Transport in Plants Notes AP Biology Mrs. Laux 3 levels of transport occur in plants: 1. Uptake of water and solutes by individual cells

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Transport in Plants Notes AP Biology Mrs. Laux 3 levels of transport occur in plants: 1. Uptake of water and solutes by individual cells"

Transcription

1 3 levels of transport occur in plants: 1. Uptake of water and solutes by individual cells -for photosynthesis and respiration -ex: absorption of H 2 O /minerals by root hairs 2. Short distance cell-to-cell transport at level of tissues and organs 3. Long distance transport of sap by xylem and phloem at whole plant level A. Transport at the cellular level -plasma membrane selective permeability 1. Passive transport -when solute travels down a concentration gradient -no energy -transport proteins sometimes used -aid/speed up carrying of materials across membrane 2. Active transport -against concentration gradient -energy requiring process -proton pump important in plants 1

2 -like in respiration and photosynthesis in making of ATP -here, opposite, proton pump hydrolyzes ATP and uses energy to drive H+ ions out of the cell -produces a proton gradient and electrochemical gradient outside of cell -can accomplish two things: a. entry of + ions, such as K+, when concentration is greater outside the cell than in -because inside is more (-) with all H + s pumped out, K+ can easily enter the cell because of charge with electrochemical gradient b. entry of (-) ions, such as nitrate ion-no 3 - -energy stored by H+ ions on outside of cell (water behind dam) can be used to transport solutes against their concentration gradient -inside cells is (-), NO 3 - moving into cell requires energy -energy comes from H+ gradient -energy is used in respiration to make ATP c. entry of a neutral solute -sucrose 2

3 Water Potential and Osmosis -osmosis net uptake or loss of water by the cell; depends on which component, the cell or extracellular fluid has higher water potential -water potential, Ψ, psi free energy of water that is a consequence of solute concentration and applied pressure -water moves high Ψ low Ψ -unit MPa (megapascals) ~10 atm -pure H 2 O-open container 0 MPa -add solutes, lower Ψ to (-) -increase pressure, increase Ψ -decrease pressure, decrease Ψ (-) -bulk flow movement of H 2 O due to pressure differences Ψ = pressure potential and solute concentration potential Ψ = Ψp Ψs 0.1 M solution has a solute potential of 0.23 MPa -in open container Ψp = 0 -therefore, Ψ = Ψp Ψs = = plants will gain or lose water to intercellular fluids depending on their water potential -if flaccid (limp) cell is placed in a hypertonic solution, cell will plasmolyze -protoplast will pull away from cell wall -if flaccid cell is placed in hypotonic solution, cell will swell and turgor pressure develops 3

4 -when pressure on cell wall is equal to osmotic pressure, equilibrium is reached -no more net movement of H 2 O Tonoplast -membrane surrounding large central vacuole in plant cells -important in regulating intracellular conditions -contains integral proteins-control movement of solutes between cytosol and vacuole -has membrane potential -proton pumps maintain higher ph in cytosol because pump H + s into the vacuole -this proton gradient helps transport solutes into vacuole for storage B. Short Distance transport at the level of tissues and organs -can happen via: 1. across plasma membrane and through cell walls 2. symplast route solutes move from cell to cell through cells via plasmodesmata -doesn t go through membrane but through the thin streams of cytoplasm -ex: endodermis 3. the apoplast route water and solute move past outside of cell walls -between cells -never enters cells 4

5 C. Long distance travel through whole plant -via vascular tissues -passive transport too slow -instead travel via: -bulk flow through xylem and phloem -transpiration- pulls sap up tree from roots in xylem -hydrostatic pressure develops at one end of sieve tubes in phloem-forces sap along Absorption of water and minerals by roots -absorbed via the following pathway: soil epidermis root cortex xylem 5

6 1. soil epidermis: -most absorption occurs near root tips where epidermis is permeable to water -root hairs increase surface area 2. epidermis to root cortex: -lateral transport is usually a combination of apoplast and symplast routes a. apoplast route -water and minerals flow through hydrophilic cell walls and pass freely b. symplast route -makes mineral absorption possible -active transport into epidermal and cortex cells allows sufficient supply of minerals to pass through -diffusion will not allow enough into cells-concentration too low -ex: transport proteins of tonoplast and plasma membrane actively pump K+ into root cells and Na+ out 3. root cortex xylem 6

7 -only minerals using symplast route move directly into vascular tissues -minerals and water passing through apoplasts are blocked by the Casparian strip -water and minerals enter stele through the cells of the endodermis -Casparian strip only allows certain ions to pass into stele -endodermal cells discharge contents that it is carrying via symplast, into the apoplast of xylem -tracheids and vessels are part of apoplast -as water and minerals enter apoplast (via diffusion and active transport) they are free to enter tracheids and vessels Transpiration of sap through xylem -sap=water + minerals -water transported up from roots must replace that lost by transpiration (evaporation of water from leaves) -also provides nutrients (minerals) to shoot system -How water (sap) climbs xylem 1. pushing xylem sap root pressure 7

8 -as water enters the stele, it enters via osmosis -brings with it minerals/ions from the soil -as water moves up the column, the concentration decreases in roots, even though mineral concentration remains high, this causes water flow because of the higher concentration of solutes inside the stele -during the day, this forces water upward (root pressure) to an extent and water evaporates through air spaces via transpiration -at night, transpiration is decreased, stomata are closed, and root pressure continues -this causes water/sap droplets to escape through leaves -called guttation -this can be seen as small droplets of sap on grass and leaves in the morning -Root pressure, although it does have an effect on the movement of sap through the xylem, it is not the leading mechanism driving the ascent of xylem sap a. cannot keep up with rate of transpiration -water evaporates more quickly b. can only force water up a few meters 2. Pulling xylem sap cohesion-tension theory 8

