravitation Solutions Section Table and Group Number Names
More informationPHYS101 The Laws of Motion Spring 2014
The Laws of Motion 1. An object of mass m 1 = 55.00 kg placed on a frictionless, horizontal table is connected to a string that passes over a pulley and then is fastened to a hanging object of mass m 2
More informationAP1 Gravity. at an altitude equal to twice the radius (R) of the planet. What is the satellite s speed assuming a perfectly circular orbit?
1. A satellite of mass m S orbits a planet of mass m P at an altitude equal to twice the radius (R) of the planet. What is the satellite s speed assuming a perfectly circular orbit? (A) v = Gm P R (C)
More informationLecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014
Lecture 07: Work and Kinetic Energy Physics 2210 Fall Semester 2014 Announcements Schedule next few weeks: 9/08 Unit 3 9/10 Unit 4 9/15 Unit 5 (guest lecturer) 9/17 Unit 6 (guest lecturer) 9/22 Unit 7,
More information041. Newton s First Law Newton s first law states: Sections Covered in the Text: Chapters 4 and 8 F = ( F 1 ) 2 + ( F 2 ) 2.
Force and Motion Sections Covered in the Text: Chapters 4 and 8 Thus far we have studied some attributes of motion. But the cause of the motion, namely force, we have essentially ignored. It is true that
More information5.2 Rotational Kinematics, Moment of Inertia
5 ANGULAR MOTION 5.2 Rotational Kinematics, Moment of Inertia Name: 5.2 Rotational Kinematics, Moment of Inertia 5.2.1 Rotational Kinematics In (translational) kinematics, we started out with the position
More informationPhysics1 Recitation7
Physics1 Recitation7 Rotation of a Rigid Object About a Fixed Axis 1. The angular position of a point on a wheel is described by. a) Determine angular position, angular speed, and angular acceleration
More informationAAPT UNITED STATES PHYSICS TEAM AIP F = ma Contest 25 QUESTIONS  75 MINUTES INSTRUCTIONS
2014 F = ma Exam 1 AAPT UNITED STATES PHYSICS TEAM AIP 2014 2014 F = ma Contest 25 QUESTIONS  75 MINUTES INSTRUCTIONS DO NOT OPEN THIS TEST UNTIL YOU ARE TOLD TO BEGIN Use g = 10 N/kg throughout this
More informationExplaining Motion:Forces
Explaining Motion:Forces Chapter Overview (Fall 2002) A. Newton s Laws of Motion B. Free Body Diagrams C. Analyzing the Forces and Resulting Motion D. Fundamental Forces E. Macroscopic Forces F. Application
More informationChapter 5 Newton s Laws of Motion
Chapter 5 Newton s Laws of Motion Force and Mass Units of Chapter 5 Newton s First Law of Motion Newton s Second Law of Motion Newton s Third Law of Motion The Vector Nature of Forces: Forces in Two Dimensions
More informationEQUATIONS OF MOTION: ROTATION ABOUT A FIXED AXIS
EQUATIONS OF MOTION: ROTATION ABOUT A FIXED AXIS Today s Objectives: Students will be able to: 1. Analyze the planar kinetics of a rigid body undergoing rotational motion. InClass Activities: Applications
More informationExample (1): Motion of a block on a frictionless incline plane
Firm knowledge of vector analysis and kinematics is essential to describe the dynamics of physical systems chosen for analysis through ewton s second law. Following problem solving strategy will allow
More informationHW Set II page 1 of 9 PHYSICS 1401 (1) homework solutions
HW Set II page 1 of 9 450 When a large star becomes a supernova, its core may be compressed so tightly that it becomes a neutron star, with a radius of about 20 km (about the size of the San Francisco
More informationCHAPTER 13 LINEAR AND ANGULAR MOTION
CHAPTER 13 LINEAR AND ANGULAR MOTION EXERCISE 73, Page 17 1. A pulley driving a belt has a diameter of 360 mm and is turning at 700/π revolutions per minute. Find the angular velocity of the pulley and
More informationCh 6 Forces. Question: 9 Problems: 3, 5, 13, 23, 29, 31, 37, 41, 45, 47, 55, 79
Ch 6 Forces Question: 9 Problems: 3, 5, 13, 23, 29, 31, 37, 41, 45, 47, 55, 79 Friction When is friction present in ordinary life?  car brakes  driving around a turn  walking  rubbing your hands together
More informationChapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc.
Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces Units of Chapter 5 Applications of Newton s Laws Involving Friction Uniform Circular Motion Kinematics Dynamics of Uniform Circular
More informationThere are three different properties associated with the mass of an object:
Mechanics Notes II Forces, Inertia and Motion The mathematics of calculus, which enables us to work with instantaneous rates of change, provides a language to describe motion. Our perception of force is
More informationCentripetal Force. 1. Introduction
1. Introduction Centripetal Force When an object travels in a circle, even at constant speed, it is undergoing acceleration. In this case the acceleration acts not to increase or decrease the magnitude
More informationNEWTON S LAWS OF MOTION
NEWTON S LAWS OF MOTION Background: Aristotle believed that the natural state of motion for objects on the earth was one of rest. In other words, objects needed a force to be kept in motion. Galileo studied
More informationChapter 3.8 & 6 Solutions
Chapter 3.8 & 6 Solutions P3.37. Prepare: We are asked to find period, speed and acceleration. Period and frequency are inverses according to Equation 3.26. To find speed we need to know the distance traveled
More informationNewton s Universal Law of Gravitation The Apple and the Moon Video
Name Date Pd Newton s Universal Law of Gravitation The Apple and the Moon Video Objectives Recognize that a gravitational force exists between any two objects and that the force is directly proportional
More informationCentripetal Force. This result is independent of the size of r. A full circle has 2π rad, and 360 deg = 2π rad.
Centripetal Force 1 Introduction In classical mechanics, the dynamics of a point particle are described by Newton s 2nd law, F = m a, where F is the net force, m is the mass, and a is the acceleration.
More informationPhysics Midterm Review. MultipleChoice Questions
Physics Midterm Review MultipleChoice Questions 1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B. 22.5 km C. 25 km D. 45 km E. 50 km 2. A bicyclist moves
More informationPhysics 101 Prof. Ekey. Chapter 5 Force and motion (Newton, vectors and causing commotion)
Physics 101 Prof. Ekey Chapter 5 Force and motion (Newton, vectors and causing commotion) Goal of chapter 5 is to establish a connection between force and motion This should feel like chapter 1 Questions
More informationPhysics 271 FINAL EXAMSOLUTIONS Friday Dec 23, 2005 Prof. Amitabh Lath
Physics 271 FINAL EXAMSOLUTIONS Friday Dec 23, 2005 Prof. Amitabh Lath 1. The exam will last from 8:00 am to 11:00 am. Use a # 2 pencil to make entries on the answer sheet. Enter the following id information
More informationThis week s homework. 2 parts Quiz on Friday, Ch. 4 Today s class: Newton s third law Friction Pulleys tension. PHYS 2: Chap.
This week s homework. 2 parts Quiz on Friday, Ch. 4 Today s class: Newton s third law Friction Pulleys tension PHYS 2: Chap. 19, Pg 2 1 New Topic Phys 1021 Ch 7, p 3 A 2.0 kg wood box slides down a vertical
More informationPHYSICS 111 HOMEWORK SOLUTION #10. April 10, 2013
PHYSICS 111 HOMEWORK SOLUTION #10 April 10, 013 0.1 Given M = 4 i + j 3 k and N = i j 5 k, calculate the vector product M N. By simply following the rules of the cross product: i i = j j = k k = 0 i j
More information2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration.
2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration. Dynamics looks at the cause of acceleration: an unbalanced force. Isaac Newton was
More informationPH 2211D Spring Force and Motion II. Lecture Chapter 6 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition)
PH 2211D Spring 2013 Force and Motion II Lecture 1213 Chapter 6 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition) Chapter 6 Force and Motion II In this chapter we will cover the following
More informationMechanics 1: Conservation of Energy and Momentum
Mechanics : Conservation of Energy and Momentum If a certain quantity associated with a system does not change in time. We say that it is conserved, and the system possesses a conservation law. Conservation
More informationPhysics 2101 Section 3 March 19th : Ch. : Ch. 13 Announcements: Quiz today. Class Website:
Physics 2101 Section 3 March 19 th : Ch. 13 Announcements: Quiz today. Class Website: http://www.phys.lsu.edu/classes/spring2010/phys21013/ http://www.phys.lsu.edu/~jzhang/teaching.html Chapt. 13: Gravitation
More informationRotational inertia (moment of inertia)
Rotational inertia (moment of inertia) Define rotational inertia (moment of inertia) to be I = Σ m i r i 2 or r i : the perpendicular distance between m i and the given rotation axis m 1 m 2 x 1 x 2 Moment
More informationG U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M
G U I D E T O A P P L I E D O R B I T A L M E C H A N I C S F O R K E R B A L S P A C E P R O G R A M CONTENTS Foreword... 2 Forces... 3 Circular Orbits... 8 Energy... 10 Angular Momentum... 13 FOREWORD
More informationNewton s Laws of Motion
Chapter 4 Newton s Laws of Motion PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Modified by P. Lam 7_8_2016 Goals for Chapter 4
More informationAssignment Work (Physics) Class :Xi Chapter :04: Motion In PLANE
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. Assignment Work (Physics) Class :Xi Chapter :04: Motion In PLANE State law of parallelogram of vector addition and derive expression for resultant of two vectors
More informationSerway_ISM_V1 1 Chapter 4