9 -deals with two aspects: -transpiration pulls sap upward -cohesion of water transmits upward pull along entire length of the xylem a. transpirational pull -depends on negative pressure -gaseous water in air spaces diffuses into drier atmosphere through stomata -lost water vapor is replaced by evaporation from mesophylls bordering the air spaces -as water evaporates, this causes a negative pressure, tension in xylem (syringe) -this tension causes water to be pulled from xylem through mesophyll, towards surface film on cells bordering the stomata -bulk flow of water through xylem cells occurs as molecules evaporate from leaf; therefore, as one water molecule evaporates from leaf, it pulls all the other water molecules up along behind it -this is because of: b. cohesion and adhesion of water -allows for transpirational pull to occur -cohesion between water molecules due to H-bonding allows one cell to pull chain of cells behind it -adhesion of water (via H-bonding) to hydrophilic cell walls of xylem cells also helps pull against gravity 9

10 -small diameter of tracheids and vessels is important to adhesion -results in capillary action -movement of liquids in narrow tubes -capillary action makes small contribution unless coupled with transpirational pull -upward pull of sap causes tension in xylem, decreases Ψ, and allows passive flow soil stele -flowing water via capillary action forms a meniscus in xylem Water vapor diffuses from the moist air spaces of the leaf to the drier air outside via stomata. Evaporation from the water film coating the mesophyll cells maintains the high humidity of the air spaces. This loss of water causes the water film to form menisci that become more and more concave as the rate of transpiration increases. A meniscus has a tension that is inversely proportional to the radius of the curved water surface. Thus, as the water film recedes and its menisci become more concave, the tension of the water film increase. Tension is a negative pressure- a force that pulls water from locations where hydrostatic pressure is greater. The tension of water lining the air spaces of the leaf is the physical basis of transpirational pull, which draws water out of xylem. -actively flowing water in xylem tissues never forms meniscus because there is continuously flowing water If water vapor or another gas is allowed to enter xylem tissue -cavitation formation of a water vapor pocket in xylem 10

11 -vessels cannot function again unless refilled by root pressure -this can only happen in small plants, root pressure can only raise water a few meters -pits between xylem vessels allow for detours around cavitated area -secondary growth adds new xylem vessels each year -ascent of xylem sap is solar powered -sun causes evaporation; therefore, negative pressure -bulk flow in xylem depends only on this pressure -while osmosis in roots and leaves are due to small gradients in water potential caused by both solute and pressure gradients Control of the Stomata -opening and closing of the stomata influence gas exchange, transpiration, ascent of sap, and photosynthesis -when stomata are open, CO 2 can enter: therefore, photosynthesis can occur -H 2 O can escape -good, because water and nutrients can be carried up xylem to leaf cells -also evaporative cooling-allows cooling -bad, because too much water can escape and cause desiccation -When stomata are closed -no water loss, therefore, escape wilting (too much evaporation, not enough delivery -No CO 2 enters; therefore, no photosynthesis can occur -also as concentration of CO 2 decreases in air spaces and concentration of O 2 increases (product of photosynthesis) in air spaces, run risk of photorespiration occurring -each stoma is surrounded by 2 guard cells -cell walls are not uniform, the cell wall bordering stoma is thicker than the rest of cell wall -composed of cellulose microfibrils arranged radially, from outside to stoma side -when turgid (full of water) cells buckle due to microfibrils and stomata open -when flaccid (water leaving) guard cells sag and openings close 11

12 -Guard cells control the following: 1. stomata close when temps are high -reduces water loss -shuts down photosynthesis 2. stomata open when CO 2 concentrations are low inside the leaf -allows photosynthesis 3. stomata close at night and open during the day -because in leaf, CO 2 low during the day-being used for photosynthesis, at night, no photosynthesis- CO 2 concentration remains high (because of respiration) How guard cells control stomata: -guard cells open when turgid (filled with water) -closed when no water (flaccid) -this uptake and loss of water is controlled mainly by the uptake and loss of K+ ions by guard cells -when K+ diffuses into cell and then vacuole by plasma membrane and then the tonoplast, this decrease water potential (Ψ) in guard cells -water flows into guard cell -high Ψ to low Ψ -most of water is stored in vacuole; therefore, tonoplast also plays a major role -this increase in positive charge is balanced by: -uptake of Cl - ions -uptake of other negative ions, especially organic acids -loss of H+, from organic substances/acids -closing of guard cells results when K+ exits the cell and creates osmotic loss of water Guard cells open and close because of internal and external cues -stomata open at dawn in response to: 1. light induces guard cells to take up K+ by -beginning photosynthesis, making ATP for H+ pumps 12

13 2. decrease of CO 2 in air spaces due to onset of photosynthesis 3. internal clock will cause guard cells to open even if kept in dark (circadian rhythm~24 hours) -guard cells may close stomata if: 1. water deficiency results in flaccid guard cells 2. a hormone is produced due to water deficiency 3. high temps increase CO 2 in air spaces due to increased respiration, closing guard cells Evolutionary aspects that reduce transpiration: 1. Plants have structural adaptations to hot, dry climates 2. CAM photosynthesis Transport of sugars translocation transport of products of photosynthesis by phloem to the rest of the plant -in angiosperms, sieve tube members are specialized cells that function in translocation -pores in sieve plates allow phloem sap to move freely along sieve tube -phloem sap=sucrose, minerals, amino acids, and hormones -Considered source-to-sink transport -source organ where sugar is produced (usually leaves) or where starch is broken down (leaves, stems, roots, etc.) -sink organ that consumes or stores sugar -ex: growing parts of plants, fruits, non-green parts of plants, stems, trunks, etc. -sugar flows source sink -can depend on season -ex: tuber sink when storing in summer, source in spring -minerals are also transported to sinks 13

14 -sink is usually supplied by nearest source -direction of phloem can change, depending on location of source and sink -whereas, xylem, only up plant Phloem Loading and Unloading -sugar from source must be loaded into sieve member before being translocated to a sink -process follows: 1. Sugars enter sieve tube members -soluble carbohydrates, sucrose and fructose, move from sight of production to sieve tube members by active transport -this develops a higher concentration of solutes in the sieve tube than in the sink 2. Water enters sieve tube members - Ψ is higher outside sieve tube than in sieve tube; therefore, water diffuses down concentration gradient and into sieve tube member 3. Pressure in source sieve tube member move water and sugars to sieve tube member at sink through sieve tubes -move via bulk flow (because of pressure) 4. Pressure is reduced at the sink as sugars are removed for use by nearby cells -by active and passive transport -water diffused out of sieve tube members, relieving pressure 14

Chapter 36: Resource Acquisition & Transport in Vascular Plants

Chapter 36: Resource Acquisition & Transport in Vascular Plants Chapter 36: Resource Acquisition & Transport in Vascular Plants 1. Overview of Transport in Plants 2. Transport of Water & Minerals 3. Transport of Sugars 1. Overview of Transport in Plants H 2 O CO 2

More information

1. The leaf is the main photosynthetic factory (Fig. 36.1, p. 702)

1. The leaf is the main photosynthetic factory (Fig. 36.1, p. 702) TRANSPORT IN PLANTS A. Introduction 1. The leaf is the main photosynthetic factory (Fig. 36.1, p. 702) a. This requires a transport system to move water and minerals from the roots to the leaf. This is

More information

PLANTS FORM & FUNCTION TRANSPORT IN PLANTS OVERVIEW OF TRANSPORT IN PLANTS. Plant Form & Function Activity #3 page 1

PLANTS FORM & FUNCTION TRANSPORT IN PLANTS OVERVIEW OF TRANSPORT IN PLANTS. Plant Form & Function Activity #3 page 1 AP BIOLOGY PLANTS FORM & FUNCTION ACTIVITY #3 NAME DATE HOUR TRANSPORT IN PLANTS OVERVIEW OF TRANSPORT IN PLANTS Plant Form & Function Activity #3 page 1 PROTON PUMPS Plant Form & Function Activity #3

More information

Water movement in the xylem Water moves from roots to leaves through the xylem. But how? Hypotheses: 1. Capillary action - water will move upward in

Water movement in the xylem Water moves from roots to leaves through the xylem. But how? Hypotheses: 1. Capillary action - water will move upward in Transport in Plants Two Transport Processes Occur in Plants 1. Carbohydrates carried from leaves (or storage organs) to where they are needed (from sources to sinks) 2. Water transported from roots to

More information

Exchange & Transport in Vascular Plants. Plant Exchange & Transport

Exchange & Transport in Vascular Plants. Plant Exchange & Transport Exchange & Transport in Vascular Plants Plant Exchange & Transport I. II. Local Transport III. Long Distance Transport IV. Gas Exchange Water and Solutes - Uptake by Cells Passive Transport (Diffusion)

More information

3) Transpiration creates a force that pulls water upward in. xylem. 2) Water and minerals transported upward form roots to shoots in.

3) Transpiration creates a force that pulls water upward in. xylem. 2) Water and minerals transported upward form roots to shoots in. 3) Transpiration creates a force that pulls water upward in xylem Figure 36.1 An overview of transport in whole plants (Layer 1) Transport in plants 2) Water and minerals transported upward form roots

More information

23-5 Transport in Plants Slide 1 of 30

23-5 Transport in Plants Slide 1 of 30 1 of 30 Xylem tissue forms a continuous set of tubes that runs from the roots through stems and out into the spongy mesophyll of leaves. Active transport and root pressure cause water to move from soil

More information

Exchange and transport

Exchange and transport Exchange and transport Examples of things which need to be interchanged between an organism and its environment include: Respiratory gases Nutrients Excretory products Heat This exchange can take place

More information

Bio Factsheet January 2001 Number 82

Bio Factsheet January 2001 Number 82 January 2001 Number 82 Transport in Flowering Plants This Factsheet covers the relevant AS syllabus content of the major examination boards. By studying this Factsheet candidates will gain a knowledge

More information

Chapter 4. Water Balance of Plants

Chapter 4. Water Balance of Plants Chapter 4 Water Balance of Plants Main driving forces for water flow from the soil through the plant to the atmosphere Water flow in soil The rate of water flow in soil depends on The size of pressure

More information

WHAT ARE THE DIFFERENCES BETWEEN VASCULAR AND NON- VASCULAR PLANTS?

WHAT ARE THE DIFFERENCES BETWEEN VASCULAR AND NON- VASCULAR PLANTS? WHAT ARE THE DIFFERENCES BETWEEN VASCULAR AND NON- VASCULAR PLANTS? Let s take a closer look. What makes them different on the outside and inside? Learning Intentions To understand how vascular plant cells

More information

Text for Transpiration Water Movement through Plants

Text for Transpiration Water Movement through Plants Text for Transpiration Water Movement through Plants Tracy M. Sterling, Ph.D., 2004 Department of Entomology, Plant Pathology and Weed Science New Mexico State University tsterlin@nmsu.edu http://croptechnology.unl.edu

More information

Plant Structure and Function

Plant Structure and Function Plant Structure and Function Structure and Function Q: How are cells, tissues, and organs organized into systems that carry out the basic functions of a seed plant? 23.1 How are plant tissues organized?

More information

PLANT PHYSIOLOGY. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP /1/A

PLANT PHYSIOLOGY. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP /1/A PLANT PHYSIOLOGY Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 Water in Plants: Absorption, Transport and Transpiration Overview 1. Water in the soil 2. Water absorption by

More information

Transport in plants. Unit 1

Transport in plants. Unit 1 Unit 1 Transport in plants A knowledge of how plants take in and transport substances is vitally important to agriculture. Using this knowledge, scientists are able to develop more effective ways of applying

More information

Transpiration. C should equal D.BUT SOMETIMES. 1. Loss in mass is greater than volume of water added.