Serway_ISM_V1 1 Chapter 4 ANSWERS TO MULTIPLE CHOICE QUESTIONS 1. Newton s second law gives the net force acting on the crate as This gives the kinetic friction force as, so choice (a) is correct. 2. As
More informationQUESTION BANK UNIT6 CHAPTER8 GRAVITATION
QUESTION BANK UNIT6 CHAPTER8 GRAVITATION I. One mark Questions: 1. State Kepler s law of orbits. 2. State Kepler s law of areas. 3. State Kepler s law of periods. 4. Which physical quantity is conserved
More informationVectors and the Inclined Plane
Vectors and the Inclined Plane Introduction: This experiment is designed to familiarize you with the concept of force as a vector quantity. The inclined plane will be used to demonstrate how one force
More information2.2 NEWTON S LAWS OF MOTION
2.2 NEWTON S LAWS OF MOTION Sir Isaac Newton (16421727) made a systematic study of motion and extended the ideas of Galileo (15641642). He summed up Galileo s observation in his three laws of motion
More informationExam #1 PHYSICS 211 Monday June 29 th, 2009 Please write down your name also on the back page of this exam
Exam #1 PHYSICS 211 Monday June 29 th, 2009 NME Please write down your name also on the back page of this exam 1. particle moves along a circular path in the counterclockwise direction, as indicated in
More informationMechanics Cycle 1 Chapter 13. Chapter 13
Chapter 13 Torque * How Shall a Force be Applied to Start a Rotation? The Torque Formula Systems in Equilibrium: Statics Glimpse of Newton s rotational second law: Q: Review: What causes linear acceleration
More informationChapter 3: Force and Motion
Force and Motion Cause and Effect Chapter 3 Chapter 3: Force and Motion Homework: All questions on the Multiple Choice and the oddnumbered questions on Exercises sections at the end of the chapter. In
More informationPhysics 201 Homework 5
Physics 201 Homework 5 Feb 6, 2013 1. The (nonconservative) force propelling a 1500kilogram car up a mountain 1.21 10 6 joules road does 4.70 10 6 joules of work on the car. The car starts from rest
More informationSTATICS. Introduction VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.
Eighth E CHAPTER VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Introduction Lecture Notes: J. Walt Oler Texas Tech University Contents What is Mechanics? Fundamental
More informationConcept Review. Physics 1
Concept Review Physics 1 Speed and Velocity Speed is a measure of how much distance is covered divided by the time it takes. Sometimes it is referred to as the rate of motion. Common units for speed or
More informationNewton's laws of motion
Newton's laws of motion Forces Forces as vectors Resolving vectors Explaining motion  Aristotle vs Newton Newton s first law Newton s second law Weight Calculating acceleration Newton s third law Moving
More informationwww.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x
Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity
More information1 of 7 10/2/2009 1:13 PM
1 of 7 10/2/2009 1:13 PM Chapter 6 Homework Due: 9:00am on Monday, September 28, 2009 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]
More informationPhysics 41 HW Set 1 Chapter 15
Physics 4 HW Set Chapter 5 Serway 8 th OC:, 4, 7 CQ: 4, 8 P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59, 67, 74 OC CQ P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59,
More informationMechanics Lecture Notes. 1 Notes for lectures 12 and 13: Motion in a circle
Mechanics Lecture Notes Notes for lectures 2 and 3: Motion in a circle. Introduction The important result in this lecture concerns the force required to keep a particle moving on a circular path: if the
More informationRotation, Angular Momentum
This test covers rotational motion, rotational kinematics, rotational energy, moments of inertia, torque, crossproducts, angular momentum and conservation of angular momentum, with some problems requiring
More informationEQUATIONS OF MOTION: ROTATION ABOUT A FIXED AXIS
EQUATIONS OF MOTION: ROTATION ABOUT A FIXED AXIS Today s Objectives: Students will be able to: 1. Analyze the planar kinetics InClass Activities: of a rigid body undergoing rotational motion. Check Homework
More informationMass, energy, power and time are scalar quantities which do not have direction.
Dynamics Worksheet Answers (a) Answers: A vector quantity has direction while a scalar quantity does not have direction. Answers: (D) Velocity, weight and friction are vector quantities. Note: weight and
More informationLecture 9. Friction in a viscous medium Drag Force Quantified
Lecture 9 Goals Describe Friction in Air (Ch. 6) Differentiate between Newton s 1 st, 2 nd and 3 rd Laws Use Newton s 3 rd Law in problem solving Assignment: HW4, (Chap. 6 & 7, due 10/5) 1 st Exam Thurs.,
More informationChapter 13  Gravity. David J. Starling Penn State Hazleton Fall Chapter 13  Gravity. Objectives (Ch 13) Newton s Law of Gravitation
The moon is essentially gray, no color. It looks like plaster of Paris, like dirty beach sand with lots of footprints in it. James A. Lovell (from the Apollo 13 mission) David J. Starling Penn State Hazleton
More informationCalculate the centripetal acceleration of the boot just before impact
(ii) alculate the centripetal acceleration of the boot just before impact....... (iii) iscuss briefly the radial force on the knee joint before impact and during the impact................. (4) (Total
More informationChapter 13. Gravitation
Chapter 13 Gravitation 13.2 Newton s Law of Gravitation In vector notation: Here m 1 and m 2 are the masses of the particles, r is the distance between them, and G is the gravitational constant. G = 6.67
More information