Transpiration. C should equal D.BUT SOMETIMES. 1. Loss in mass is greater than volume of water added. Transpiration Transpiration is the loss of water by evaporation from the leaves through the stomata. The source of water for the plants is soil water. It is taken up by root hair cells by osmosis. Once

More information

Transport in Plants. Lab Exercise 25. Introduction. Objectives

Transport in Plants. Lab Exercise 25. Introduction. Objectives Lab Exercise Transport in Plants Objectives - Become familiar and be able to recognize the different types of cells found in the plant s vascular tissue. - Be able to describe root pressure and transpiration

More information

Transport of Water and Solutes in Plants

Transport of Water and Solutes in Plants OpenStax-CNX module: m44708 1 Transport of Water and Solutes in Plants OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 By the end

More information

Photosynthesis. Chemical Energy (e.g. glucose) - They are the ultimate source of chemical energy for all living organisms: directly or indirectly.

Photosynthesis. Chemical Energy (e.g. glucose) - They are the ultimate source of chemical energy for all living organisms: directly or indirectly. Photosynthesis Light Energy transduction Chemical Energy (e.g. glucose) - Only photosynthetic organisms can do this (e.g. plants) - They are the ultimate source of chemical energy for all living organisms:

More information

Two succulent leaf tips are exposed above ground; the rest of the plant lives below ground

Two succulent leaf tips are exposed above ground; the rest of the plant lives below ground Resource Acquisition, Transport, & Plant Nutrition Ch s. 36 & 37 Stone plants (Lithops) are adapted to life in the desert Two succulent leaf tips are exposed above ground; the rest of the plant lives below

More information

LAB 24 Transpiration

LAB 24 Transpiration Name: AP Biology Lab 24 LAB 24 Transpiration Objectives: To understand how water moves from roots to leaves in terms of the physical/chemical properties of water and the forces provided by differences

More information

ABSORPTION, TRANSPORT AND WATER LOSS IN PLANTS

ABSORPTION, TRANSPORT AND WATER LOSS IN PLANTS 8 ABSORPTION, TRANSPORT AND WATER LOSS IN PLANTS Water is the most important component of living cells. It enters the plants through roots and then moves to other parts and is also lost by transpiration

More information

Plant Classification, Structure, Growth and Hormones

Plant Classification, Structure, Growth and Hormones Biology SAT II Review Sheet Plants Plant Classification, Structure, Growth and Hormones Multicellular autotrophs (organisms that use the energy of inorganic materials to produce organic materials) Utilize

More information

PLANT PHYSIOLOGY. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP /1/A

PLANT PHYSIOLOGY. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP /1/A PLANT PHYSIOLOGY Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 Nutrient uptake Solute transport Overview 1. Ion transport in roots 2. Passive and active transport 3. Membrane

More information

B4 Learning Outcome Questions

B4 Learning Outcome Questions Question Name 4 collection methods: What is the formula used to estimate the population size of an organism: What assumptions need to be made when using capture-recapture data? What could affect the distribution

More information

Exam: PLS/BIO 210, December 17 th, 2013

Exam: PLS/BIO 210, December 17 th, 2013 Exam: PLS/BIO 210, December 17 th, 2013 Please identify the correct (and most complete) answers/additions to the following questions/statements (only one correct answer/addition per question/statement):

More information

8/2/2015. Cells Tissues Organs Systems. Lecture 9 Outline (Ch. 35) Plant Structure, Growth, Development. Setting the scene - animal bodies

8/2/2015. Cells Tissues Organs Systems. Lecture 9 Outline (Ch. 35) Plant Structure, Growth, Development. Setting the scene - animal bodies Lecture 9 Outline (Ch. 35) I. Overview of plant systems II. III. IV. Major plant cell types Three plant tissues Three plant organs V. Plant growth A. Meristems B. Primary vs secondary C. Cell elongation

More information

7. A selectively permeable membrane only allows certain molecules to pass through.

7. A selectively permeable membrane only allows certain molecules to pass through. CHAPTER 2 GETTING IN & OUT OF CELLS PASSIVE TRANSPORT Cell membranes help organisms maintain homeostasis by controlling what substances may enter or leave cells. Some substances can cross the cell membrane

More information

Anatomy and Physiology of Leaves

Anatomy and Physiology of Leaves I. Leaf Structure and Anatomy Anatomy and Physiology of Leaves A. Structural Features of the Leaf Question: How do plants respire? Plants must take in CO 2 from the atmosphere in order to photosynthesize.

More information

Cell Biology - Part 2 Membranes

Cell Biology - Part 2 Membranes Cell Biology - Part 2 Membranes The organization of cells is made possible by membranes. Membranes isolate, partition, and compartmentalize cells. 1 Membranes isolate the inside of the cell from the outside

More information

BIOLOGY 12 - Cell Membrane and Cell Wall Function: Chapter Notes

BIOLOGY 12 - Cell Membrane and Cell Wall Function: Chapter Notes BIOLOGY 12 - Cell Membrane and Cell Wall Function: Chapter Notes The cell membrane is the gateway into the cell, and must allow needed things such as nutrients into the cell without letting them escape.

More information

Plant Structure and Function Notes

Plant Structure and Function Notes For plants, when they made the transition from water to land, they had to make adaptations for obtaining water and prevent loss by desiccation (drying out) -water also needed for fertilization of eggs

More information

Lecture 7: Plant Structure and Function. I. Background

Lecture 7: Plant Structure and Function. I. Background Lecture 7: Plant Structure and Function I. Background A. Challenges for terrestrial plants 1. Habitat is divided a. Air is the source of CO2 for photosynthesis i. Sunlight cannot penetrate soil b. Soil

More information

Plant Structure and Growth

Plant Structure and Growth Plant Structure and Growth Plant body divided into root and shoot Shoot consists of leaves, buds, flowers, and stem Root consists of primary and secondary (lateral) roots Growth occurs at meristems Apical

More information

NUTRIENT UPTAKE AND ASSIMILATION

NUTRIENT UPTAKE AND ASSIMILATION BIOL 695 NUTRIENT UPTAKE AND ASSIMILATION CHAPTER 3: Mengel et al., 5th Ed 1 PLANT LEAF CELL BASIC CELL STRUCTURE Golgi vesicle tonoplast mitochondrion Plasma membrane vacuole er nucleus chloroplast c

More information

Flowers; Seeds enclosed in fruit

Flowers; Seeds enclosed in fruit Name Class Date Chapter 22 Plant Diversity Section Review 22-1 Reviewing Key Concepts Short Answer On the lines provided, answer the following questions. 1. Describe the main characteristics of plants.

More information

Plants have organs composed of different tissues, which in turn are composed of different cell types

Plants have organs composed of different tissues, which in turn are composed of different cell types Plant Structure, Growth, & Development Ch. 35 Plants have organs composed of different tissues, which in turn are composed of different cell types A tissue is a group of cells consisting of one or more

More information

IGCSE and GCSE Biology. Answers to questions. Section 2. Flowering Plants. Chapters 6-9. Chapter 6 Plant structure and function

IGCSE and GCSE Biology. Answers to questions. Section 2. Flowering Plants. Chapters 6-9. Chapter 6 Plant structure and function 1 IGCSE and GCSE Biology. Answers to questions Section 2. Flowering Plants. Chapters 6-9 Chapter 6 Plant structure and function Page 54 1. a Epidermis. Helps maintain shape, reduces evaporation, resists

More information

10B Plant Systems Guided Practice

10B Plant Systems Guided Practice 10B Plant Systems Guided Practice Reproduction Station 1 1. Observe Plant A. Locate the following parts of the flower: stamen, stigma, style, ovary. 2. Draw and label the parts of a flower (listed above)

More information

Plants I - Water and Nutrient Management: Plant Adaptations to Life on Land

Plants I - Water and Nutrient Management: Plant Adaptations to Life on Land Plants I - Water and Nutrient Management: Plant Adaptations to Life on Land Objectives: Be able to illustrate the evolutionary relationships between plants and algae. Be able to list the features that

More information

Q1. The table shows the composition of blood entering and leaving the lungs. Concentration in arbitrary units. Oxygen Carbon dioxide 46 40

Q1. The table shows the composition of blood entering and leaving the lungs. Concentration in arbitrary units. Oxygen Carbon dioxide 46 40 Q. The table shows the composition of blood entering and leaving the lungs. Gas Concentration in arbitrary units Blood entering lungs Blood leaving lungs Oxygen 40 00 Carbon dioxide 46 40 (a) Describe,

More information

Six major functions of membrane proteins: Transport Enzymatic activity

Six major functions of membrane proteins: Transport Enzymatic activity CH 7 Membranes Cellular Membranes Phospholipids are the most abundant lipid in the plasma membrane. Phospholipids are amphipathic molecules, containing hydrophobic and hydrophilic regions. The fluid mosaic

More information

STRUCTURAL ORGANIZATION OF VASCULAR PLANTS

STRUCTURAL ORGANIZATION OF VASCULAR PLANTS STRUCTURAL ORGANIZATION OF VASCULAR PLANTS STRUCTURAL ORGANIZATION OF VASCULAR PLANTS The vascular plant body plan Root system Shoot system Stems Leaves Flowers 2 PLANT TISSUES Tissue = collection of similar

More information

The Cell Membrane MEMBRANE STRUCTURE AND FUNCTION. Mader: Chapter Membranes are a fluid mosaic of phospholipids and proteins

The Cell Membrane MEMBRANE STRUCTURE AND FUNCTION. Mader: Chapter Membranes are a fluid mosaic of phospholipids and proteins The Cell Membrane Mader: Chapter 4 MEMBRANE STRUCTURE AND FUNCTION 5.1 Membranes are a fluid mosaic of! Membranes are composed of phospholipids and proteins Membranes are commonly described as a fluid

More information

Movement in and out of cells

Movement in and out of cells Movement in and out of cells Cells need to take in oxygen and nutrients for respiration. They also need to remove waste products such as CO 2. The cell membrane controls movement of materials. Generally,

More information

Plant Growth Processes: Transpiration, Photosynthesis, and Respiration

Plant Growth Processes: Transpiration, Photosynthesis, and Respiration EXTENSION Know how. Know now. EC1268 Plant Growth Processes: Transpiration, Photosynthesis, and Respiration David R. Holding, Assistant Professor Anne M. Streich, Associate Professor of Practice Extension

More information

A.P. Biology Plant Notes

A.P. Biology Plant Notes A.P. Biology Plant Notes Basic Characteristics: Multicellular Eukaryotes, photosynthetic autotrophs, cell walls contain cellulose, food reserve that is starch stored in plastids, chloroplasts with photosynthetic

More information

Transport of Materials in Plants and Animals

Transport of Materials in Plants and Animals 26 Transport of Materials in Plants and Animals All plants need water. The wilted leaves recover when water is added to the soil, which means that water has been conducted upward into the leaves. You have

More information

7-3 Cell Boundaries. Diffusion Through Cell Boundaries

7-3 Cell Boundaries. Diffusion Through Cell Boundaries Diffusion Through Cell Boundaries Every living cell exists in a liquid environment. The cell membrane regulates movement of dissolved molecules from the liquid on one side of the membrane to the liquid

More information

8.2 Cell Transport. **The cell must move different substances into and out of the cell. **8.2 discusses the different methods of cell transport

8.2 Cell Transport. **The cell must move different substances into and out of the cell. **8.2 discusses the different methods of cell transport 8.2 Bellringer.. (1)In your own words, define passive, active, and transport Now, imagine sitting in a boat that is moving downstream with the current. Then, imagine a small motor to move the same boat

More information

CHAPTER 5.1 5.2: Plasma Membrane Structure

CHAPTER 5.1 5.2: Plasma Membrane Structure CHAPTER 5.1 5.2: Plasma Membrane Structure 1. Describe the structure of a phospholipid molecule. Be sure to describe their behavior in relationship to water. 2. What happens when a collection of phospholipids

More information

AGRICULTURAL SCIENCES Vol. I - Transport of Water and Nutrients in Plants - W.E. Riedell, T.E. Schumacher TRANSPORT OF WATER AND NUTRIENTS IN PLANTS

AGRICULTURAL SCIENCES Vol. I - Transport of Water and Nutrients in Plants - W.E. Riedell, T.E. Schumacher TRANSPORT OF WATER AND NUTRIENTS IN PLANTS TRANSPORT OF WATER AND NUTRIENTS IN PLANTS W.E. Riedell Plant Physiologist, U.S. Department of Agriculture, Agricultural Research Service, Brookings, South Dakota, USA T.E. Schumacher Professor, Plant

More information

Exampro GCSE Biology. B3.2 Transport. Name: Class: Higher tier. Author: Date: Time: 65. Marks: 65. Comments: Page 1 of 22

Exampro GCSE Biology. B3.2 Transport. Name: Class: Higher tier. Author: Date: Time: 65. Marks: 65. Comments: Page 1 of 22 Exampro GCSE Biology B3.2 Transport Higher tier Name: Class: Author: Date: Time: 65 Marks: 65 Comments: Page of 22 Q. Blood is part of the circulatory system. (a) (i) Give one function of white blood cells.

More information

Chapter 7: Membrane Structure and Function

Chapter 7: Membrane Structure and Function Name Period Concept 7.1 Cellular membranes are fluid mosaics of lipids and proteins 1. The large molecules of all living things fall into just four main classes. Name them. 2. Explain what is meant when

More information

Lab 4: Osmosis and Diffusion

Lab 4: Osmosis and Diffusion Lab 4: Osmosis and Diffusion The plasma membrane enclosing every cell is the boundary that separates the cell from its external environment. It is not an impermeable barrier, but like all biological membranes,

More information

BIOLOGY 2a SUMMARY SHEET

BIOLOGY 2a SUMMARY SHEET BIOLOGY 2a SUMMARY SHEET B2.1.1 CELLS Most human and animal cells have the following parts. NUCLEUS controls the activities of the cell CYTOPLASM where most of the chemical reactions take place CELL MEMBRANE

More information

Photosynthesis: Harvesting Light Energy

Photosynthesis: Harvesting Light Energy Photosynthesis: Harvesting Light Energy Importance of Photosynthesis A. Ultimate source of energy for all life on Earth 1. All producers are photosynthesizers 2. All consumers and decomposers are dependent

More information

Some Background Concerning Life Science Content Standards for Fifth-Grade Teachers:

Some Background Concerning Life Science Content Standards for Fifth-Grade Teachers: Some Background Concerning Life Science Content Standards for Fifth-Grade Teachers: The Internal Structure of Plants by Ellen Deehan, M.S. Contents 1. Introduction 2. Biological Overview: Structure of

More information

Cell Transport and Plasma Membrane Structure

Cell Transport and Plasma Membrane Structure Cell Transport and Plasma Membrane Structure POGIL Guided Inquiry Learning Targets Explain the importance of the plasma membrane. Compare and contrast different types of passive transport. Explain how

More information

Cell Membrane & Tonicity Worksheet

Cell Membrane & Tonicity Worksheet NAME ANSWER KEY DATE PERIOD Cell Membrane & Tonicity Worksheet Composition of the Cell Membrane & Functions The cell membrane is also called the PLASMA membrane and is made of a phospholipid BI-LAYER.

More information

Allows certain materials and of the cell. The cell membrane is selectively permeable

Allows certain materials and of the cell. The cell membrane is selectively permeable Overview The cell membrane forms a barrier around the cell and separates it from the outside environment What is the main function of the cell membrane? Allows certain materials and of the cell The cell

More information

Diffusion, Osmosis, and Membrane Transport

Diffusion, Osmosis, and Membrane Transport Diffusion, Osmosis, and Membrane Transport Introduction... 2 Diffusion and osmosis as related to cellular processes... 2 The hotter the medium, the faster the molecules diffuse... 2 TASK 1: TEMPERATURE

More information

PASSIVE TRANSPORT PROCESSES

PASSIVE TRANSPORT PROCESSES BIOZONE Assignment #2 Cell Membrane Transport PASSIVE TRANSPORT PROCESSES 1. Describe two properties of an exchange surface that would facilitate rapid diffusion rates*: (a) thin membrane (b) porous membrane

More information

The Structure and Function of Cells

The Structure and Function of Cells The Structure and Function of Cells The Cell is the basic functional unit of ALL living things. There are 2 basic types of cells: 1. Eukaryotic Cells = contain plasma membrane (cell membrane), organelles,

More information

AP Biology. The Cell Membrane

AP Biology. The Cell Membrane The Cell Membrane Phospholipids Phosphate head hydrophilic Fatty acid tails hydrophobic Arranged as a bilayer Phosphate attracted to water Fatty acid repelled by water Aaaah, one of those structure function

More information

CELL MEMBRANES, TRANSPORT, and COMMUNICATION. Teacher Packet

CELL MEMBRANES, TRANSPORT, and COMMUNICATION. Teacher Packet AP * BIOLOGY CELL MEMBRANES, TRANSPORT, and COMMUNICATION Teacher Packet AP* is a trademark of the College Entrance Examination Board. The College Entrance Examination Board was not involved in the production

More information

Appendix 2: Roots, Meristems, and Mieosis/Mitosis Tree Roots

Appendix 2: Roots, Meristems, and Mieosis/Mitosis Tree Roots Appendix 2: Roots, Meristems, and Mieosis/Mitosis Tree Roots The roots of trees anchor the tree to the substrate, absorb water and nutrients from the substrate, and form mutualistic relationships with

More information

+... O 2 H I2 O (2)

+... O 2 H I2 O (2) ... CO +... H O C 6 H I O 6 +... O () Q. (a) Balance the following equation for photosynthesis. Give two conditions necessary for photosynthesis apart from a suitable temperature range and the availability

More information

The Processes of Life. Bicester Community College Science Department

The Processes of Life. Bicester Community College Science Department B4 The Processes of Life B4 Key Questions How do chemical reactions take place in living things? How do plants make food? How do living organisms obtain energy? How do chemical reactions take place in

More information

Photosynthesis 6CO 2 + 6H 2 O C 6 H 12 O 6 + 6O 2. An anabolic, endergonic, carbon dioxide (CO 2

Photosynthesis 6CO 2 + 6H 2 O C 6 H 12 O 6 + 6O 2. An anabolic, endergonic, carbon dioxide (CO 2 PHOTOSYNTHESIS Photosynthesis An anabolic, endergonic, carbon dioxide (CO 2 ) requiring process that uses light energy (photons) and water (H 2 O) to produce organic macromolecules (glucose). photons SUN

More information

1.1.2. thebiotutor. AS Biology OCR. Unit F211: Cells, Exchange & Transport. Module 1.2 Cell Membranes. Notes & Questions.

1.1.2. thebiotutor. AS Biology OCR. Unit F211: Cells, Exchange & Transport. Module 1.2 Cell Membranes. Notes & Questions. thebiotutor AS Biology OCR Unit F211: Cells, Exchange & Transport Module 1.2 Cell Membranes Notes & Questions Andy Todd 1 Outline the roles of membranes within cells and at the surface of cells. The main

More information

VIII. PLANTS AND WATER

VIII. PLANTS AND WATER VIII. PLANTS AND WATER Plants play a large role in the hydrologic cycle. Transpiration, the evaporative loss of water from leaves of natural and cultivated vegetation, returns to the atmosphere about 60

More information

B2 2 Photosynthesis. 93 minutes. 93 marks. Page 1 of 27

B2 2 Photosynthesis. 93 minutes. 93 marks. Page 1 of 27 B Photosynthesis 93 minutes 93 marks Page of 7 Q. Green plants are able to make their own food. Complete each sentence by drawing a ring around the correct answer in the box. (a) Green plants make their

More information

Daisy. Between Earth And Sky. STEM Kits. It s Your Planet - Love It! Journey STEM Activities

Daisy. Between Earth And Sky. STEM Kits. It s Your Planet - Love It! Journey STEM Activities Sponsored By It s Your Planet - Love It! Journey STEM Activities These activities are from the Leader s Guide Book, How to Guide Daisies Through and Sky. These activities correlate directly with the science

More information

BCOR 011 Exam 2, 2004

BCOR 011 Exam 2, 2004 BCOR 011 Exam 2, 2004 Name: Section: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1. According to the first law of thermodynamics, A. the universe

More information

AS Biology Unit 2 Key Terms and Definitions. Make sure you use these terms when answering exam questions!

AS Biology Unit 2 Key Terms and Definitions. Make sure you use these terms when answering exam questions! AS Biology Unit 2 Key Terms and Definitions Make sure you use these terms when answering exam questions! Chapter 7 Variation 7.1 Random Sampling Sampling a population to eliminate bias e.g. grid square

More information

Tree Physiology and Growth

Tree Physiology and Growth Tree Physiology and Growth Dr. Gary Chastagner Washington State University Puyallup, WA 98371 chastag@wsu.edu March 2008 Principal Parts of a Vascular Plant http://extension.oregonstate.edu/mg/botany/external.html

More information

Active Transport Moves solute Against Their Electrochemical Gradient

Active Transport Moves solute Against Their Electrochemical Gradient Active Transport Moves solute Against Their Electrochemical Gradient Active transport of solutes against their electrochemical gradient is essential to maintain the intracellular ionic composition of cells

More information

Photosynthesis and (Aerobic) Respiration. Photosynthesis

Photosynthesis and (Aerobic) Respiration. Photosynthesis Photosynthesis and (Aerobic) Respiration These two processes have many things in common. 1. occur in organelles that seem to be descended from bacteria (endosymbiont theory): chloroplasts and mitochondria

More information

1. The lipid layer that forms the foundation of cell membranes is primarily composed of molecules called.

1. The lipid layer that forms the foundation of cell membranes is primarily composed of molecules called. Cell Membranes 1. The lipid layer that forms the foundation of cell membranes is primarily composed of molecules called. 2. Due to the repellent nature of the polar water molecules, the tails of the phospholipids

More information

CELLS THE CELL IS THE SMALLEST UNIT OF LIFE. ALL ORGANISMS ARE COMPOSED OF CELLS. SOME ARE A SINGLE CELL, OTHERS ARE

CELLS THE CELL IS THE SMALLEST UNIT OF LIFE. ALL ORGANISMS ARE COMPOSED OF CELLS. SOME ARE A SINGLE CELL, OTHERS ARE CELLS THE CELL IS THE SMALLEST UNIT OF LIFE. ALL ORGANISMS ARE COMPOSED OF CELLS. SOME ARE A SINGLE CELL, OTHERS ARE MULTICELLULAR. THE CELL THEORY STATES: 1. ALL ORGANISMS RE COMPOSED OF ONE OR MORE CELLS,

More information

Division Ave High School AP Biology

Division Ave High School AP Biology The Cell Membrane https://youtu.be/y31dlj6ugge Journal Diagrams Shark book pg. 82 Wolves book pg. 88-89 Membrane Proteins Copy table Cell Membrane Proteins Fluid Mosaic Model Cell Membrane Phospholipids

More information

Cells Need to Exchange Materials with the Extracellular Fluid. Membrane Transport. Plasma Membrane. Cells Must Control Movements of Materials

Cells Need to Exchange Materials with the Extracellular Fluid. Membrane Transport. Plasma Membrane. Cells Must Control Movements of Materials Membrane Transport Chapter 6 Cells Need to Exchange Materials with the Extracellular Fluid Take in nutrients O 2 energy substrates building materials cofactors Dispose of wastes CO 2 Urea Cells Must Control

More information

Chapter Plasma Membrane Structure and Function 1. The plasma membrane is a phospholipid bilayer with embedded proteins. 2. Phospholipids have

Chapter Plasma Membrane Structure and Function 1. The plasma membrane is a phospholipid bilayer with embedded proteins. 2. Phospholipids have Chapter 5 5.1 Plasma Membrane Structure and Function 1. The plasma membrane is a phospholipid bilayer with embedded proteins. 2. Phospholipids have both hydrophilic and hydrophobic regions; nonpolar tails

More information

Investigating cells. Cells are the basic units of living things (this means that all living things are made up of one or more cells).

Investigating cells. Cells are the basic units of living things (this means that all living things are made up of one or more cells). SG Biology Summary notes Investigating cells Sub-topic a: Investigating living cells Cells are the basic units of living things (this means that all living things are made up of one or more cells). Cells

More information

GCSE Additional Science

GCSE Additional Science GCSE Additional Science Module B4 The processes of life: What you should know Name: Science Group: Teacher: R.A.G. each of the statements to help focus your revision: R = Red: I don t know this A = Amber:

More information

6-5. Pump potential and diffusion potential. How can we determine whether an ion moves in or out by active or passive transport?

6-5. Pump potential and diffusion potential. How can we determine whether an ion moves in or out by active or passive transport? 3. Transport can be active or passive. Passive transport is movement down an electrochemical gradient. Active transport is movement against an electrochemical gradient. F 6-3 Taiz. Microelectrodes are

More information

Chapter 5: Homeostasis and Transport Lesson 2: Cell Transport-Passive and Active

Chapter 5: Homeostasis and Transport Lesson 2: Cell Transport-Passive and Active Chapter 5: Homeostasis and Transport Lesson 2: Cell Transport-Passive and Active Lesson One helped us to learn the different cell structures that are involved in cell transport. In this lesson you will

More information

The Cell Membrane: Structure and Func4on

The Cell Membrane: Structure and Func4on The Cell Membrane: Structure and Func4on Overview of the Cell Membrane All cells have a cell membrane Separates living cell from nonliving surroundings Mainly made of phospholipids proteins & other macromolecules

More information

I. PLANT CELL, CELL WALL Bot 404--Fall 2004

I. PLANT CELL, CELL WALL Bot 404--Fall 2004 I. PLANT CELL, CELL WALL Bot 404--Fall 2004 A. Review of General Anatomy 1. Major organs are stem, leaf, root. Flower is usually interpreted as a modified shoot, so sepals, petals, stamens and carpels

More information

Passive and Active Transport

Passive and Active Transport Human Physiology Lab (Biol 236L) Background: Passive and Active Transport Substances are routinely transported (received and delivered) across the cell plasma membranes. These substances include compounds,

More information

Membrane Structure and Function - 1

Membrane Structure and Function - 1 Membrane Structure and Function - 1 The Cell Membrane and Interactions with the Environment As mentioned earlier, the boundary between any cell and its environment is the plasma membrane. Each cell must

More information

Keystone Study Guide Module A: Cells and Cell Processes

Keystone Study Guide Module A: Cells and Cell Processes Keystone Study Guide Module A: Cells and Cell Processes Topic 1: Biological Principles Cells and the Organization of Life Characteristics of Life all living things share the following characteristics:

More information

B.10B Interactions with Plants

B.10B Interactions with Plants B.10B Interactions with Plants Picture Vocabulary stimuli Anything that prompts a response or action response An action that is prompted by a stimulus xylem Plant tissue that transports water absorbed

More information

Osmosis, Diffusion and Cell Transport

Osmosis, Diffusion and Cell Transport Osmosis, Diffusion and Cell Transport Types of Transport There are 3 types of transport in cells: 1. Passive Transport: does not use the cell s energy in bringing materials in & out of the cell 2. Active

More information

Cell Membrane Properties

Cell Membrane Properties Cell Membrane Properties Purpose of the lab: review the structure and function of the cell membrane understand the three types of transport across a membrane, and the special case of osmosis using Elodea

More information

Leaf Structure and Transpiration

Leaf Structure and Transpiration 10 LESSON Leaf Structure and Transpiration INTRODUCTION Have you wondered what happens to all that water that disappears from the reservoir of your growing system? Although some might have evaporated from

More information

Membrane Structure and Function

Membrane Structure and Function Membrane Structure and Function Part A Multiple Choice 1. The fluid mosaic model describes membranes as having A. a set of protein channels separated by phospholipids. B. a bilayer of phospholipids in

More information

Cells, tissues and organs

Cells, tissues and organs Chapter 8: Cells, tissues and organs Cells: building blocks of life Living things are made of cells. Many of the chemical reactions that keep organisms alive (metabolic functions) take place in cells.

More information

FIGURE 2.18. A. The phosphate end of the molecule is polar (charged) and hydrophilic (attracted to water).

FIGURE 2.18. A. The phosphate end of the molecule is polar (charged) and hydrophilic (attracted to water). PLASMA MEMBRANE 1. The plasma membrane is the outermost part of a cell. 2. The main component of the plasma membrane is phospholipids. FIGURE 2.18 A. The phosphate end of the molecule is polar (charged)

More information